Orthogonal sets of functions

Recall our standard homogeneous differential equation:

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 .
$$

Now, there is a special class of such equations that take the form

$$
\begin{aligned}
& \frac{d}{d x}\left[p(x) y^{\prime}\right]+[q(x)+\lambda r(x)] y=0, \text { with } r(x)>0 . \text { Thus, } \\
& p(x) y^{\prime \prime}+p^{\prime}(x) y^{\prime}+[q(x)+\lambda r(x)] y=0 .
\end{aligned}
$$

Examples:

Legendre: $\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+n(n+1) y=0, \quad\left(\lambda=n(n+1), p(x)=1-x^{2}, q(x)=0\right.$, and $r(x)=1)$.

Fourier: $\quad y^{\prime \prime}+\left(\frac{n \pi}{L}\right)^{2} y=0, p(x)=r(x)=1, q(x)=0$.
Hermite: $\quad y^{\prime \prime}-2 x y^{\prime}+2 n y=0$, multiplication by $e^{-x^{2}}$ gives it the right form:

$$
e^{-x^{2}} y^{\prime \prime}-2 x e^{-x^{2}} y^{\prime}+2 n e^{-x^{2}} y=0, \text { with } p(x)=r(x)=e^{-x^{2}}, \text { and } q(x)=0, \lambda=2 n
$$

Laguerre: $\quad x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0$, multiplied by e^{-x} to get the correct form:

$$
x e^{-x} y^{\prime \prime}+(1-x) e^{-x} y^{\prime}+\lambda e^{-x} y=0, \text { with } p(x)=x e^{-x}, \quad r(x)=e^{-x}, \text { and } q(x)=0
$$

We are actually investigating so called eigenvalue equations of the general form:

$$
\begin{aligned}
& D y+\lambda r(x) y=0, \text { where the differential operator } D \text { has the form } \\
& D=p(x) \frac{d^{2}}{d x^{2}}+p^{\prime}(x) \frac{d}{d x}+q(x) .
\end{aligned}
$$

Boundary conditions are applied at $x=a$ and $x=b$, i.e. $x \in[a, b]$.
Legendre: $x \in[-1,1]$,
Fourier: $\quad x \in[-L, L]$,
Hermite: $\quad x \in\langle-\infty, \infty\rangle$,

Laguerre: $\quad x \in[0, \infty>$.
Notice that for all the equations listed above we have $p(a)=p(b)$ (at the boundaries).
The boundary conditions at $x=a$ and $x=b$ typically lead to a series of discrete eigenvalues λ_{n}, and corresponding solutions (eigenfunctions) $y_{n}(x)$.

Without proof (which may be rather demanding!) we state that the eigenfunctions are orthogonal:

$$
\int_{a}^{b} r(x) y_{n}(x) y_{m}(x)^{*} d x=0 \text { for } \lambda_{n} \neq \lambda_{m} .
$$

Complete set of eigenfunctions:

If any function $f(x)$ (without infinite discontinuities) can be expanded in a convergent series in terms of the set of eigenfunctions $\left\{y_{n}(x)\right\}$ for $x \in[a, b]$ (or the appropriate open interval):

$$
f(x)=\sum_{n=1}^{\infty} a_{n} y_{n}(x),
$$

then we say that the set $\left\{y_{n}(x)\right\}$ is complete.
The coefficients a_{n} are determined by utilizing the orthogonality of the eigenfunctions:

$$
\int_{a}^{b} f(x) r(x) y_{m}(x) * d x=\sum_{n} a_{n} \int_{a}^{b} r(x) y_{n}(x) y_{m}(x) * d x=a_{m} \int_{a}^{b} r(x) y_{m}(x) y_{m}(x)^{*} d x .
$$

It is usual to normalize the eigenfunctions, i.e. multiply them by a constant $C(n)\left(y_{n}(x)\right.$ is replaced by $\left.C(n) y_{n}(x)\right)$, so that

$$
\begin{aligned}
& \int_{a}^{b} r(x) y_{m}(x) y_{m}(x)^{*} d x=1 . \quad \text { Thus, } \\
& a_{m}=\int_{a}^{b} f(x) r(x) y_{m}(x)^{*} d x .
\end{aligned}
$$

Hermitian operators

For which type of eigenvalue equations and boundary conditions do the eigenfunctions form a complete orthogonal set?
If the differential operator D with given boundary conditions at $x=a$ and $x=b$ obeys the condition

$$
\int_{a}^{b} y_{n}(x) * D y_{m}(x) d x=\int_{a}^{b} y_{m}(x) D y_{n}(x) * d x
$$

then D is a Hermitian operator.
For Hermitian operators it follows (without proof here):

1. The eigenvalues are real (cf. observable quantities in quantum mechanics)
2. The eigenfunctions are orthogonal (over $x \in[a, b]$)
3. The eigenfunctions form a complete set for $x \in[a, b]$.

The eigenvalue equations listed as examples above, are all of the Hermitian type.

Examples:

Legendre equation: $\left(1-x^{2}\right) y_{n}{ }^{\prime \prime}-2 x y_{n}{ }^{\prime}+n(n+1) y_{n}=0$.
Solutions: Legendre polynomials $y_{n}(x)=P_{n}(x)$ for $x \in[-1,1]$
Orthogonality: $\int_{-1}^{1} P_{n}(x) P_{m}(x) d x=\frac{2}{2 n+1} \delta_{n m}$.
Completeness: $f(x)=\sum_{n=0}^{\infty} a_{n} P_{n}(x), \quad x \in[-1,1] . \quad a_{n}=\frac{2 n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) d x$.
Hermite equation: $y_{n}{ }^{\prime \prime}-2 x y_{n}{ }^{\prime}+2 n y_{n}=0, r(x)=e^{-x^{2}}$.
Solutions: Hermite polynomials: $y_{n}(x)=H_{n}(x)$ for $x \in\langle-\infty, \infty\rangle$.
Orthogonality: $\quad \int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x) d x=2^{n} n!\sqrt{\pi} \delta_{n m}$.
Completeness: $\quad f(x)=\sum_{n=0}^{\infty} a_{n} H_{n}(x), \mathrm{a}_{n}=\frac{1}{2^{n} n!\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-x^{2}} f(x) H_{n}(x) d x$.

Problem

Given the general eigenvalue equation

$$
D y_{n}(x)+\lambda_{n} r(x) y_{n}(x)=0, \quad x \in[a, b]
$$

where D is a hermitian differential operator, and $\left\{\lambda_{n}\right\}$ represents a set of discrete eigenvalues. The set of eigenfunctions $\left\{y_{n}(x)\right\}$ is assumed to be orthonormal, i.e.

$$
\int_{a}^{b} r(x) y_{n}(x) y_{m}(x)^{*} d x=\delta_{n m}
$$

Now, consider the inhomogeneous diff. equation

$$
D y(x)=R(x) .
$$

The solution $y(x)$ may be expanded in terms of the complete set $\left\{y_{n}(x)\right\}$ as:

$$
y(x)=\sum_{n} a_{n} y_{n}(x)
$$

a) Determine the coefficients a_{n}.
b) Show that the solution takes the form

$$
y(x)=\int_{a}^{b} G\left(x, x^{\prime}\right) R\left(x^{\prime}\right) d x^{\prime}
$$

where $G\left(x, x^{\prime}\right)$ is a Greens function defined by

$$
G\left(x, x^{\prime}\right)=-\sum_{n} \frac{1}{\lambda_{n}} y_{n}\left(x^{\prime}\right)^{*} y_{n}(x), \quad\left(\lambda_{n} \neq 0, \text { what about the case } \lambda_{n}=0\right. \text { ?) }
$$

c) The right hand side may be expanded:

$$
R(x)=\sum_{n} c_{n} y_{n}(x)
$$

Assume that $r(x)=1$. Express the solution $y(x)$ in terms of the coefficients c_{n}.

