Exercise 2.1

Set up an algorithm which converts a floating number in the decimal representation to a floating number in the binary representation. You may or may not use a scientific representation. Write thereafter a program which implements this algorithm following much of the same procedure outlined in program2.cpp or program2.f90 in chapter 2 of the lecture notes.

Exercise 2.2

2.2a) Make a program which sums

$$
s_{\mathrm{up}}=\sum_{n=1}^{N} \frac{1}{n}
$$

and

$$
s_{\text {down }}=\sum_{n=N}^{n=1} \frac{1}{n} .
$$

The program should read N from screen and write the final output to screen.
2.2b) Compare $s_{\text {up }}$ og $s_{\text {down }}$ for different N using both single and double precision for N up to $N=10^{10}$. Which of the above formula is the most realiable one? Try to give an explanation of possible differences. One possibility for guiding the eye is for example to make a log-log plot of the relative difference as a function of N in steps of 10^{n} with $n=1,2, \ldots, 10$. This means you need to compute $\log _{10}\left(\mid\left(s_{\text {up }}(N)-\right.\right.$ $\left.\left.s_{\text {down }}(N)\right) / s_{\text {down }}(N) \mid\right)$ as function of $\log _{10}(N)$.

