Orthogonal sets of functions

Recall our standard homogeneous differential equation:

$$
y'' + P(x)y' + Q(x)y = 0.
$$

Now, there is a special class of such equations that take the form

$$
\frac{d}{dx}[p(x)y'] + [q(x) + \lambda r(x)]y = 0
$$
, with $r(x) > 0$. Thus,

$$
p(x)y'' + p'(x)y' + [q(x) + \lambda r(x)]y = 0.
$$

Examples:

Legendre: $(1-x^2)y'' - 2xy' + n(n+1)y = 0$, $(\lambda = n(n+1), p(x) = 1-x^2, q(x) = 0$, and $r(x) = 1$.

Fourier:
$$
y'' + \left(\frac{n\pi}{L}\right)^2 y = 0
$$
, $p(x) = r(x) = 1$, $q(x) = 0$.

Hermite: $y'' - 2xy' + 2ny = 0$, multiplication by e^{-x^2} gives it the right form:

$$
e^{-x^2} y'' - 2xe^{-x^2} y' + 2ne^{-x^2} y = 0
$$
, with $p(x) = r(x) = e^{-x^2}$, and $q(x) = 0$, $\lambda = 2n$.

Laguerre: $xy''+(1-x)y'+\lambda y=0$, multiplied by e^{-x} to get the correct form:

$$
xe^{-x}y'' + (1-x)e^{-x}y' + \lambda e^{-x}y = 0
$$
, with $p(x) = xe^{-x}$, $r(x) = e^{-x}$, and $q(x) = 0$.

We are actually investigating so called eigenvalue equations of the general form:

 $Dy + \lambda r(x)y = 0$, where the differential operator *D* has the form

$$
D = p(x) \frac{d^2}{dx^2} + p'(x) \frac{d}{dx} + q(x).
$$

Boundary conditions are applied at $x = a$ and $x = b$, i.e. $x \in [a, b]$.

Legendre: $x \in [-1,1]$,

Fourier: $x \in [-L, L]$,

Hermite: $x \in \langle -\infty, \infty \rangle$,

Laguerre: $x \in [0, \infty)$.

Notice that for all the equations listed above we have $p(a) = p(b)$ (at the boundaries).

The boundary conditions at $x = a$ and $x = b$ typically lead to a series of discrete eigenvalues λ_n , and corresponding solutions (eigenfunctions) $y_n(x)$.

Without proof (which may be rather demanding!) we state that the eigenfunctions are orthogonal:

$$
\int_a^b r(x) y_n(x) y_m(x)^* dx = 0 \text{ for } \lambda_n \neq \lambda_m.
$$

Complete set of eigenfunctions:

If any function $f(x)$ (without infinite discontinuities) can be expanded in a convergent series in terms of the set of eigenfunctions $\{y_n(x)\}$ for $x \in [a,b]$ (or the appropriate open interval):

$$
f(x) = \sum_{n=1}^{\infty} a_n y_n(x),
$$

then we say that the set $\{y_n(x)\}$ is complete.

The coefficients a_n are determined by utilizing the orthogonality of the eigenfunctions:

$$
\int_{a}^{b} f(x)r(x)y_{m}(x)^{*} dx = \sum_{n} a_{n} \int_{a}^{b} r(x)y_{n}(x)y_{m}(x)^{*} dx = a_{m} \int_{a}^{b} r(x)y_{m}(x)y_{m}(x)^{*} dx.
$$

It is usual to normalize the eigenfunctions, i.e. multiply them by a constant $C(n)$ ($y_n(x)$ is replaced by $C(n) y_n(x)$, so that

$$
\int_{a}^{b} r(x) y_m(x) y_m(x)^* dx = 1.
$$
 Thus,

$$
a_m = \int_{a}^{b} f(x) r(x) y_m(x)^* dx.
$$

Hermitian operators

For which type of eigenvalue equations and boundary conditions do the eigenfunctions form a complete orthogonal set?

If the differential operator D with given boundary conditions at $x = a$ and $x = b$ obeys the condition

$$
\int_{a}^{b} y_{n}(x) * Dy_{m}(x) dx = \int_{a}^{b} y_{m}(x) Dy_{n}(x) * dx,
$$

then *D* is a Hermitian operator.

For Hermitian operators it follows (without proof here):

- 1. The eigenvalues are real (cf. observable quantities in quantum mechanics)
- 2. The eigenfunctions are orthogonal (over $x \in [a, b]$)
- 3. The eigenfunctions form a complete set for $x \in [a, b]$.

The eigenvalue equations listed as examples above, are all of the Hermitian type.

Examples:

Legendre equation: $(1 - x^2)y_n$ " - $2xy_n$ ' + $n(n+1)y_n = 0$. Solutions: Legendre polynomials $y_n(x) = P_n(x)$ for $x \in [-1,1]$

Orthogonality: 1 1 $(x)P_m(x)dx = \frac{2}{2}$ $P_n(x)P_m(x)dx = \frac{2}{2n+1}\delta_{nm}$ δ − = $\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{nm}$.

Completeness: 0 $(x) = \sum a_n P_n(x), x \in [-1,1].$ *n* $f(x) = \sum a_n P_n(x), x$ ∞ $=\sum_{n=0}^{\infty} a_n P_n(x), x \in [-1,1].$ $a_n = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_n(x) dx$ 1 $n = \frac{1}{2} \int_{-1}^{1} \sqrt{x} \, dx$ $a_n = \frac{2n+1}{2} \int_a^b f(x) P_n(x) dx$ − $=\frac{2n+1}{2}\int f(x)P_n(x)dx$.

Hermite equation: y_n " $-2xy_n$ ' $+2ny_n = 0$, $r(x) = e^{-x^2}$.

Solutions: Hermite polynomials: $y_n(x) = H_n(x)$ for $x \in < -\infty, \infty>$.

Orthogonality: $\int e^{-x^2} H_n(x) H_m(x) dx = 2^n n! \sqrt{\pi} \delta_{nm}$. ∞ − $\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx =$

Completeness: $f(x) = \sum a_n H_n(x)$, $a_n = \frac{1}{\sqrt{1 - x^2}} \int e^{-x^2} dx$ $\boldsymbol{0}$ $f(x) = \sum_{n=0}^{\infty} a_n H_n(x), \quad a_n = \frac{1}{\sqrt{1-x}} \int_{0}^{\infty} e^{-x^2} f(x) H_n(x) dx.$ $2^n n!$ *x* $\sum_{n=0}^{\infty} a_n n n_n(x)$, $a_n - 2^n n! \sqrt{\pi} \int_{-\infty}^{\infty} c_n x dx$ $f(x) = \sum a_n H_n(x)$, $a_n = \frac{1}{x} \int e^{-x^2} f(x) H_n(x) dx$ $n! \sqrt{\pi}$ $\sum_{\alpha=1}^{\infty} a H(x) = 1 \int_{0}^{\infty} a^{-1}$ $=\sum_{n=0}^{\infty} a_n H_n(x)$, $a_n = \frac{1}{2^n n! \sqrt{\pi}} \int_{-\infty}^{\infty}$