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Confined Electronic
Wave Packets o

30.1 PROBLEM: A CONFINED ELECTRON

An electron is initially confined to a one-dimensional region of space the size
of an atom. Your problem is to determine how long in time the electron
remains confined. This is different from the problem of a particle confined
to a box considered in Chapter 10, Quantum FEigenvalues; Zero-Finding and
Matching. There we had a time-independent situation in which we had to
solve for the spatial wave function; here we have a time-dependent problem
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is not in an eigenstate or stationary state of the Hamiltonian, we wish to
determine it for all future times.

MODEL: TIME-DEPENDENT SCHRODINGER EQUATION

w
(=]
N

We use a wave function (or wave packet) 1(z,t) that is a function of the
position z and time t to describe a localized electron. We assume that the
electron is initially localized around x = 5, and model this by a Gaussian
wave function multiplying a plane wave:

2

ikt (30.1)
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Fig. 30.1 The position as a function of time of a localized electron confined to a square

well. The electron is initially on the right with a Gaussian wave packet. In time, the
wave packet spreads out and collides with the walls.

The behavior of this wave packet as a function of time, when placed in a
square well, is shown in Fig. 30.1. The behavior, when placed in an harmonic
oscillator potential, is shown in Fig. 30.2.

As you may verify by applying the momentum operator p = id/dz, the wave
packet (30.1) does not correspond to an electron with a definite momentum
(that is, it is not an eigenstate of p).! However, if the width ¢y of the Gaussian
is made very large, the electron gets spread over a sufficiently large region of
space to consider the wave packet as a plane wave of momentum ko with a
slowly varying amplitude.

The time and space evolution of a quantum particle is described by the
time-dependent Schrédinger equation (here in one dimension):

ROy (30.2)
ot
Here H is the Hamiltonian operator:
. 1 02
- 30.3

where we have set 2m = 1 to keep the equations simple, and use a partial =
derivative because ¥ is also a function of ¢.

An important aspect of quantum mechanics is that the wave function is

!We use natural units in which i = 1, so there is no difference between momentum and
wave numbers [L 96, Appendix A.1].
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Fig. 30.2 The probability density as a function of time for an electron confined to a
1-D harmonic oscillator potential well. The electron’s initial localization is described
by the Gaussian wave packet (30.1). Because the wave packet is an eigenfunction of
the potential, it does not break up on collision but instead returns to its original form.

complex (because it is not directly observable, this is not a problem). Even
though many computer languages can handle complex functions, we will find
it advantageous to decompose the wave function into its real and imaginary
parts:

U(x,t) = R(z,t) +il(z,1). (30.4)

Substitution of (30.4) into Schrédinger equation (30.2) produces the coupled
PDEs:

LD i@y = =20 yoyrey, (@09
) 5?
BI((;;, t) = -AR(z,t) = +$_%)_ + V(z)R(z,t), (30.6)

where the Hamiltonian operator H is assumed real.

30.3 METHOD, NUMERIC: FINITE DIFFERENCE

The time-dependent Schrédinger equation can be solved with both implicit
and explicit methods. An implicit method [Gold 67) converts the PDEs into
a very large set of simultaneous linear equations involving the wave function
evaluated at each grid point, and then solves these linear equations by matrix
inversion for each time. This can cause problems when the matrices get very
large. For our project, we modify the explicit method described by [Ask 77)
and [Viss 91]. This is an iterative scheme that avoids the inversion of large
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matrices.

There are some challenges in solving the Schrodinger equation. First, we
need an ;ﬂonnrhm that converges and is stable, the usual concerns. Second
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we need an algorithm that ensures, at least to some order, that probability is
conserved with time; otherwise the electron will fade away right before our
eyes. A good solution to the probability problem is to determine the real and
imaginary parts of the wave function at slightly different or “staggered” times.
Expllcnly, the real part R is determined at times 0, A¢, . . ., and the imaginary
part I at -At, 3 At, and so forth. The algorithm is based on (what else) the
Taylor expansions of R and I:

R(z,t + 1At) = R(z,t — 1AY) (30.7)
—2{a{l(z + Az, t) + I[(z — Az, t)] — 2[a+ V(2)At] I(z, 1)},
I(z,t + 1At) ~ I(z,t — AL) (30.8)
+2{a[R(z + Az, t) + R(z — Az, t)] - 2[a + V(z)At] R(z, 1)},
At
= Stk (30.9)

In discrete form, these equations become our algorithm:

RM' = RM—2{a[I, +I",] - 2]a+ ViAH] I'}, (30.10)
MY = 1P+ 2{a[RY, + RM,] — 2[a+ V;At) R}, (30.11)

where the superscript n indicates the time ¢ = nAt and the subscript ¢, the
position x = {Ax.
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density p is defined in terms of the wave function evaluated at three different
times:

() = R(t) + I(t+ §4)I(t — &), for integer ¢,
P = I(t) + R(t+ 3HR(t — &), for half-integer ¢.
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(30.12)

While this definition of p may seem strange, it reduces to the usual one for
At — 0, and so can be viewed as part of the art of numerical analysis. You
will verify, if you do as told, that with this definition, the integral of the
probability over all space is approximately constant from one time to the next:

> pla,t+ 348 > > p(z,t). (30.13)

We refer the reader to [Koon 86] and [Viss 91] for details on the stability of
the algorithm and on the behavior of the evolution matrix exp(iH At).
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IMPLEMENTATION: WAVE PACKET IN WELL, SQWELL.F

On the diskette and the Web you will find a program that solves for the motion
of the wave packet (30.1) inside the infinite potential well:

QO

30.5

oo, forzxz <O,
Viz) = {O, for 0 <z <15, (30.14)
oo, forz > 15.

. Define arrays R(751,2) and 1(751,2) for the real and imaginary parts of

the wave function, and Rho(751) for the probability density. The first

subscript refers to the z position on the grid and the second to the

avafeiz 021 LAl 1€ 001

present and future times.
Use the values 09 = 0.5, Az = 0.02, kg = 177, and At = %Aﬁ.

Use equation (30.1) for the initial wave packet to define r(j,1) for all j
at t =0, and 1(j,1) at t = $AL.

Set Rho(1)=Rho(751) = 0.0 because the wave function must vanish at the
infinitely high well walls.

Increment time by $At. Use (30.10) to compute R(j,2) in terms of
R(j,1), and (30.11) to compute 1(j,2) in terms of 1(j,1).

Repeat the steps through all of space; that is, for i=2-750.

. Throughout all of space, replace the present wave packet (second index

equal to 1) by the future wave packet (second index 2).

ASSESSMENT: VISUALIZATION, AND ANIMATION

Output the probability density Rho on a coarse grid, say, about every
fifth grid point. For crude animation, output the entire space behavior
after every 200 time steps.

. Make a 3-D plot of probability versus position versus time. This should

look like Fig. 30.1 or Fig. 30.2.

. Make a movie showing the wave function as a function of time.

. Check how well probability is conserved for early and late times. Deter-

mine the integral of the probability over all of space, fow dzp(z), and see
if it changes with time (its explicit value doesn’t matter because that’s
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5. What might be a good explanation of why collisions with the walls cause
the wave packet to broaden and break up? (Hint: The collisions do not
appear so disruptive when a Gaussian wave packet is confined within a
harmonic oscillator potential well.)

30.6 EXPLORATION: 1-D HARMONIC OSCILLATOR

Modify the sample program to describe the motion of a Gaussian wave packet
in the harmonic oscillator potential:

Viz) = %12 (=00 <z < 00). (30.15)

Take the initial momentum of the wave packet as ko = 37 and the time and
space steps as Ar = 0.02 and At = iAxQ. Note that the wave packet appears
to breathe, yet returns to it initial shape!

30.7 IMPLEMENTATION: WAVE PACKET IN HARMONIC WELL,
HARMOS.F

30.8 PROBLEM: TWO-DIMENSIONAL CONFINEMENT

Consider now an electron moving in 2-D space as shown in Fig. 30.3. This
adds another degree of freedom to the problem, which means that we must
solve the 2-D time-dependent Schrédinger equation:

O0Y(z,y,t) %y 8%y
Y T T (372‘ + a—yz) + V(z,y)¥, (30.17)

where we have chosen units in which 2m = h = 1. To be more specific, have
the electron move in an infinitely long tube with a parabolic cross section:

V(z,y) =0.9z%, (-9.0<z<9.0), (0<y<18.0). (30.18)

Assume that the electron’s initial localization is described by a Gaussian
wave packet in two dimensions:

— 0 — ikosT ikoy (f—fo)r' [ (y*yo)j
Y(z,y,t =0) = e e vYexp [—T exp |———5—5—|- (30.19)
L 205 | L <05 1

We show the tube potential and the wave packet in Fig. 30.3.
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TWO-DIMENSIONAL CONFINEMENT
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ig. 30.3 The probability density as a function of z and y of an electron confined to

a 2-D parabolic “tube.” The electron’

ial localization is described by a Gaussian
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wave packet in both the z and y directions. The times are 100, 300, 500, and 750.
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30.9 METHOD: NUMERICAL
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equation in two dimensions is to extend the 1-D algorithm. Rather than do
that, we apply quantum theory dxrectly to obtain a more powerful algorithm.
First we note that equation (30.17) can be integrated in a formal sense [L 96,
p.4] to obtain the operator solution:

iu

w(z,y,t) = U(t)yp(z,y,t = 0) = e 'y(z,y,t = 0). (30.20)

From this formal solution we deduce that a wave packet can be moved ahead
by a time At with the action of the time evolution operator:

Y(t + At) U(At)y(t), (30.21)
U(At) = e tHAL (30.22)

If the operator U were known exactly, it would provide the exact advance of
the solution by one time step:

Yt = U(Atyy, (30.23)

where the superscripts denote time and the subscripts denote the two spatial

variables,

def Y(iAz, jAy, nAt). (30.24)

,‘p"
Likewise, the inverse of the time evolution operator moves the solution back
one time step:

HAfy" = et Ay (30.25

While it would be nice to have an algorithm based on a direct application
of (30.23), the references show that the resulting algorithm is not stable. That
being so, we base our algorithm on an indirect application [Ask 77], namely,
the relation between the difference in ¥"*! (30.23) and " ~! (30.25):

wn+1 — 'l/)n_l + [e_iﬁAt — elﬁAt]'l/)n’ (3026)

where the difference in sign of the exponents is to be noted. The algorithm
derives from combining the O(Az?) expression for the second derivative ob-
tained from the Taylor expansion,

Y 1. . n n
57 X 75 Ul H vl - 200, (30.27)

thh the correspondmg-order expansion of the evolution equation (30.26).

nrr_\cmnn for the cecond de rnrahvo is substitutec
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the 2-D time-dependent Schrédinger equation, there results?

i = gt - 2 [(de+ AtV ) vl
a (Yl ¥R, YT Ul )], (30.28)
At
= : 30.29
* T e (30.29)

We convert these complex equations into coupled real equations by substi-
tuting the real and imaginary parts of the wave function, ¥ = R + iI, into
(30.28):

R:;rl - R?l_—l + 9% (30.30)
[(4a+AtV‘J)I" o (I, + I+ I + 10 20)]
I = I - 2 (3031)

[(4a+ AtV,,J)R:J +a (Rl+1 ] +R1 1] +Rz ]+l + Rz ]—1)]

This is the basic algorithm we use to integrate the 2-D Schrodinger equa-
b

tion. To determine the nro
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for one-dimension to:

(30.32)

olt) = {R2(t) +I(t+ $At)I(t — $At), for integer time,

R(t + 1At)R(t — %At) + I%(t), for half-integer time.

Although probability is not conserved exactly with this algorithm, the error
is two orders higher than that in the wave function, and this is usually quite
satisfactory. If it is not satisfactory, then we need to use smaller steps.

0N 1
[o LV P §

Determine the motion of a 2-D Gaussian wave packet within the 2-D harmonic
oscillator potential:

V(z,y) =0.3(z* +¢?), (-9.0<2<90), (-9.0<y<90). (30.33)

Center the initial wave packet at (z,y) = (3.0, —3) with momentum (ko., koy) =
(3.0,1.5)
(3.0,1

"/

2For reference sake, note that the constants in the equation change as the dimension of

the equation change; that is, there will be different constants for the 3-D equation, and
therefore our constants are a‘iﬁ'erent from the references!
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Fig. 30.4 The probability density as a function of position and time for an electron
incident upon and passing through a slit.

30.11 EXPLORATION: SINGLE-SLIT DIFFRACTION, SLIT.F

Young’s single-slit experiment has a wave passing through a small slit, which
causes the emerging wavelets to interfere with each other. In quantum me-
chanics, where we represent a particle by a wave packet, this means that an
interference pattern should be formed when a particle passes through a small
slit. Consider a Gaussian wave packet of initial width 3 incident on a slit of
width 5, as shown in Fig. 30.4.
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