Week 14 - Plan

- Highlights of last week
- Variational calculus cont.
- Partial differential equations: Separation of variables (1D wave equation)

Problem set 12, due May 9th.

Week 14 - Highlights of last week (1)

Tensors

- Inertia tensor I: $L_{i}=I_{i j} \omega_{j}$, derived from $\vec{L}=m \vec{r} \times(\omega \times \vec{r})$
- The nabla operator ∇ transforms as a vector.

Week 14 - Highlights of last week (2)

Tensors

- Levi Civita tensor $\epsilon_{i j k}$ equals ± 1 if ijk is an even (odd) permutation of 123 , and is zero if two or three indices are identical.
- Useful sum rule:

$$
\epsilon_{i j k} \epsilon_{i m n}=\delta_{j m} \delta_{k n}-\delta_{j n} \delta_{k m} .
$$

- Very convenient tool in the context of vector identities (cross product, curl) and computing 3×3 determinants - takes care of the signs.

Week 14 - Highlights of last week (3)

Variational calculus

- Task: Given an integral of the type

$$
I=\int_{x_{1}}^{x_{2}} F\left(x, y, y^{\prime}\right) d x, \quad y^{\prime}=\frac{d y}{d x}
$$

find $y(x)$ [or $x(y)$] between x_{1} and x_{2} such that I is stationary.

- Solution: Look at varied curves around the stationary one to derive Euler-Lagrange (EL) equations

$$
\frac{d}{d x} \frac{\partial F}{\partial y^{\prime}}-\frac{\partial F}{\partial y}=0
$$

- If $\partial F / \partial y=0$, EL simplify to a first integral

$$
\frac{\partial F}{\partial y^{\prime}}=\text { constant }
$$

- If $\partial F / \partial x=0$, the same type of simplification is obtained by changing integration variable from x to y.

Week 14 - Highlights of last week (4)

Variational calculus

- Important examples of variational principles in physics I: Hamilton's principle (stationary action):

$$
S=\int L(x, \dot{x}, t) d t, \quad L=T-V
$$

- Important examples of variational principles in physics II: Fermat's principle:

$$
P=\int n d s
$$

where P is the "optical path", n the local index of refraction.

