Orthogonal sets of functions

Recall our standard homogeneous differential equation:

$$y'' + P(x)y' + Q(x)y = 0$$
.

Now, there is a special class of such equations that take the form

$$\frac{d}{dx}[p(x)y'] + [q(x) + \lambda r(x)]y = 0 , \text{ with } r(x) > 0. \text{ Thus,}$$
$$p(x)y'' + p'(x)y' + [q(x) + \lambda r(x)]y = 0.$$

Examples:

Legendre: $(1-x^2)y''-2xy'+n(n+1)y=0$, $(\lambda = n(n+1), p(x)=1-x^2, q(x)=0$, and r(x)=1).

Fourier:
$$y'' + \left(\frac{n\pi}{L}\right)^2 y = 0$$
, $p(x) = r(x) = 1$, $q(x) = 0$.

Hermite: y'' - 2xy' + 2ny = 0, multiplication by e^{-x^2} gives it the right form:

$$e^{-x^2}y'' - 2xe^{-x^2}y' + 2ne^{-x^2}y = 0$$
, with $p(x) = r(x) = e^{-x^2}$, and $q(x) = 0$, $\lambda = 2n$.

Laguerre: $xy'' + (1-x)y' + \lambda y = 0$, multiplied by e^{-x} to get the correct form:

$$xe^{-x}y'' + (1-x)e^{-x}y' + \lambda e^{-x}y = 0$$
, with $p(x) = xe^{-x}$, $r(x) = e^{-x}$, and $q(x) = 0$.

We are actually investigating so called eigenvalue equations of the general form:

 $Dy + \lambda r(x)y = 0$, where the differential operator D has the form

$$D = p(x)\frac{d^2}{dx^2} + p'(x)\frac{d}{dx} + q(x).$$

Boundary conditions are applied at x = a and x = b, i.e. $x \in [a, b]$.

Legendre: $x \in [-1,1]$,

Fourier: $x \in [-L, L]$,

Hermite: $x \in < -\infty, \infty >$,

Laguerre: $x \in [0, \infty > .$

Notice that for all the equations listed above we have p(a) = p(b) (at the boundaries).

The boundary conditions at x = a and x = b typically lead to a series of discrete eigenvalues λ_n , and corresponding solutions (eigenfunctions) $y_n(x)$.

Without proof (which may be rather demanding!) we state that the eigenfunctions are orthogonal:

$$\int_{a}^{b} r(x)y_{n}(x)y_{m}(x)^{*} dx = 0 \text{ for } \lambda_{n} \neq \lambda_{m}.$$

Complete set of eigenfunctions:

If any function f(x) (without infinite discontinuities) can be expanded in a convergent series in terms of the set of eigenfunctions $\{y_n(x)\}$ for $x \in [a,b]$ (or the appropriate open interval):

$$f(x) = \sum_{n=1}^{\infty} a_n y_n(x),$$

then we say that the set $\{y_n(x)\}$ is complete.

The coefficients a_n are determined by utilizing the orthogonality of the eigenfunctions:

$$\int_{a}^{b} f(x)r(x)y_{m}(x)^{*} dx = \sum_{n} a_{n} \int_{a}^{b} r(x)y_{n}(x)y_{m}(x)^{*} dx = a_{m} \int_{a}^{b} r(x)y_{m}(x)y_{m}(x)^{*} dx.$$

It is usual to normalize the eigenfunctions, i.e. multiply them by a constant C(n) ($y_n(x)$ is replaced by $C(n)y_n(x)$), so that

$$\int_{a}^{b} r(x)y_{m}(x)y_{m}(x)^{*} dx = 1.$$
 Thus,
$$a_{m} = \int_{a}^{b} f(x)r(x)y_{m}(x)^{*} dx.$$

Hermitian operators

For which type of eigenvalue equations and boundary conditions do the eigenfunctions form a complete orthogonal set?

If the differential operator D with given boundary conditions at x = a and x = b obeys the condition

$$\int_{a}^{b} y_{n}(x) * Dy_{m}(x) dx = \int_{a}^{b} y_{m}(x) Dy_{n}(x) * dx ,$$

then D is a Hermitian operator.

For Hermitian operators it follows (without proof here):

- 1. The eigenvalues are real (cf. observable quantities in quantum mechanics)
- 2. The eigenfunctions are orthogonal (over $x \in [a, b]$)
- 3. The eigenfunctions form a complete set for $x \in [a,b]$.

The eigenvalue equations listed as examples above, are all of the Hermitian type.

Examples:

Legendre equation: $(1 - x^2)y_n - 2xy_n + n(n+1)y_n = 0.$ Solutions: Legendre polynomials $y_n(x) = P_n(x)$ for $x \in [-1,1]$

Orthogonality: $\int_{-1}^{1} P_n(x) P_m(x) dx = \frac{2}{2n+1} \delta_{nm}.$

Completeness: $f(x) = \sum_{n=0}^{\infty} a_n P_n(x), x \in [-1,1].$ $a_n = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_n(x) dx.$

Hermite equation: $y_n - 2xy_n + 2ny_n = 0$, $r(x) = e^{-x^2}$.

Solutions: Hermite polynomials: $y_n(x) = H_n(x)$ for $x \in <-\infty, \infty >$.

Orthogonality: $\int_{-\infty}^{\infty} e^{-x^2} H_n(x) H_m(x) dx = 2^n n! \sqrt{\pi} \delta_{nm}.$

Completeness: $f(x) = \sum_{n=0}^{\infty} a_n H_n(x), \ a_n = \frac{1}{2^n n! \sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^2} f(x) H_n(x) dx.$

Problem

Given the general eigenvalue equation

$$Dy_n(x) + \lambda_n r(x)y_n(x) = 0$$
, $x \in [a,b]$

where D is a hermitian differential operator, and $\{\lambda_n\}$ represents a set of discrete eigenvalues. The set of eigenfunctions $\{y_n(x)\}$ is assumed to be orthonormal, i.e.

$$\int_{a}^{b} r(x)y_{n}(x)y_{m}(x)^{*} dx = \delta_{nm} .$$

Now, consider the inhomogeneous diff. equation

$$Dy(x) = R(x)$$
.

The solution y(x) may be expanded in terms of the complete set $\{y_n(x)\}$ as:

$$y(x) = \sum_{n} a_n y_n(x) \; .$$

- a) Determine the coefficients a_n .
- b) Show that the solution takes the form

$$y(x) = \int_a^b G(x, x') R(x') dx' ,$$

where G(x, x') is a Greens function defined by

$$G(x, x') = -\sum_{n} \frac{1}{\lambda_{n}} y_{n}(x') * y_{n}(x) , \quad (\lambda_{n} \neq 0 \text{ , what about the case } \lambda_{n} = 0 ?)$$

c) The right hand side may be expanded:

$$R(x) = \sum_{n} c_n y_n(x) \; .$$

Assume that r(x) = 1. Express the solution y(x) in terms of the coefficients c_n .