
Outline

Slides from FYS3150/FYS4150 Lectures

Morten Hjorth-Jensen

1Department of Physics and Center of Mathematics for Applications
University of Oslo, N-0316 Oslo, Norway

2Department of Physics and Astronomy, Michigan State University
East Lansing, Michigan, USA

Fall 2005

Computational Physics I FYS3150/4150

Outline

Outline

1 Introduction to FYS3150/4150
Plan for this week
Format of the Course

2 Introduction to C/C++ and Numerical Precision
Structured Programming
Loss of Numerical Precision, a simple case
C/C++ Basics

Computational Physics I FYS3150/4150

Outline

Outline

1 Introduction to FYS3150/4150
Plan for this week
Format of the Course

2 Introduction to C/C++ and Numerical Precision
Structured Programming
Loss of Numerical Precision, a simple case
C/C++ Basics

Computational Physics I FYS3150/4150

Introduction
C/C++

Presentation
Format

Outline

1 Introduction to FYS3150/4150
Plan for this week
Format of the Course

2 Introduction to C/C++ and Numerical Precision
Structured Programming
Loss of Numerical Precision, a simple case
C/C++ Basics

Computational Physics I FYS3150/4150

Introduction
C/C++

Presentation
Format

Week 34, 22-26 August

Monday: First lecture: Presentation of the course, aims
and content

Monday: Second Lecture: Introduction to C++
programming and numerical precision.

Wednesday: Numerical precision and C++ programming,
continued

Computer-Lab: thursday and friday 9am-7pm.
Presentation of hardware and software at room FV329.

Computational Physics I FYS3150/4150

Introduction
C/C++

Presentation
Format

Outline

1 Introduction to FYS3150/4150
Plan for this week
Format of the Course

2 Introduction to C/C++ and Numerical Precision
Structured Programming
Loss of Numerical Precision, a simple case
C/C++ Basics

Computational Physics I FYS3150/4150

Introduction
C/C++

Presentation
Format

Lectures and ComputerLab

Lectures: monday (12.15am-2pm) and wednesday
(12.15pm-14pm)

Detailed lecture notes, exercises, all programs presented,
projects etc can be found at the homepage of the course.

Computerlab: 9am-7 pm thursday and friday, room FV329

Weekly plans and all other information are on the official
webpage.

Computational Physics I FYS3150/4150

Introduction
C/C++

Presentation
Format

Course Format

Several computer exercises, 6 compulsory projects.
Electronic reports only. Classfronter as course organizer.

Oral examination based on the reports and five selected
topics, see the syllabus link on the webpage. Dates to be
settled, most likely week 50, 12-16 December.

The computer lab consists of 16 Linux PCs. C/C++ is the
default programming language, but F90/95 is also used. All
source codes discussed during the lectures can be found
at the webpage of the course. Alternatively you can also
use Java, or compiled languages like Matlab and Maple.
Furthermore, you could also use Python. Beware that we
cannot guide you in Java.

Computational Physics I FYS3150/4150

Introduction
C/C++

Presentation
Format

ComputerLab

day teacher
Thursday 9am-1 pm Morten Hjorth-Jensen
Thursday 1pm-5pm MHJ/Maxim Kartamychev
Friday 9am-1pm MK
Fredag 1pm-5pm MK

The lab is open till 7pm, but from 5pm till 7pm there will only be
student assistants.
Set up your preferred lab time.

Computational Physics I FYS3150/4150

Introduction
C/C++

Presentation
Format

Topics covered

Numerical precision and intro to C++ programming

Numerical derivation and integration

Random numbers and Monte Carlo integration

Monte Carlo methods in statistical physics

Quantum Monte Carlo methods

Linear algebra and eigenvalue problems

Non-linear equations and roots of polynomials

Ordinary differential equations

Partial differential equations

Interpolation and extrapolation

Fitting of data

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Outline

1 Introduction to FYS3150/4150
Plan for this week
Format of the Course

2 Introduction to C/C++ and Numerical Precision
Structured Programming
Loss of Numerical Precision, a simple case
C/C++ Basics

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

A structured programming approach

Before writing a single line, have the algorithm clarified and understood. It is
crucial to have a logical structure of e.g., the flow and organization of data before
one starts writing.

Always try to choose the simplest algorithm. Computational speed can be
improved upon later.

Try to write a as clear program as possible. Such programs are easier to debug,
and although it may take more time, in the long run it may save you time. If you
collaborate with other people, it reduces spending time on debuging and trying to
understand what the codes do. A clear program will also allow you to remember
better what the program really does!

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

A structured programming approach

The planning of the program should be from top down to bottom, trying to keep
the flow as linear as possible. Avoid jumping back and forth in the program. First
you need to arrange the major tasks to be achieved. Then try to break the major
tasks into subtasks. These can be represented by functions or subprograms.
They should accomplish limited tasks and as far as possible be independent of
each other. That will allow you to use them in other programs as well.

Try always to find some cases where an analytical solution exists or where
simple test cases can be applied. If possible, devise different algorithms for
solving the same problem. If you get the same answers, you may have coded
things correctly or made the same error twice or more.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Outline

1 Introduction to FYS3150/4150
Plan for this week
Format of the Course

2 Introduction to C/C++ and Numerical Precision
Structured Programming
Loss of Numerical Precision, a simple case
C/C++ Basics

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Loss of numerical precision

Suppose we wish to evaluate the function

f (x) =
1− cos(x)

sin(x)
,

for small values of x . Five leading digits. If we multiply the denominator and numerator
with 1 + cos(x) we obtain the equivalent expression

f (x) =
sin(x)

1 + cos(x)
.

If we now choose x = 0.007 (in radians) our choice of precision results in

sin(0.007) ≈ 0.69999× 10−2,

and
cos(0.007) ≈ 0.99998.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Loss of numerical precision

The first expression for f (x) results in

f (x) =
1− 0.99998

0.69999× 10−2
=

0.2× 10−4

0.69999× 10−2
= 0.28572× 10−2,

while the second expression results in

f (x) =
0.69999× 10−2

1 + 0.99998
=

0.69999× 10−2

1.99998
= 0.35000× 10−2,

which is also the exact result. In the first expression, due to our choice of precision, we

have only one relevant digit in the numerator, after the subtraction. This leads to a loss

of precision and a wrong result due to a cancellation of two nearly equal numbers. If we

had chosen a precision of six leading digits, both expressions yield the same answer.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Loss of numerical precision

If we were to evaluate x ∼ π, then the second expression for f (x) can lead to potential
losses of precision due to cancellations of nearly equal numbers.

This simple example demonstrates the loss of numerical precision due to roundoff

errors, where the number of leading digits is lost in a subtraction of two near equal

numbers. The lesson to be drawn is that we cannot blindly compute a function. We will

always need to carefully analyze our algorithm in the search for potential pitfalls. There

is no magic recipe however, the only guideline is an understanding of the fact that a

machine cannot represent correctly all numbers.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Outline

1 Introduction to FYS3150/4150
Plan for this week
Format of the Course

2 Introduction to C/C++ and Numerical Precision
Structured Programming
Loss of Numerical Precision, a simple case
C/C++ Basics

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Getting Started

Compiling and linking
In order to obtain an executable file for a C++ program, the following instructions under
Linux/Unix can be used

c++ -c -Wall myprogram.cpp
c++ -o myprogram myprogram.o

where the compiler is called through the command c++/g++. The compiler option -Wall

means that a warning is issued in case of non-standard language. The executable file

is in this case myprogram. The option −c is for compilation only, where the program is

translated into machine code, while the −o option links the produced object file

myprogram.o and produces the executable myprogram .

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Makefiles and simple scripts

Under Linux/Unix it is often convenient to create a so-called makefile, which is a script
which includes possible compiling commands.

Comment lines
General makefile for c - choose PROG = name of given program
Here we define compiler option, libraries and the target
CC= g++ -Wall
PROG= myprogram
this is the math library in C, not necessary for C++
LIB = -lm
Here we make the executable file
${PROG} : ${PROG}.o

${CC} ${PROG}.o ${LIB} -o ${PROG}
whereas here we create the object file
${PROG}.o : ${PROG}.c

${CC} -c ${PROG}.c

If you name your file for ’makefile’, simply type the command make and Linux/Unix

executes all of the statements in the above makefile. Note that C++ files have the

extension .cpp

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Hello world

The C encounter
Here we present first the C version.

/* comments in C begin like this and end with */
#include <stdlib.h> /* atof function */
#include <math.h> /* sine function */
#include <stdio.h> /* printf function */
int main (int argc, char* argv[])
{

double r, s; /* declare variables */
r = atof(argv[1]); /* convert the text argv[1] to double */
s = sin(r);
printf("Hello, World! sin(%g)=%g\n", r, s);
return 0; /* success execution of the program */

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Hello World

Dissection I
The compiler must see a declaration of a function before you can call it (the compiler
checks the argument and return types). The declaration of library functions appears in
so-called “header files” that must be included in the program, e.g.,

#include <stdlib.h> /* atof function */

We call three functions (atof, sin, printf) and these are declared in three different
header files. The main program is a function called main with a return value set to an
integer, int (0 if success). The operating system stores the return value, and other
programs/utilities can check whether the execution was successful or not. The
command-line arguments are transferred to the main function through

int main (int argc, char* argv[])

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Hello World

Dissection II
The command-line arguments are transferred to the main function through

int main (int argc, char* argv[])

The integer argc is the no of command-line arguments, set to one in our case, while
argv is a vector of strings containing the command-line arguments with argv [0]
containing the name of the program and argv [1], argv [2], ... are the command-line
args, i.e., the number of lines of input to the program. Here we define floating points,
see also below, through the keywords float for single precision real numbers and
double for double precision. The function atof transforms a text (argv [1]) to a float.
The sine function is declared in math.h, a library which is not automatically included
and needs to be linked when computing an executable file.

With the command printf we obtain a formatted printout. The printf syntax is used for

formatting output in many C-inspired languages (Perl, Python, awk, partly C++).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Hello World

Now in C++
Here we present first the C++ version.

// A comment line begins like this in C++ programs
// Standard ANSI-C++ include files
using namespace std
#include <iostream> // input and output
int main (int argc, char* argv[])
{
// convert the text argv[1] to double using atof:

double r = atof(argv[1]);
double s = sin(r);
cout << "Hello, World! sin(" << r << ")=" << s << ’\n’;

// success
return 0;

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

C++ Hello World

Dissection I
We have replaced the call to printf with the standard C++ function cout . The header

file < iostream.h > is then needed. In addition, we don’t need to declare variables like

r and s at the beginning of the program. I personally prefer however to declare all

variables at the beginning of a function, as this gives me a feeling of greater readability.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Limits

C++ and Fortran declarations

type in C/C++ and Fortran 90/95 bits range

char/CHARACTER 8 −128 to 127
unsigned char 8 0 to 255
signed char 8 −128 to 127
int/INTEGER (2) 16 −32768 to 32767
unsigned int 16 0 to 65535
signed int 16 −32768 to 32767
short int 16 −32768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 −32768 to 32767
int/long int/INTEGER(4) 32 −2147483648 to 2147483647
signed long int 32 −2147483648 to 2147483647
float/REAL(4) 32 3.4e−38 to 3.4e+38

double/REAL(8) 64 1.7e−308 to 1.7e+308

long double 64 1.7e−308 to 1.7e+308

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

From decimal to binary representation

How to do it

an2n + an−12n−1 + an−22n−2 + · · ·+ a020.

In binary notation we have thus (417)10 = (110100001)2 since we have

(110100001)2 = 1×28+1×27+0×26+1×25+0×24+0×23+0×22+0×22+0×21+1×20.

To see this, we have performed the following divisions by 2

417/2=208 remainder 1 coefficient of 20 is 1
208/2=104 remainder 0 coefficient of 21 is 0
104/2=52 remainder 1 coefficient of 22 is 0
52/2=27 remainder 1 coefficient of 23 is 0
26/2=13 remainder 1 coefficient of 24 is 0
13/2= 6 remainder 1 coefficient of 25 is 1
6/2= 3 remainder 1 coefficient of 26 is 0
3/2= 1 remainder 1 coefficient of 27 is 1
1/2= 0 remainder 1 coefficient of 28 is 1

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

From decimal to binary representation

Integer numbers
using namespace std;
#include <iostream>
int main (int argc, char* argv[])
{

int i;
int terms[32]; // storage of a0, a1, etc, up to 32 bits
int number = atoi(argv[1]);
// initialise the term a0, a1 etc
for (i=0; i < 32 ; i++){ terms[i] = 0;}
for (i=0; i < 32 ; i++){

terms[i] = number%2;
number /= 2;

}
// write out results
cout << "Number of bytes used= " << sizeof(number) << endl;
for (i=0; i < 32 ; i++){

cout << " Term nr: " << i << "Value= " << terms[i];
cout << endl;

}
return 0;

} Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

From decimal to binary representation

Integer numbers, Fortran
PROGRAM binary_integer
IMPLICIT NONE

INTEGER i, number, terms(32) ! storage of a0, a1, etc, up to 32 bits

WRITE(*,*) ’Give a number to transform to binary notation’
READ(*,*) number

! Initialise the terms a0, a1 etc
terms = 0

! Fortran takes only integer loop variables
DO i=0, 31

terms(i) = MOD(number,2)
number = number/2

ENDDO
! write out results

WRITE(*,*) ’Binary representation ’
DO i=0, 31

WRITE(*,*)’ Term nr and value’, i, terms(i)
ENDDO

END PROGRAM binary_integer
Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Integer Numbers

Possible Overflow for Integers
// A comment line begins like this in C++ programs
// Program to calculate 2**n
// Standard ANSI-C++ include files */
using namespace std
#include <iostream>
#include <cmath>
int main()
{

int int1, int2, int3;
// print to screen

cout << "Read in the exponential N for 2ˆN =\n";
// read from screen

cin >> int2;
int1 = (int) pow(2., (double) int2);
cout << " 2ˆN * 2ˆN = " << int1*int1 << "\n";
int3 = int1 - 1;
cout << " 2ˆN*(2ˆN - 1) = " << int1 * int3 << "\n";
cout << " 2ˆN- 1 = " << int3 << "\n";
return 0;

}
// End: program main()Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Loss of Precision, bad thing

Real Numbers

Overflow : When the positive exponent exceeds the max value, e.g., 308 for
DOUBLE PRECISION (64 bits). Under such circumstances the program will
terminate and some compilers may give you the warning ’OVERFLOW’.

Underflow : When the negative exponent becomes smaller than the min value,
e.g., -308 for DOUBLE PRECISION. Normally, the variable is then set to zero
and the program continues. Other compilers (or compiler options) may warn you
with the ’UNDERFLOW’ message and the program terminates.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Loss of precision, real numbers

Roundoff errors A floating point number like

x = 1.234567891112131468 = 0.1234567891112131468× 101 (1)

may be stored in the following way. The exponent is small and is stored in full
precision. However, the mantissa is not stored fully. In double precision (64 bits),
digits beyond the 15th are lost since the mantissa is normally stored in two
words, one which is the most significant one representing 123456 and the least
significant one containing 789111213. The digits beyond 3 are lost. Clearly, if we
are summing alternating series with large numbers, subtractions between two
large numbers may lead to roundoff errors, since not all relevant digits are kept.
This leads eventually to the next problem, namely

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on Loss of Precision

Real Numbers

Loss of precision When one has to e.g., multiply two large numbers where one
suspects that the outcome may be beyond the bonds imposed by the variable
declaration, one could represent the numbers by logarithms, or rewrite the
equations to be solved in terms of dimensionless variables. When dealing with
problems in e.g., particle physics or nuclear physics where distance is measured
in fm (10−15m), it can be quite convenient to redefine the variables for distance
in terms of a dimensionless variable of the order of unity. To give an example,
suppose you work with single precision and wish to perform the addition
1 + 10−8. In this case, the information containing in 10−8 is simply lost in the
addition. Typically, when performing the addition, the computer equates first the
exponents of the two numbers to be added. For 10−8 this has however
catastrophic consequences since in order to obtain an exponent equal to 100,
bits in the mantissa are shifted to the right. At the end, all bits in the mantissa are
zeros.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Another simple Case

Three ways of computing e−x

1 Brute force

exp (−x) =
∞X

n=0

(−1)n xn

n!

2 recursion relation for

exp (−x) =
∞X

n=0

sn =
∞X

n=0

(−1)n xn

n!

sn = −sn−1
x

n
,

3

exp (x) =
∞X

n=0

sn

exp (−x) =
1

exp (x)
Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Program to compute exp (−x)

Brute Force
// Program to calculate function exp(-x)
// using straightforward summation with differing precision
using namespace std
#include <iostream>
#include <cmath>
// type float: 32 bits precision
// type double: 64 bits precision
#define TYPE double
#define PHASE(a) (1 - 2 * (abs(a) % 2))
#define TRUNCATION 1.0E-10
// function declaration
TYPE factorial(int);

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Program to compute exp (−x)

Still Brute Force
int main()
{

int n;
TYPE x, term, sum;
for(x = 0.0; x < 100.0; x += 10.0) {

sum = 0.0; //initialization
n = 0;
term = 1;
while(fabs(term) > TRUNCATION) {

term = PHASE(n) * (TYPE) pow((TYPE) x,(TYPE) n) / factorial(n);
sum += term;
n++;

} // end of while() loop

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Program to compute exp (−x)

Oh, it never ends!
printf("\nx = %4.1f exp = %12.5E series = %12.5E

number of terms = %d",
x, exp(-x), sum, n);

} // end of for() loop

printf("\n"); // a final line shift on output
return 0;

} // End: function main()
// The function factorial()
// calculates and returns n!
TYPE factorial(int n)
{

int loop;
TYPE fac;
for(loop = 1, fac = 1.0; loop <= n; loop++) {

fac *= loop;
}
return fac;

} // End: function factorial()

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Results exp (−x)

What is going on?

x exp (−x) Series Number of terms in series
0.0 0.100000E+01 0.100000E+01 1

10.0 0.453999E-04 0.453999E-04 44
20.0 0.206115E-08 0.487460E-08 72
30.0 0.935762E-13 -0.342134E-04 100
40.0 0.424835E-17 -0.221033E+01 127
50.0 0.192875E-21 -0.833851E+05 155
60.0 0.875651E-26 -0.850381E+09 171
70.0 0.397545E-30 NaN 171
80.0 0.180485E-34 NaN 171
90.0 0.819401E-39 NaN 171

100.0 0.372008E-43 NaN 171

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Program to compute exp (−x)

// program to compute exp(-x) without exponentials
using namespace std
#include <iostream>
#include <cmath>
#define TRUNCATION 1.0E-10

int main()
{

int loop, n;
double x, term, sum;
for(loop = 0; loop <= 100; loop += 10)
{

x = (double) loop; // initialization
sum = 1.0;
term = 1;
n = 1;

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Program to compute exp (−x)

Last statements
while(fabs(term) > TRUNCATION)

{
term *= -x/((double) n);
sum += term;
n++;

} // end while loop
cout << "x = " << x << " exp = " << exp(-x) << " series = "

<< sum << " number of terms =" << n << "\n";
} // end of for() loop

cout << "\n"; // a final line shift on output

} /* End: function main() */

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Results exp (−x)

More Problems

x exp (−x) Series Number of terms in series
0.000000 0.10000000E+01 0.10000000E+01 1

10.000000 0.45399900E-04 0.45399900E-04 44
20.000000 0.20611536E-08 0.56385075E-08 72
30.000000 0.93576230E-13 -0.30668111E-04 100
40.000000 0.42483543E-17 -0.31657319E+01 127
50.000000 0.19287498E-21 0.11072933E+05 155
60.000000 0.87565108E-26 -0.33516811E+09 182
70.000000 0.39754497E-30 -0.32979605E+14 209
80.000000 0.18048514E-34 0.91805682E+17 237
90.000000 0.81940126E-39 -0.50516254E+22 264

100.000000 0.37200760E-43 -0.29137556E+26 291

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 35, 29 August - 2 September

Numerical differentiation and loss of numerical precision
(chapter 3 lecture notes)

Monday: Repetition from last week

C/C++ programming details, pointers, read/write to/from
file

Wednesday: Intro to linear Algebra

Matrices in C++ and Fortran90/95

Dynamic memory allocation in C/C++ and Fortran90/95 ,
use of the library package Blitz++ for C++ users

Computer-Lab: thursday and friday 9am-7pm, Exercise 3.1
and presentation of Blitz++

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Repetition

Machine Numbers
In the machine a number is represented as

fl(x) = x(1 + ε) (2)

where |ε| ≤ εM and ε is given by the specified precision, 10−7 for single and 10−16 for
double precision, respectively. εM is the given precision. In case of a subtraction
a = b − c, we have

fl(a) = fl(b)− fl(c) = a(1 + εa), (3)

or
fl(a) = b(1 + εb)− c(1 + εc), (4)

meaning that

fl(a)/a = 1 + εb
b

a
− εc

c

a
, (5)

and if b ≈ c we see that there is a potential for an increased error in fl(a).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Repetition

Machine Numbers
Define the absolute error as

|fl(a)− a|, (6)

whereas the relative error is
|fl(a)− a|

a
≤ εa. (7)

The above subraction is thus

|fl(a)− a|
a

=
|fl(b)− f (c)− (b − c)|

a
, (8)

yielding
|fl(a)− a|

a
=
|bεb − cεc |

a
. (9)

The relative error is the quantity of interest in scientific work. Information about the

absolute error is normally of little use in the absence of the magnitude of the quantity

being measured.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Repetition

To understand roundoff errors in general, it is customary to regard it as a random
process. One can represent these errors by a semi-empirical expression if the roundoff
errors come in randomly up or down

εro ≈
√

NεM , (10)

where N is e.g., the number of terms in the summation over n for the exponential. Note
well that this estimate can be wrong especially if the roundoff errors accumulate in one
specific direction. One special case is that of subtraction of two almost equal numbers.
The total error will then be the sum of a roundoff error and an approximation error of
the algorithm. The latter would correspond to the truncation test of examples 2 and 3.
Let us assume that the approximation error goes like

εapprox =
α

Nβ
, (11)

with the obvious limit εapprox → 0 when N →∞. The total error reads then

εtot =
α

Nβ
+
√

NεM (12)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Pointer example I

1 using namespace std; // note use of namespace
2 int main()
3 {
4 int var;
5 int *p;
6 p = &var;
7 var = 421;
8 printf("Address of integer variable var : %p\n",&var);
9 printf("Its value: %d\n", var);
10 printf("Value of integer pointer p : %p\n",p);
11 printf("The value p points at : %d\n",*p);
12 printf("Address of the pointer p : %p\n",&p);
13 return 0;
14 }

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Pointer example I

Discussion

Line Comments

4 • Defines an integer variable var.
5 • Define an integer pointer – reserves space in

memory.
7 • The content of the adddress of pointer is the

address of var.
8 • The value of var is 421.
9 • Writes the address of var in hexadecimal no-

tation for pointers %p.
10 • Writes the value of var in decimal notation%d.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Pointer example II

....
5 int matr[2];
6 int *p;
7 p = &matr[0];
8 matr[0] = 321;
9 matr[1] = 322;

printf("\nAddress of matrix element matr[1]: %p",&matr[0]);
printf("\nValue of the matrix element matr[1]; %d",matr[0]);
printf("\nAddress of matrix element matr[2]: %p",&matr[1]);
printf("\nValue of the matrix element matr[2]: %d\n", matr[1]);
printf("\nValue of the pointer p: %p",p);
printf("\nThe value p points to: %d",*p);
printf("\nThe value that (p+1) points to %d\n",*(p+1));
printf("\nAddress of pointer p : %p\n",&p);

...

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Pointer example II

Discussion

Line

5 • Declaration of an integer array matr with two
elements

6 • Declaration of an integer pointer
7 • The pointer is initialized to point at the first

element of the array matr.
8–9 • Values are assigned to the array matr.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Pointer example II

Discussion
The ouput of this example, compiled again with c++, is

Address of the matrix element matr[1]: 0xbfffef70
Value of the matrix element matr[1]; 321
Address of the matrix element matr[2]: 0xbfffef74
Value of the matrix element matr[2]: 322
Value of the pointer: 0xbfffef70
The value pointer points at: 321
The value that (pointer+1) points at: 322
Address of the pointer variable : 0xbfffef6c

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

File handling, C-way

using namespace std;
#include <iostream>
int main(int argc, char *argv[])
{

FILE *in_file, *out_file;
if(argc < 3) {

printf("The programs has the following structure :\n");
printf("write in the name of the input and output files \n");
exit(0);

}
in_file = fopen(argv[1], "r");// returns pointer to the input file
if(in_file == NULL) { // NULL means that the file is missing

printf("Can’t find the input file %s\n", argv[1]);
exit(0);

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

File handling, C way contn

out_file = fopen(argv[2], "w"); // returns a pointer to the output file
if(out_file == NULL) { // can’t find the file

printf("Can’t find the output file%s\n", argv[2]);
exit(0);

}
fclose(in_file);
fclose(out_file);
return 0;

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

File handling, C++-way

You must first declare input and output files

#include <fstream>

// input and output file as global variable
ofstream ofile;
ifstream ifile;

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

File handling, C++-way

int main(int argc, char* argv[])
{

char *outfilename;
//Read in output file, abort if there are too
//few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also output file on same line" << endl;

exit(1);
}
else{

outfilename=argv[1];
}
ofile.open(outfilename);
.....
ofile.close(); // close output file

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

File handling, C++-way

void output(double r_min , double r_max, int max_step,
double *d)

{
int i;
ofile << "RESULTS:" << endl;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile <<"R_min = " << setw(15) << setprecision(8) << r_min << endl;
ofile <<"R_max = " << setw(15) << setprecision(8) << r_max << endl;
ofile <<"Number of steps = " << setw(15) << max_step << endl;
ofile << "Five lowest eigenvalues:" << endl;
for(i = 0; i < 5; i++) {

ofile << setw(15) << setprecision(8) << d[i] << endl;
}
} // end of function output

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

File handling, C++-way

int main(int argc, char* argv[])
{

char *infilename;
// Read in input file, abort if there are too few command-line arguments
if(argc <= 1){

cout << "Bad Usage: " << argv[0] <<
" read also input file on same line" << endl;

exit(1);
}
else{

infilename=argv[1];
}
ifile.open(infilename);
....
ifile.close(); // close input file

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

File handling, C++-way

const char* filename1 = "myfile";
ifstream ifile(filename1);
string filename2 = filename1 + ".out"
ofstream ofile(filename2); // new output file
ofstream ofile(filename2, ios_base::app); // append

Read something from the file:

double a; int b; char c[200];
ifile >> a >> b >> c; // skips white space in between

Can test on success of reading:

if (!(ifile >> a >> b >> c)) ok = 0;

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Call by value and reference

int main(int argc, char ∗argv[])
{

int a: // line 1
int ∗b; // line 2

a = 10; // line 3
b = new int [10]; // line 4
for (i = 0; i < 10; i++) {

b[i] = i; // line 5
}
func(a,b); // line 6

return 0;
} // End: function main()

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Call by value and reference

void func(int x, int ∗y) // line 7
{

x += 7; // line 8
∗y += 10; // line 9
y[6] += 10; // line 10
return ; // line 11

} // End: function func()

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Call by value and reference

Lines 1,2: Declaration of two variables a and b. The compiler reserves two
locations in memory. The size of the location depends on the type of variable.
Two properties are important for these locations – the address in memory and
the content in the location.

The value of a: a. The address of a: &a
The value of b: *b. The address of b: &b.

Line 3: The value of a is now 10.

Line 4: Memory to store 10 integers is reserved. The address to the first location
is stored in b. Address to element number 6 is given by the expression (b + 6).

Line 5: All 10 elements of b are given values: b[0] = 0, b[1] = 1,, b[9] = 9;

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Call by value and reference

Line 6: The main() function calls the function func() and the program counter
transfers to the first statement in func(). With respect to data the following
happens. The content of a (= 10) and the content of b (a memory address) are
copied to a stack (new memory location) associated with the function func()

Line 7: The variable x and y are local variables in func(). They have the values –
x = 10, y = address of the first element in b in the main().

Line 8: The local variable x stored in the stack memory is changed to 17.
Nothing happens with the value a in main().

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Call by value and reference

Line 9: The value of y is an address and the symbol *y means the position in
memory which has this address. The value in this location is now increased by
10. This means that the value of b[0] in the main program is equal to 10. Thus
func() has modified a value in main().

Line 10: This statement has the same effect as line 9 except that it modifies the
element b[6] in main() by adding a value of 10 to what was there originally,
namely 5.

Line 11: The program counter returns to main(), the next expression after
func(a,b);. All data on the stack associated with func() are destroyed.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Call by value and reference

The value of a is transferred to func() and stored in a new memory location
called x. Any modification of x in func() does not affect in any way the value of a
in main(). This is called transfer of data by value . On the other hand the next
argument in func() is an address which is transferred to func(). This address can
be used to modify the corresponding value in main(). In the C language it is
expressed as a modification of the value which y points to, namely the first
element of b. This is called transfer of data by reference and is a method to
transfer data back to the calling function, in this case main().

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Call by value and reference

C++ allows however the programmer to use solely call by reference (note that call by
reference is implemented as pointers). To see the difference between C and C++,
consider the following simple examples. In C we would write

int n; n =8;
func(&n); /* &n is a pointer to n */
....
void func(int *i)
{

i = 10; / n is changed to 10 */
....

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

whereas in C++ we would write

int n; n =8;
func(n); // just transfer n itself
....
void func(int& i)
{

i = 10; // n is changed to 10
....

}

The reason why we emphasize the difference between call by value and call by

reference is that it allows the programmer to avoid pitfalls like unwanted changes of

variables. However, many people feel that this reduces the readability of the code.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Call by value and reference, F90/95

In Fortran we can use INTENT(IN), INTENT(OUT), INTENT(INOUT) to let the program
know which values should or should not be changed.

SUBROUTINE coulomb_integral(np,lp,n,l,coulomb)
USE effective_interaction_declar
USE energy_variables
USE wave_functions
IMPLICIT NONE
INTEGER, INTENT(IN) :: n, l, np, lp
INTEGER :: i
REAL(KIND=8), INTENT(INOUT) :: coulomb
REAL(KIND=8) :: z_rel, oscl_r, sum_coulomb
...

This hinders unwanted changes and increases readability.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Most used formula for derivatives

3 point formulae
First derivative (f0 = f (x0), f−h = f (x0 − h) and f+h = f (x0 + h)

fh − f−h

2h
= f ′0 +

∞X
j=1

f (2j+1)
0

(2j + 1)!
h2j .

Second derivative
fh − 2f0 + f−h

h2
= f ′′0 + 2

∞X
j=1

f (2j+2)
0

(2j + 2)!
h2j .

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Error Analysis

ε = log10

 ˛̨̨̨
˛ f
′′
computed− f ′′exact

f ′′exact

˛̨̨̨
˛
!
,

εtot = εapprox+ εro.

For the computed second derivative we have

f ′′0 =
fh − 2f0 + f−h

h2
− 2

∞X
j=1

f (2j+2)
0

(2j + 2)!
h2j ,

and the truncation or approximation error goes like

εapprox≈
f (4)
0

12
h2.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Error Analysis

If we were not to worry about loss of precision, we could in principle make h as small
as possible. However, due to the computed expression in the above program example

f ′′0 =
fh − 2f0 + f−h

h2
=

(fh − f0) + (f−h − f0)

h2
,

we reach fairly quickly a limit for where loss of precision due to the subtraction of two
nearly equal numbers becomes crucial.
If (f±h − f0) are very close, we have (f±h − f0) ≈ εM , where |εM | ≤ 10−7 for single and
|εM | ≤ 10−15 for double precision, respectively.
We have then ˛̨

f ′′0
˛̨
=

˛̨̨̨
(fh − f0) + (f−h − f0)

h2

˛̨̨̨
≤

2εM
h2

.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Error Analysis

Our total error becomes

|εtot| ≤
2εM
h2

+
f (4)
0

12
h2.

It is then natural to ask which value of h yields the smallest total error. Taking the
derivative of |εtot| with respect to h results in

h =

24εM

f (4)
0

!1/4

.

With double precision and x = 10 we obtain

h ≈ 10−4.

Beyond this value, it is essentially the loss of numerical precision which takes over.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Error Analysis

Due to the subtractive cancellation in the expression for f ′′ there is a pronounced
detoriation in accuracy as h is made smaller and smaller.
It is instructive in this analysis to rewrite the numerator of the computed derivative as

(fh − f0) + (f−h − f0) = (ex+h − ex) + (ex−h − ex),

as
(fh − f0) + (f−h − f0) = ex (eh + e−h − 2),

since it is the difference (eh + e−h − 2) which causes the loss of precision.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Error Analysis

x h = 0.01 h = 0.001 h = 0.0001 h = 0.0000001 Exact
0.0 1.000008 1.000000 1.000000 1.010303 1.000000
1.0 2.718304 2.718282 2.718282 2.753353 2.718282
2.0 7.389118 7.389057 7.389056 7.283063 7.389056
3.0 20.085704 20.085539 20.085537 20.250467 20.085537
4.0 54.598605 54.598155 54.598151 54.711789 54.598150
5.0 148.414396 148.413172 148.413161 150.635056 148.413159

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Error Analysis

The results, still for x = 10 are shown in the Table
h eh + e−h eh + e−h − 2
10−1 2.0100083361116070 1.0008336111607230×10−2

10−2 2.0001000008333358 1.0000083333605581×10−4

10−3 2.0000010000000836 1.0000000834065048×10−6

10−5 2.0000000099999999 1.0000000050247593×10−8

10−5 2.0000000001000000 9.9999897251734637×10−11

10−6 2.0000000000010001 9.9997787827987850×10−13

10−7 2.0000000000000098 9.9920072216264089×10−15

10−8 2.0000000000000000 0.0000000000000000×100

10−9 2.0000000000000000 1.1102230246251565×10−16

10−10 2.0000000000000000 0.0000000000000000×100

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 36, 5-9 September

Linear Algebra

Monday: Repetition from last week

Presentation of Project 1, deadline 19 september
(midnight).

Dynamic memory allocation in C/C++ and Fortran90/95 ,
use of the library package Blitz++ for C++ users. How to
use the C/C++ and Fortran 90/95 libraries.

LU decomposition and linear equations

Wednesday: Further discussion of linear algebra methods,
numerical stability

Computer-Lab: thursday and friday 9am-7pm, Project 1.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Basic Matrix Features

Matrix Properties Reminder

A =

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 I =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

The inverse of a matrix is defined by

A−1 · A = I

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Basic Matrix Features

Matrix Properties Reminder

Relations Name matrix elements
A = AT symmetric aij = aji

A =
(
AT

)−1
real orthogonal

∑
k aikajk =

∑
k akiakj = δij

A = A∗ real matrix aij = a∗ij
A = A† hermitian aij = a∗ji
A =

(
A†

)−1
unitary

∑
k aika∗jk =

∑
k a∗kiakj = δij

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Basic Matrix Features

Some Equivalent Statements

For an N ×N matrix A the following properties are all equivalent
1 If the inverse of A exists, A is nonsingular.
2 The equation Ax = 0 implies x = 0.
3 The rows of A form a basis of RN .
4 The columns of A form a basis of RN .
5 A is a product of elementary matrices.
6 0 is not eigenvalue of A.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Matrix Handling in C/C++

Row Major Order, Addition

We have N × N matrices A, B and C and we wish to evaluate
A = B + C. In C/C++ this would be coded like

for(i=0 ; i < N ; i++) {
for(j=0 ; j < N ; j++) {

a[i][j]=b[i][j]+c[i][j]
}

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Matrix Handling in C/C++

Row Major Order, Multiplication

We have N × N matrices A, B and C and we wish to evaluate
A = BC. In C/C++ this would be coded like

for(i=0 ; i < N ; i++) {
for(j=0 ; j < N ; j++) {

for(k=0 ; j < N ; j++) {
a[i][j]+=b[i][k]+c[k][j];

}
}

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Matrix Handling in Fortran 90/95

Column Major Order

DO j=1, N
DO i=1, N

a(i,j)=b(i,j)+c(i,j)
ENDDO

ENDDO

Fortran 90 writes the above statements in a much simpler way

a=b+c

Multiplication

a=MATMUL(b,c)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Makefile for Blitz++

Path where Blitz is installed
BZDIR = /site/Blitz++-0.8
CXX = c++
Flags for optimizing executables
CXXFLAGS = -02 -I$(BZDIR) -ftemplate-depth-30
Flags for debugging
CXXFLAGS = -ftemplate-depth-30 -g -DBZ_DEBUG -I$(BZDIR)/include
LDFLAGS =
LIBS = -L$(BZDIR)/lib -lblitz -lm
TARGETS = blitz_test
.SUFFIXES: .o.cpp
.cpp.o:

$(CXX) $(CXXFLAGS) -c $*.cpp
$(TARGETS):

$(CXX) $(LDFLAGS) $@.o -o $@ $(LIBS)
all:

$(TARGETS)

blitz_test: blitz_test.o

clean:
rm -f *.o
Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Blitz++ example

// Simple test case of matrix operations
// using Blitz++
#include <blitz/array.h>
#include <iostream>
using namespace std;
using namespace blitz;

int main()
{

// Create two 4x4 arrays. We want them to look like matrices, so
// we’ll make the valid index range 1..4 (rather than 0..3 which is
// the default).

Range r(1,4);
Array<float,2> A(r,r), B(r,r);

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Blitz++ example

// The first will be a Hilbert matrix:
//
// a = 1
// ij -----
// i+j-1
//
// Blitz++ provides a set of types { firstIndex, secondIndex, ... }
// which act as placeholders for indices. These can be used directly
// in expressions. For example, we can fill out the A matrix like this:

firstIndex i; // Placeholder for the first index
secondIndex j; // Placeholder for the second index

A = 1.0 / (i+j-1);
cout << "A = " << A << endl;

// Now the A matrix has each element equal to a_ij = 1/(i+j-1).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Blitz++ example

// The matrix B will be the permutation matrix
//
// [0 0 0 1]
// [0 0 1 0]
// [0 1 0 0]
// [1 0 0 0]
//
// Here are two ways of filling out B:

B = (i == (5-j)); // Using an equation -- a bit cryptic

cout << "B = " << B << endl;

B = 0, 0, 0, 1, // Using an initializer list
0, 0, 1, 0,
0, 1, 0, 0,
1, 0, 0, 0;

cout << "B = " << B << endl;

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Blitz++ example

// Now some examples of tensor-like notation.

Array<float,3> C(r,r,r); // A three-dimensional array: 1..4, 1..4, 1..4

thirdIndex k; // Placeholder for the third index

// This expression will set
//
// c = a * b
// ijk ik kj

C = A(i,k) * B(k,j);

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Blitz++ example

// In real tensor notation, the repeated k index would imply a
// contraction (or summation) along k. In Blitz++, you must explicitly
// indicate contractions using the sum(expr, index) function:

Array<float,2> D(r,r);

D = sum(A(i,k) * B(k,j), k);

// The above expression computes the matrix product of A and B.

cout << "D = " << D << endl;

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Blitz++ example

// Now let’s fill out a two-dimensional array with a radially symmetric
// decaying sinusoid.

int N = 64; // Size of array: N x N
Array<float,2> F(N,N);
float midpoint = (N-1)/2.;
int cycles = 3;
float omega = 2.0 * M_PI * cycles / double(N);
float tau = - 10.0 / N;

F = cos(omega * sqrt(pow2(i-midpoint) + pow2(j-midpoint)))
* exp(tau * sqrt(pow2(i-midpoint) + pow2(j-midpoint)));

return 0;
}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 37, 12-16 September

Numerical Integration and Monte Carlo

Monday: Repetition from last week

Trapezoidal and Simpson’s rules

Gaussian quadrature

Wednesday: Gaussian quadrature continues

Integral equations

Intro to Monte Carlo integration

Computer-Lab: thursday and friday 9am-7pm, Project 1.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Equal Step Methods

Generalities

Choose a step size

h =
b − a

N

where N is the number of steps and a and b the lower and upper limits of
integration.

Choose then to stop the Taylor expansion of the function f (x) at a certain
derivative.

With these approximations to f (x) perform the integration.Z b

a
f (x)dx =

Z a+2h

a
f (x)dx +

Z a+4h

a+2h
f (x)dx + . . .

Z b

b−2h
f (x)dx .

The strategy then is to find a reliable Taylor expansion for f (x) in the smaller sub

intervals. Consider e.g., evaluating
R +h
−h f (x)dx

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Equal Step Methods

Trapezoidal Rule
Taylor expansion

f (x) = f0 +
fh − f0

h
x + O(x2),

for x = x0 to x = x0 + h and

f (x) = f0 +
f0 − f−h

h
x + O(x2),

for x = x0 − h to x = x0. The error goes like O(x2). If we then evaluate the integral we
obtain Z +h

−h
f (x)dx =

h

2
(fh + 2f0 + f−h) + O(h3),

which is the well-known trapezoidal rule. Local error O(h3) = O((b − a)3/N3), and the

global error goes like ≈ O(h2).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Equal Step Methods

Trapezoidal Rule
Easy to implement numerically through the following simple algorithm

Choose the number of mesh points and fix the step.

calculate f (a) and f (b) and multiply with h/2

Perform a loop over n = 1 to n − 1 (f (a) and f (b) are known) and sum up the
terms f (a + h) + f (a + 2h) + f (a + 3h) + · · ·+ f (b − h). Each step in the loop
corresponds to a given value a + nh.

Multiply the final result by h and add hf (a)/2 and hf (b)/2.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Trapezoidal Rule

Simple Code
double trapezoidal_rule(double a, double b, int n, double (*func)(double))
{

double trapez_sum;
double fa, fb, x, step;
int j;
step=(b-a)/((double) n);
fa=(*func)(a)/2. ;
fb=(*func)(b)/2. ;
trapez_sum=0.;
for (j=1; j <= n-1; j++){

x=j*step+a;
trapez_sum+=(*func)(x);

}
trapez_sum=(trapez_sum+fb+fa)*step;
return trapez_sum;

} // end trapezoidal_rule

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Equal Step Methods

Simpson
The first and second derivatives are given by

fh − f−h

2h
= f ′0 +

∞X
j=1

f (2j+1)
0

(2j + 1)!
h2j ,

and
fh − 2f0 + f−h

h2
= f ′′0 + 2

∞X
j=1

f (2j+2)
0

(2j + 2)!
h2j ,

results in f (x) = f0 +
fh−f−h

2h x +
fh−2f0+f−h

h2 x2 + O(x3). Inserting this formula in the
integral Z +h

−h
f (x)dx =

h

3
(fh + 4f0 + f−h) + O(h5),

which is Simpson’s rule.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Equal Step Methods

Simpson’s rule
Note that the improved accuracy in the evaluation of the derivatives gives a better error
approximation, O(h5) vs. O(h3) . But this is just the local error approximation. Using
Simpson’s rule we arrive at

I =

Z b

a
f (x)dx =

h

3
(f (a) + 4f (a + h) + 2f (a + 2h) + · · ·+ 4f (b − h) + fb) ,

with a global error which goes like O(h4). Algo

Choose the number of mesh points and fix the step.

calculate f (a) and f (b)

Perform a loop over n = 1 to n − 1 (f (a) and f (b) are known) and sum up the
terms 4f (a + h) + 2f (a + 2h) + 4f (a + 3h) + · · ·+ 4f (b − h). Odd values of n
give 4 as factor while even values yield 2 as factor.

Multiply the final result by h
3 .

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Equal Step Methods

The basic idea behind all integration methods is to approximate the integral

I =

Z b

a
f (x)dx ≈

NX
i=1

ωi f (xi),

where ω and x are the weights and the chosen mesh points, respectively. Simpson’s
rule gives

ω : {h/3, 4h/3, 2h/3, 4h/3, . . . , 4h/3, h/3} ,

for the weights, while the trapezoidal rule resulted in

ω : {h/2, h, h, . . . , h, h/2} .

In general, an integration formula which is based on a Taylor series using N points, will

integrate exactly a polynomial P of degree N − 1. That is, the N weights ωn can be

chosen to satisfy N linear equations

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Gaussian Quadrature

A greater precision for a given amount of numerical work can be achieved if we are
willing to give up the requirement of equally spaced integration points. In Gaussian
quadrature (hereafter GQ), both the mesh points and the weights are to be determined.
The points will not be equally spaced The theory behind GQ is to obtain an arbitrary
weight ω through the use of so-called orthogonal polynomials. These polynomials are
orthogonal in some interval say e.g., [-1,1]. Our points xi are chosen in some optimal
sense subject only to the constraint that they should lie in this interval. Together with
the weights we have then 2N (N the number of points) parameters at our disposal.
Even though the integrand is not smooth, we could render it smooth by extracting from
it the weight function of an orthogonal polynomial, i.e., we are rewriting

I =

Z b

a
f (x)dx =

Z b

a
W (x)g(x)dx ≈

NX
i=1

ωi f (xi),

where g is smooth and W is the weight function, which is to be associated with a given

orthogonal polynomial.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Gaussian Quadrature

Weight Functions
The weight function W is non-negative in the integration interval x ∈ [a, b] such that for
any n ≥ 0

R b
a |x |

nW (x)dx is integrable. The naming weight function arises from the
fact that it may be used to give more emphasis to one part of the interval than another.

Weight function Interval Polynomial
W (x) = 1 x ∈ [a, b] Legendre

W (x) = e−x2 −∞ ≤ x ≤ ∞ Hermite
W (x) = e−x 0 ≤ x ≤ ∞ Laguerre

W (x) = 1/(
p

1− x2) −1 ≤ x ≤ 1 Chebyshev

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Gaussian Quadrature

Methods based on Taylor series using N points will integrate exactly a
polynomial P of degree N − 1. If a function f (x) can be approximated with a
polynomial of degree N − 1

f (x) ≈ PN−1(x),

with N mesh points we should be able to integrate exactly the polynomial PN−1.

Gaussian quadrature methods promise more than this. We can get a better
polynomial approximation with order greater than N to f (x) and still get away
with only N mesh points. More precisely, we approximate

f (x) ≈ P2N−1(x),

and with only N mesh points these methods promise that

Z
f (x)dx ≈

Z
P2N−1(x)dx =

N−1X
i=0

P2N−1(xi)ωi ,

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Legendre

I =

Z 1

−1
f (x)dx

C(1− x2)P −m2
l P + (1− x2)

d

dx

„
(1− x2)

dP

dx

«
= 0.

C is a constant. For ml = 0 we obtain the Legendre polynomials as solutions, whereas
ml 6= 0 yields the so-called associated Legendre polynomials. The corresponding
polynomials P are

Lk (x) =
1

2k k!

dk

dxk
(x2 − 1)k k = 0, 1, 2, . . . ,

which, up to a factor, are the Legendre polynomials Lk . The latter fulfil the
orthorgonality relation Z 1

−1
Li (x)Lj (x)dx =

2

2i + 1
δij ,

and the recursion relation

(j + 1)Lj+1(x) + jLj−1(x)− (2j + 1)xLj (x) = 0.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Laguerre

I =

Z ∞

0
f (x)dx =

Z ∞

0
xαe−x g(x)dx .

These polynomials arise from the solution of the differential equation„
d2

dx2
−

d

dx
+
λ

x
−

l(l + 1)

x2

«
L(x) = 0,

where l is an integer l ≥ 0 and λ a constant. They fulfil the orthorgonality relationZ ∞

−∞
e−xLn(x)2dx = 1,

and the recursion relation

(n + 1)Ln+1(x) = (2n + 1− x)Ln(x)− nLn−1(x).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Hermite
In a similar way, for an integral which goes like

I =

Z ∞

−∞
f (x)dx =

Z ∞

−∞
e−x2

g(x)dx .

we could use the Hermite polynomials in order to extract weights and mesh points. The
Hermite polynomials are the solutions of the following differential equation

d2H(x)

dx2
− 2x

dH(x)

dx
+ (λ− 1)H(x) = 0.

They fulfil the orthorgonality relationZ ∞

−∞
e−x2

Hn(x)2dx = 2nn!
√
π,

and the recursion relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Why Monte Carlo?

An example from quantum mechanics: most problems of interest in e.g., atomic,
molecular, nuclear and solid state physics consist of a large number of interacting
electrons and ions or nucleons. The total number of particles N is usually sufficiently
large that an exact solution cannot be found. Typically, the expectation value for a
chosen hamiltonian for a system of N particles is

〈H〉 =R
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)R

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

an in general intractable problem.

This integral is actually the starting point in a Variational Monte Carlo calculation.

Gaussian quadrature: Forget it! given 10 particles and 10 mesh points for each

degree of freedom and an ideal 1 Tflops machine (all operations take the same time),

how long will it ta ke to compute the above integral? Lifetime of the universe

T ≈ 4.7× 1017s.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on dimensionality

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N +Z , N being the number of neutrons and Z the number of p rotons).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Even more on dimensionality

There are

2A ×
„

A
Z

«
coupled second-order differential equations in 3A dimensions.

For a nucleus like 10Be this number is 215040. This is a truely challenging many-body

problem.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Plan for Monte Carlo Lectures

This week: intro, random numbers and PDFs

Next week:MC integration and random walks

Third week: Random walks and statistical physics

Fourth week: statistical physics

Fifth and sixth week: quantum Monte Carlo

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Monte Carlo Keywords

Consider it is a numerical experiment

Random variables

Find a probability distribution function (PDF).

Sampling rule for accepting a move

Compute standard deviation and other expectation values

Techniques for improving errors

Enhances algorithmic thinking!

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Monte Carlo Integration

I =

Z 1

0
f (x)dx ≈

1

N

NX
i=1

f (xi),

I =

Z 1

0
f (x)dx ≈ 〈f 〉.

σ2
f =

1

N

NX
i=1

f (xi)
2 −

0@ 1

N

NX
i=1

f (xi)

1A2

,

or
σ2

f =
“
〈f 2〉 − 〈f 〉2

”
.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Algorithm for Monte Carlo Integration

Choose the number of Monte Carlo samples N.

Make a loop over N and for every step generate a random number xi in the
interval xi ∈ [0, 1] by calling a random number generator.

Use this number to compute f (xi).

Find the contribution to the variance and the mean value for every loop
contribution.

After N samplings, compute the final mean value and the standard deviation

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Brute Force Integration

// crude mc function to calculate pi
int main()
{

const int n = 1000000;
double x, fx, pi, invers_period, pi2;
int i;
invers_period = 1./RAND_MAX;
srand(time(NULL));
pi = pi2 = 0.;
for (i=0; i<n;i++)

{
x = double(rand())*invers_period;
fx = 4./(1+x*x);
pi += fx;
pi2 += fx*fx;

}
pi /= n; pi2 = pi2/n - pi*pi;
cout << "pi=" << pi << " sigmaˆ2=" << pi2 << endl;
return 0;

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 38, 19-23 September

Numerical Integration and Monte Carlo

Monday: Repetition from last week

Brief discussion of project 2.

Monte Carlo integration

Random numbers

PDF

Wednesday: Monte Carlo integration continues

Introduction to random walks

Computer-Lab: thursday and friday 9am-7pm, Project 1.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Radioactive Decay

Probability for a decay of a particle during a time step ∆t is

∆N(t)

N(t)∆t
= −λ

λ is inversely proportional to the lifetime

Choose the number of particles N(t = 0) = N0.

Make a loop over the number of time steps, with maximum time bigger than the
number of particles N0

At every time step there is a probability λ for decay. Compare this probability with
a random number x .

If x ≤ λ, reduce the number of particles with one i.e., N = N − 1. If not, keep the
same number of particles till the next time step.

Increase by one the time step (the external loop)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Probability Distribution Functions PDF

Discrete PDF continuous PDF
Domain {x1, x2, x3, . . . , xN} [a, b]
probability p(xi) p(x)dx
Cumulative Pi =

Pi
l=1 p(xl) P(x) =

R x
a p(t)dt

Positivity 0 ≤ p(xi) ≤ 1 p(x) ≥ 0
Positivity 0 ≤ Pi ≤ 1 0 ≤ P(x) ≤ 1
Monotonuous Pi ≥ Pj if xi ≥ xj P(xi) ≥ P(xj) if xi ≥ xj
Normalization PN = 1 P(b) = 1

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Expectation Values

Discrete PDF

〈xk 〉 =
1
N

N∑
i=1

xk
i p(xi),

Continuous PDF

〈xk 〉 =

∫ b

a
xk p(x)dx ,

Function f (x)

〈f k 〉 =

∫ b

a
f k p(x)dx ,

Variance
σ2 = 〈f 2〉 − 〈f 〉2

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Important PDFs

uniform distribution

p(x) =
1

b − a
Θ(x − a)Θ(b − x),

exponential distribution
p(x) = αe−αx ,

with probability different from zero in [0,∞]

normal distribution (Gaussian)

p(x) =
1

√
2πσ2

exp
„
−

(x − µ)2

2σ2

«
with probability different from zero in [−∞,∞]

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Random Numbers

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 39, 26-30 September

Random Walks, Markov Chains, Diffusion and Metropolis

Monday: Repetition from last week

Random walks and diffusion

Derivation of diffusion equation from Markov chains

Entropy of a random walk

Wednesday:

More diffusion and entropy

Ergodic assumption and detailed balance

Metropolis algorithm

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

When solving partial differential equations such as the diffusion equation numerically,
the derivatives are always discretized. We can rewrite the time derivative as

∂w(x , t)

∂t
≈

w(i, n + 1) + w(i, n)

∆t
, (13)

whereas the gradient is approximated as

D
∂2w(x , t)

∂x2
≈ D

w(i + 1, n) + w(i − 1, n)− w(i, n)

(∆x)2
, (14)

resulting in the discretized diffusion equation

w(i, n + 1) + w(i, n)

∆t
= D

w(i + 1, n) + w(i − 1, n)− w(i, n)

(∆x)2
, (15)

where n represents a given time step and i a step in the x-direction.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

A Markov process allows in principle for a microscopic description of Brownian motion.

As with the random walk studied in the previous section, we consider a particle which

moves along the x-axis in the form of a series of jumps with step length ∆x = l . Time

and space are discretized and the subsequent moves are statistically indenpendent,

i.e., the new move depends only on the previous step and not on the results from

earlier trials. We start at a position x = jl = j∆x and move to a new position x = i∆x

during a step ∆t = ε, where i ≥ 0 and j ≥ 0 are integers. The original probability

distribution function (PDF) of the particles is given by wi (t = 0) where i refers to a

specific position on a grid, with i = 0 representing x = 0. The function wi (t = 0) is now

the discretized version of w(x , t). We can regard the discretized PDF as a vector.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

For the Markov process we have a transition probability from a position x = jl to a
position x = il given by

Wij (ε) = W (il − jl, ε) =

 1
2 |i − j| = 1
0 else

(16)

We call Wij for the transition probability and we can represent it, see below, as a matrix.
Our new PDF wi (t = ε) is now related to the PDF at t = 0 through the relation

wi (t = ε) = W (j → i)wj (t = 0). (17)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

This equation represents the discretized time-development of an original PDF. Since
both W and w represent probabilities, they have to be normalized, i.e., we require that
at each time step we have X

i

wi (t) = 1, (18)

and X
j

W (j → i) = 1. (19)

The further constraints are 0 ≤ Wij ≤ 1 and 0 ≤ wj ≤ 1. Note that the probability for
remaining at the same place is in general not necessarily equal zero. In our Markov
process we allow only for jumps to the left or to the right.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

The time development of our initial PDF can now be represented through the action of
the transition probability matrix applied n times. At a time tn = nε our initial distribution
has developed into

wi (tn) =
X

j

Wij (tn)wj (0), (20)

and defining
W (il − jl, nε) = (W n(ε))ij (21)

we obtain
wi (nε) =

X
j

(W n(ε))ij wj (0), (22)

or in matrix form
ˆw(nε) = Ŵ n(ε)ŵ(0). (23)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

The matrix Ŵ can be written in terms of two matrices

Ŵ =
1

2

“
L̂ + R̂

”
, (24)

where L̂ and R̂ represent the transition probabilities for a jump to the left or the right,
respectively. For a 4× 4 case we could write these matrices as

R̂ =

0BB@
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

1CCA , (25)

and

L̂ =

0BB@
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

1CCA . (26)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

However, in principle these are infinite dimensional matrices since the number of time
steps are very large or infinite. For the infinite case we can write these matrices
Rij = δi,(j+1) and Lij = δ(i+1),j , implying that

L̂R̂ = R̂L̂ = 1, (27)

and
L̂ = R̂−1 (28)

To see that L̂R̂ = R̂L̂ = 1, perform e.g., the matrix multiplication

L̂R̂ =
X

k

L̂ik R̂kj =
X

k

δ(i+1),kδk,(j+1) = δi+1,j+1 = δi,j , (29)

and only the diagonal matrix elements are different from zero.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

For the first time step we have thus

Ŵ =
1

2

“
L̂ + R̂

”
, (30)

and using the properties in Eqs. (27) and (28) we have after two time steps

Ŵ 2(2ε) =
1

4

“
L̂2 + R̂2 + 2R̂L̂

”
, (31)

and similarly after three time steps

Ŵ 3(3ε) =
1

8

“
L̂3 + R̂3 + 3R̂L̂2 + 3R̂2L̂

”
. (32)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

Using the binomial formula

nX
k=0

„
n
k

«
âk b̂n−k = (a + b)n, (33)

we have that the transition matrix after n time steps can be written as

Ŵ n(nε)) =
1

2n

nX
k=0

„
n
k

«
R̂k L̂n−k , (34)

or

Ŵ n(nε)) =
1

2n

nX
k=0

„
n
k

«
L̂n−2k =

1

2n

nX
k=0

„
n
k

«
R̂2k−n, (35)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

and using Rm
ij = δi,(j+m) and Lm

ij = δ(i+m),j we arrive at

W (il − jl, nε) =

8<: 1
2n

„
n

1
2 (n + i − j)

«
|i − j| ≤ n

0 else
, (36)

and n + i − j has to be an even number.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

We note that the transition matrix for a Markov process has three important properties:

It depends only on the difference in space i − j , it is thus homogenous in space.

It is also isotropic in space since it is unchanged when we go from (i, j) to
(−i,−j).

It is homogenous in time since it depends only the difference between the initial
time and final time.

If we place the walker at x = 0 at t = 0 we can represent the initial PDF with
wi (0) = δi,0. Using Eq. (23) we have

wi (nε) =
X

j

(W n(ε))ij wj (0) =
X

j

1

2n

„
n

1
2 (n + i − j)

«
δj,0, (37)

resulting in

wi (nε) =
1

2n

„
n

1
2 (n + i)

«
|i| ≤ n (38)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

Using the recursion relation for the binomials„
n + 1

1
2 (n + 1 + i))

«
=

„
n

1
2 (n + i + 1)

«
+

„
n

1
2 (n + i)− 1

«
(39)

we obtain, defining x = il , t = nε and setting

w(x , t) = w(il, nε) = wi (nε), (40)

w(x , t + ε) =
1

2
w(x + l, t) +

1

2
w(x − l, t), (41)

and adding and subtracting w(x , t) and multiplying both sides with l2/ε we have

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Diffusion from Markov Chain

w(x , t + ε)− w(x , t)

ε
=

l2

2ε

w(x + l, t)− 2w(x , t) + w(x − l, t)

l2
, (42)

and identifying D = l2/2ε and letting l = ∆x and ε = ∆t we see that this is nothing but
the discretized version of the diffusion equation. Taking the limits ∆x → 0 and ∆t → 0
we recover

∂w(x , t)

∂t
= D

∂2w(x , t)

∂x2
,

the diffusion equation.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Entropy and Equilibrium

The definition of the entropy S (as a dimensionless quantity here) is

S = −
X

i

wi ln(wi), (43)

where wi is the probability of finding our system in a state i . For our one-dimensional

randow walk it represents the probability for being at position i = i∆x after a given

number of time steps. Assume now that we have N random walkers at i = 0 and t = 0

and let these random walkers diffuse as function of time. We compute then the

probability distribution for N walkers after a given number of steps i along x and time

steps j . We can then compute an entropy Sj for a given number of time steps by

summing over all probabilities i . The code used to compute these results is in

programs/chapter9/program4.cpp. Here we have used 100 walkers on a lattice of

length from L = −50 to L = 50 employing periodic boundary conditions meaning that if

a walker reaches the point x = L it is shifted to x = −L and if x = −L it is shifted to

x = L.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Entropy

// loop over all time steps
for (int step=1; step <= time_steps; step++){

// move all walkers with periodic boundary conditions
for (int walks = 1; walks <= walkers; walks++){

if (ran0(&idum) <= move_probability) {
if (x[walks] +1 > length) {

x[walks] = -length;
}
else{

x[walks] += 1;
}

}
else {

if (x[walks] -1 < -length) {
x[walks] = length;

}
else{

x[walks] -= 1;
}

}
} // end of loop over walks

} // end of loop over trials
Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Entropy

// at the final time step we compute the probability
// by counting the number of walkers at every position
for (int i = -length; i <= length; i++){

int count = 0;
for(int j = 1; j <= walkers; j++){

if (x[j] == i) {
count += 1;

}
}
probability[i+length] = count;

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Entropy

// Writes the results to screen
void output(int length, int time_steps, int walkers, int *probability)
{

double entropy, histogram;
// find norm of probability
double norm = 1.0/walkers;
// compute the entropy
entropy = 0.; histogram = 0.;
for(int i = -length; i <= length; i++){

histogram = (double) probability[i+length]*norm;
if (histogram > 0.0) {
entropy -= histogram*log(histogram);
}

}
cout << setiosflags(ios::showpoint | ios::uppercase);
cout << setw(6) << time_steps;
cout << setw(15) << setprecision(8) << entropy << endl;

} // end of function output

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Entropy

At small time steps the entropy is very small, reflecting the fact that we have an ordered

state. As time elapses, the random walkers spread out in space (here in one

dimension) and the entropy increases as there are more states, that is positions

accesible to the system. We say that the system shows an increased degree of

disorder. After several time steps, we see that the entropy reaches a constant value, a

situation called a steady state. This signals that the system has reached its equilibrium

situation and that the random walkers spread out to occupy all possible available

states. At equilibrium it means thus that all states are equally probable and this is not

baked into any dynamical equations such as Newton’s law of motion. It occursbecause

the system is allowed to explore all possibilities. An important hypothesis, which has

never been proven rigorously but for certain systems, is the ergodic hypothesis which

states that in equilibrium all available states of a closed system have equal probability.

This hypothesis states also that if we are able to simulate long enough, then one

should be able to trace through all possible paths in the space of available states to

reach the equilibrium situation. Our Markov process should be able to reach any state

of the system from any other state if we run for long enough.Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Test of the Metropolis Algorithm

Want to show that the Metropolis algorithm generates the Boltzmann distribution

P(β) =
e−βE

Z
, (44)

with β = 1/kT being the inverse temperature, E is the energy of the system and Z is
the partition function. The only functions you will need are those to generate random
numbers.
We are going to study one single particle in equilibrium with its surroundings, the latter
modeled via a large heat bath with temperature T .
The model used to describe this particle is that of an ideal gas in one dimension and
with velocity −v or v . We are interested in finding P(v)dv , which expresses the
probability for finding the system with a given velocity v ∈ [v , v + dv]. The energy for
this one-dimensional system is

E =
1

2
kT =

1

2
v2, (45)

with mass m = 1.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Test of the Metropolis Algorithm

Read in the temperature T , the number of Monte Carlo cycles, and the initial
velocity. You should also read in the change in velocity δv used in every Monte
Carlo step. Let the temperature have dimension energy.

Thereafter choose a maximum velocity given by e.g., vmax ∼ 10
√

T . Then you
construct a velocity interval defined by vmax and divided it in small intervals
through vmax/N, with N ∼ 100− 1000. For each of these intervals find out how
many times a given velocity during the Monte Carlo sampling appears in each
specific interval.

The number of times a given velocity appears in a specific interval is used to
construct a histogram representing P(v)dv . To achieve this construct a vector
P[N] which contains the number of times a given velocity appears in the
subinterval v , v + dv .

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Test of the Metropolis Algorithm

for(montecarlo_cycles=1; Max_cycles; montecarlo_cycles++) {
...
// change speed as function of delta v
v_change = (2*ran1(&idum) -1)* delta_v;
v_new = v_old+v_change;
// energy change
delta_E = 0.5*(v_new*v_new - v_old*v_old) ;
......
// Metropolis algorithm begins here

if (ran1(&idum) <= exp(-beta*delta_E)) {
accept_step = accept_step + 1 ;
v_old = v_new ;

}
// thereafter we must fill in P[N] as a function of
// the new speed
// upgrade mean velocity, energy and variance
}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 40, 3-7 October

Statistical Physics, Spins Systems and Phase Transitions

Monday: Repetition from last week

Introduction to Statistical Physics

Phase transitions in magnetic spin systems,

Wednesday:

Phase transitions in magnetic spin systems,

Discussion of the Ising model in 1 and 2 dimensions

How to model phase transitions for spin systems

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Detailed Balance

Markov process with transition probability from a state j to
another state i ∑

j

W (j → i) = 1

Note that the probability for remaining at the same place is not
necessarily equal zero.

PDF wi at time t = nε

wi(t) =
∑

j

W (j → i)nwj(t = 0)

∑
i

wi(t) = 1

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Detailed Balance

Detailed balance condition∑
j

W (j → i)wj =
∑

i

W (i → j)wi

Ensures that it is the Boltzmann distrubution which is achieved
when equilibrium is reached.

When a Markow process reaches equilibrium we have

w(t = ∞) = Ww(t = ∞)

General condition at equilibrium

W (j → i)wj = W (i → j)wi

Satisfies the detailed balance condition

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boltzmann Distribution

At equilibrium detailed balance gives

W (j → i)
W (i → j)

=
wi

wj

Boltzmann distribution

wi

wj
= exp (−β(Ei − Ej))

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Ergodicity

It should be possible for any Markov process to reach every
possible state of the system from any starting point if the
simulations is carried out for a long enough time.
Any state in a Boltzmann distribution has a probability different
from zero and if such a state cannot be reached from a given
starting point, then the system is not ergodic.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Selection Rule

In general
W (i → j) = g(i → j)A(i → j)

where g is a selection probability while A is the probability
for accepting a move. It is also called the acceptance ratio.

With detailed balance this gives

g(j → i)A(j → i)
g(i → j)A(i → j)

= exp (−β(Ei − Ej))

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Metropolis Algorithm

For a system which follows the Boltzmann distribution the
Metropolis algorithm reads

A(j → i) =

{
exp (−β(Ei − Ej)) Ei − Ej > 0

1 else

This algorithm satisfies the condition for detailed balance and
ergodicity.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Implementation

Establish an initial energy Eb

Do a random change of this initial state by e.g., flipping an
individual spin. This new state has energy Et . Compute then
∆E = Et − Eb

If ∆E ≤ 0 accept the new configuration.

If ∆E > 0, compute w = e−(β∆E).

Compare w with a random number r . If r ≤ w accept, else keep
the old configuration.

Compute the terms in the sums
∑

AsPs.

Repeat the above steps in order to have a large enough number
of microstates

For a given number of MC cycles, compute then expectation
values.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Statistical Physics

Microcanonical Canonical Grand canonical Pressure canonical

Exchange of heat no yes yes yes
with the environment

Exchange of particles no no yes no
with the environemt

Thermodynamical V ,M,D V ,M,D V ,M,D P,H, E
parameters E T T T

N N µ N

Potential Entropy Helmholtz PV Gibbs

Energy Internal Internal Internal Enthalpy

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Microcanonical Ensemble

Entropy
S = kB lnΩ (46)

dS =
1

T
dE +

p

T
dV −

µ

T
dN (47)

Temperature
1

kBT
=

„
∂lnΩ

∂E

«
N,V

(48)

Pressure
p

kBT
=

„
∂lnΩ

∂V

«
N,E

(49)

Chemical potential
µ

kBT
= −

„
∂lnΩ

∂N

«
V ,E

(50)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Canonical Ensemble

Helmholtz Free Energy
F = −kBTlnZ (51)

dF = −SdT − pdV + µdN (52)

Entropy

S = kB lnZ + kBT
„
∂lnZ

∂T

«
N,V

(53)

Pressure

p = kBT
„
∂lnZ

∂V

«
N,T

(54)

Chemical Potential

µ = −kBT
„
∂lnZ

∂N

«
V ,T

(55)

Energy (internal only)

E = kBT 2
„
∂lnZ

∂T

«
V ,N

(56)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Grand Canonical Ensemble

Potential
pV = kBTlnΞ (57)

d(pV) = SdT + Ndµ+ pdV (58)

Entropy

S = kB lnΞ + kBT
„
∂lnΞ

∂T

«
V ,µ

(59)

Particles

N = kBT
„
∂lnΞ

∂µ

«
V ,T

(60)

Pressure

p = kBT
„
∂lnΞ

∂V

«
µ,T

(61)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Pressure Canonical Ensemble

Gibbs Free Energy
G = −kBTln∆ (62)

dG = −SdT + Vdp + µdN (63)

Entropy

S = kB ln∆ + kBT
„
∂ln∆

∂T

«
p,N

(64)

Volume

V = −kBT
„
∂ln∆

∂p

«
N,T

(65)

Chemical potential

µ = −kBT
„
∂ln∆

∂N

«
p,T

(66)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Expectation Values

At a given temperature we have the probability distribution

Pi (β) =
e−βEi

Z
(67)

with β = 1/kT being the inverse temperature, k the Boltzmann constant, Ei is the
energy of a state i while Z is the partition function for the canonical ensemble defined
as

Z =
MX

i=1

e−βEi , (68)

where the sum extends over all states M. Pi expresses the probability of finding the

system in a given configuration i .

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Expectation Values

For a system described by the canonical ensemble, the energy is an expectation value
since we allow energy to be exchanged with the surroundings (a heat bath with
temperature T). This expectation value, the mean energy, can be calculated using the
probability distribution Pi as

〈E〉 =
MX

i=1

Ei Pi (β) =
1

Z

MX
i=1

Ei e
−βEi , (69)

with a corresponding variance defined as

σ2
E = 〈E2〉 − 〈E〉2 =

1

Z

MX
i=1

E2
i e−βEi −

0@ 1

Z

MX
i=1

Ei e
−βEi

1A2

. (70)

If we divide the latter quantity with kT 2 we obtain the specific heat at constant volume

CV =
1

kT 2

“
〈E2〉 − 〈E〉2

”
. (71)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Expectation Values

We can also write

〈E〉 = −
∂lnZ

∂β
. (72)

The specific heat is

CV =
1

kT 2

∂2lnZ

∂β2
(73)

These expressions link a physical quantity (in thermodynamics) with the microphysics

given by the partition function. Statistical physics is the field where one relates

microscopic quantities to observables at finite temperature.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Expectation Values

〈M〉 =
MX
i

Mi Pi (β) =
1

Z

MX
i

Mi e
−βEi , (74)

and the corresponding variance

σ2
M = 〈M2〉 − 〈M〉2 =

1

Z

MX
i=1

M2
i e−βEi −

0@ 1

Z

MX
i=1

Mi e
−βEi

1A2

. (75)

This quantity defines also the susceptibility χ

χ =
1

kT

“
〈M2〉 − 〈M〉2

”
. (76)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Phase Transitions

NOTE: Helmholtz free energy and canonical ensemble

F = 〈E〉 − TS = −kTlnZ

meaning lnZ = −F/kT = −Fβ and

〈E〉 = −
∂lnZ

∂β
=
∂(βF)

∂β
.

and

CV = −
1

kT 2

∂2(βF)

∂β2
.

We can relate observables to various derivatives of the partition function and the free

energy. When a given derivative of the free energy or the partition function diverges we

talk of a phase transition of order of the derivative.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Ising Model

The model we will employ in our studies of phase transitions at finite temperature for
magnetic systems is the so-called Ising model. In its simplest form the energy is
expressed as

E = −J
NX

<kl>

sk sl − B
NX
k

sk , (77)

with sk = ±1, N is the total number of spins, J is a coupling constant expressing the

strength of the interaction between neighboring spins and B is an external magnetic

field interacting with the magnetic moment set up by the spins. The symbol < kl >

indicates that we sum over nearest neighbors only.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Ising Model

Notice that for J > 0 it is energetically favorable for neighboring spins to be aligned.

This feature leads to, at low enough temperatures, to a cooperative phenomenon called

spontaneous magnetization. That is, through interactions between nearest neighbors,

a given magnetic moment can influence the alignment of spins that are separated from

the given spin by a macroscopic distance. These long range correlations between

spins are associated with a long-range order in which the lattice has a net

magnetization in the absence of a magnetic field. This phase is normally called the

ferromagnetic phase. With J < 0, we have a so-called antiferromagnetic case. At a

critical temperature we have a phase transition to a disordered phase, a so-called

paramagnetic phase.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 42, 17-21 October

Statistical Physics, Spins Systems and Phase Transitions

Monday: Repetition from last week

Discussion of project 4

Discussion of the code for the Ising Model

Phase transitions in magnetic spin systems

Wednesday:

Quantum Monte Carlo, variational Monte Carlo

The Hydrogen atom and the Helium atom

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Potts Model, Project 4

Energy given by

E = −J
NX

<kl>

δsl ,sk ,

where the spin sk at lattice position k can take the values 1, 2, . . . , q. N is the total
number of spins. For q = 2 the Potts model corresponds to the Ising model, we can
rewrite the last equation as

E = −
J

2

NX
<kl>

2(δsl ,sk −
1

2
)−

NX
<kl>

J

2
.

Now, 2(δsl ,sk −
1
2) is +1 when sl = sk and −1 when they are different. Equivalent

except the last term which is a constant and that J → J/2. Tip when comparing results

with the Ising model: remove the constant term. The first step is thus to check that your

algorithm for the Potts model gives the same results as the ising model. Note that

critical temperature for the q = 2 Potts model is half of that for the Ising model.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Potts Model, Project 4

For q = 3 and higher you can proceed as follows:

Do a calculation with a small lattice first over a large temperature region. Use
typical temperature steps of 0.1.

Establish a small region where you see the heat capacity and the susceptibility
start to increase.

Decrease the temperature step in this region and perform calculations for larger
lattices as well.

For q = 6 and q = 10 we have a first order phase transition, the energy starts to

diverge.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Project 4: Metropolis Algorithm

1 Establish an initial state with energy Eb by positioning yourself at a random
position in the lattice

2 Change the initial configuration by flipping e.g., one spin only. Compute the
energy of this trial state Et .

3 Calculate ∆E = Et − Eb . The number of values ∆E is limited to five for the Ising
model in two dimensions, see the discussion below.

4 If ∆E ≤ 0 we accept the new configuration, meaning that the energy is lowered
and we are hopefully moving towards the energy minimum at a given
temperature. Go to step 7.

5 If ∆E > 0, calculate w = e−(β∆E).

6 Compare w with a random number r . If

r ≤ w ,

then accept the new configuration, else we keep the old configuration and its
values.

7 The next step is to update various expectations values.

8 The steps (2)-(7) are then repeated in order to obtain a sufficently good
representation of states.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Modelling the Ising Model
The code uses periodic boundary conditions with energy

Ei = −J
NX

j=1

sj sj+1,

In our case we have as the Monte Carlo sampling function the probability for finding the
system in a state s given by

Ps =
e−(βEs)

Z
,

with energy Es , β = 1/kT and Z is a normalization constant which defines the partition
function in the canonical ensemble

Z (β) =
X

s

e−(βEs)

This is difficult to compute since we need all states. In a calculation of the Ising model

in two dimensions, the number of configurations is given by 2N with N = L× L the

number of spins for a lattice of length L. Fortunately, the Metropolis algorithm considers

only ratios between probabilities and we do not need to compute the partition function

at all.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Modelling the Ising Model

In the calculation of the energy difference from one spin configuration to the other, we
will limit the change to the flipping of one spin only. For the Ising model in two
dimensions it means that there will only be a limited set of values for ∆E . Actually,
there are only five possible values. To see this, select first a random spin position x , y
and assume that this spin and its nearest neighbors are all pointing up. The energy for
this configuration is E = −4J. Now we flip this spin as shown below. The energy of the
new configuration is E = 4J, yielding ∆E = 8J.

E = −4J
↑

↑ ↑ ↑
↑

=⇒ E = 4J
↑

↑ ↓ ↑
↑

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Modelling the Ising Model

The four other possibilities are as follows

E = −2J
↑

↓ ↑ ↑
↑

=⇒ E = 2J
↑

↓ ↓ ↑
↑

with ∆E = 4J,

E = 0
↑

↓ ↑ ↑
↓

=⇒ E = 0
↑

↓ ↓ ↑
↓

with ∆E = 0

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Modelling the Ising Model

E = 2J
↓

↓ ↑ ↑
↓

=⇒ E = −2J
↓

↓ ↓ ↑
↓

with ∆E = −4J and finally

E = 4J
↓

↓ ↑ ↓
↓

=⇒ E = −4J
↓

↓ ↓ ↓
↓

with ∆E = −8J. This means in turn that we could construct an array which contains all

values of eβ∆E before doing the Metropolis sampling. Else, we would have to evaluate

the exponential at each Monte Carlo sampling.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

The loop over T in main

for (double temp = initial_temp; temp <= final_temp; temp+=temp_step){
// initialise energy and magnetization
E = M = 0.;
// setup array for possible energy changes
for(int de =-8; de <= 8; de++) w[de] = 0;
for(int de =-8; de <= 8; de+=4) w[de+8] = exp(-de/temp);
// initialise array for expectation values
for(int i = 0; i < 5; i++) average[i] = 0.;
initialize(n_spins, temp, spin_matrix, E, M);
// start Monte Carlo computation
for (int cycles = 1; cycles <= mcs; cycles++){

Metropolis(n_spins, idum, spin_matrix, E, M, w);
// update expectation values
average[0] += E; average[1] += E*E;
average[2] += M; average[3] += M*M; average[4] += fabs(M);

}
// print results
output(n_spins, mcs, temp, average);

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

The Initialise function

void initialize(int n_spins, double temp, int **spin_matrix,
double& E, double& M)
{

// setup spin matrix and intial magnetization
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
spin_matrix[y][x] = 1; // spin orientation for the ground state
M += (double) spin_matrix[y][x];

}
}
// setup initial energy
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
E -= (double) spin_matrix[y][x]*

(spin_matrix[periodic(y,n_spins,-1)][x] +
spin_matrix[y][periodic(x,n_spins,-1)]);

}
}

}// end function initialise

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

The periodic function

A compact way of dealing with periodic boundary conditions is given as follows:

// inline function for periodic boundary conditions
inline int periodic(int i, int limit, int add) {

return (i+limit+add) % (limit);

with the following example from the function initialise

E -= (double) spin_matrix[y][x]*
(spin_matrix[periodic(y,n_spins,-1)][x] +

spin_matrix[y][periodic(x,n_spins,-1)]);

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Alternative way for periodic boundary conditions

A more pedagogical way is given by the Fortran program

DO y = 1,lattice_y
DO x = 1,lattice_x

right = x+1 ; IF(x == lattice_x) right = 1
left = x-1 ; IF(x == 1) left = lattice_x
up = y+1 ; IF(y == lattice_y) up = 1
down = y-1 ; IF(y == 1) down = lattice_y
energy=energy - spin_matrix(x,y)*(spin_matrix(right,y)+&

spin_matrix(left,y)+spin_matrix(x,up)+ &
spin_matrix(x,down))

magnetization = magnetization + spin_matrix(x,y)
ENDDO

ENDDO
energy = energy*0.5

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

The Metropolis function

// loop over all spins
for(int y =0; y < n_spins; y++) {

for (int x= 0; x < n_spins; x++){
int ix = (int) (ran1(&idum)*(double)n_spins); // RANDOM SPIN
int iy = (int) (ran1(&idum)*(double)n_spins); // RANDOM SPIN
int deltaE = 2*spin_matrix[iy][ix]*

(spin_matrix[iy][periodic(ix,n_spins,-1)]+
spin_matrix[periodic(iy,n_spins,-1)][ix] +
spin_matrix[iy][periodic(ix,n_spins,1)] +
spin_matrix[periodic(iy,n_spins,1)][ix]);

if (ran1(&idum) <= w[deltaE+8]) {
spin_matrix[iy][ix] *= -1; // flip one spin and accept new spin config

M += (double) 2*spin_matrix[iy][ix];
E += (double) deltaE;

}
}

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Expectation Values

double norm = 1/((double) (mcs));// divided by total number of cycles
double Eaverage = average[0]*norm;
double E2average = average[1]*norm;
double Maverage = average[2]*norm;
double M2average = average[3]*norm;
double Mabsaverage = average[4]*norm;
// all expectation values are per spin, divide by 1/n_spins/n_spins
double Evariance = (E2average- Eaverage*Eaverage)/n_spins/n_spins;
double Mvariance = (M2average - Mabsaverage*Mabsaverage)/n_spins/n_spins;
ofile << setiosflags(ios::showpoint | ios::uppercase);
ofile << setw(15) << setprecision(8) << temp;
ofile << setw(15) << setprecision(8) << Eaverage/n_spins/n_spins;
ofile << setw(15) << setprecision(8) << Evariance/temp/temp;
ofile << setw(15) << setprecision(8) << Maverage/n_spins/n_spins;
ofile << setw(15) << setprecision(8) << Mvariance/temp;
ofile << setw(15) << setprecision(8) << Mabsaverage/n_spins/n_spins << endl;

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: one-dimensional Ising model
For the one-dimensional Ising model we can compute rather easily the exact partition
function for a system of N spins. Let us consider first the case with free ends. The
energy reads

E = −J
N−1X
j=1

sj sj+1.

The partition function for N spins is given by

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (βJ
N−1X
j=1

sj sj+1), (78)

and since the last spin occurs only once in the last sum in the exponential, we can
single out the last spin as followsX

sN =±1

exp (βJsN−1sN) = 2cosh(βJ). (79)

The partition function consists then of a part from the last spin and one from the
remaining spins resulting in

ZN = ZN−12cosh(βJ). (80)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: one-dimensional Ising model

We can repeat this process and obtain

ZN = (2cosh(βJ))N−2Z2, (81)

with Z2 given by
Z2 =

X
s1=±1

X
s2=±1

exp (βJs1s2) = 4cosh(βJ), (82)

resulting in
ZN = 2(2cosh(βJ))N−1. (83)

In the thermodynamical limit where we let N →∞, the way we treat the ends does not
matter. However, since our computations will always be carried out with a limited value
of N, we need to consider other boundary conditions as well. Here we limit the
attention to periodic boundary conditions.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: one-dimensional Ising model

We can then calculate the mean energy with free ends from the above formula for the
partition function using

〈E〉 = −
∂lnZ

∂β
= −(N − 1)Jtanh(βJ). (84)

Helmholtz’s free energy is given by

F = −kBTlnZN = −NkBTln (2cosh(βJ)) . (85)

The specific heat in one-dimension with free ends is

CV =
1

kT 2

∂2

∂β2
lnZN = (N − 1)k

„
βJ

cosh(βJ)

«2

. (86)

Note well that this expression for the specific heat from the one-dimensional Ising

model does not diverge, thus we do not have a second order phase transition.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: one-dimensional Ising model
If we use periodic boundary conditions, the partition function is given by

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (βJ
NX

j=1

sj sj+1), (87)

where the sum in the exponential runs from 1 to N since the energy is defined as

E = −J
NX

j=1

sj sj+1.

We can then rewrite the partition function as

ZN =
X

{si =±1}

NY
i=1

exp (βJsj sj+1), (88)

where the first sum is meant to represent all lattice sites. Introducing the matrix T̂ (the
so-called transfer matrix)

T̂ =

„
eβJ e−βJ

e−βJ eβJ

«
, (89)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: one-dimensional Ising model

ZN =
X

{si =±1}
T̂s1s2 T̂s2s3 . . . T̂sN s1 = Tr T̂N . (90)

The 2× 2 matrix T̂ is easily diagonalized with eigenvalues λ1 = 2cosh(βJ) and
λ2 = 2sinh(βJ). Similarly, the matrix T̂N has eigenvalues λN

1 and λN
2 and the trace of

T̂N is just the sum over eigenvalues resulting in a partition function

ZN = λN
1 + λN

2 = 2N
“
[cosh(βJ)]N + [sinh(βJ)]N

”
. (91)

Helmholtz’s free energy is in this case

F = −kBTln(λN
1 + λN

2) = −kBT
{

Nln(λ1) + ln
(

1 + (
λ2

λ1
)N

)}
(92)

which in the limit N →∞ results in F = −kBTNln(λ1)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: one-dimensional Ising model

Hitherto we have limited ourselves to studies of systems with zero external magnetic
field, viz H = ′. We will mostly study systems which exhibit a spontaneous
magnitization. It is however instructive to extend the one-dimensional Ising model to
H 6= ′, yielding a partition function (with periodic boundary conditions)

ZN =
X

s1=±1

· · ·
X

sN =±1

exp (β
NX

j=1

(Jsj sj+1 +
H
2

(si + sj+1)), (93)

which yields a new transfer matrix with matrix elements t11 = eβ(J+H), t1−1 = e−βJ ,
t−11 = eβJ and t−1−1 = eβ(J−H) with eigenvalues

λ1 = eβJ cosh(βJ) +
“

e2βJ sinh2(βH) + e−β∈J
”1/2

, (94)

and

λ2 = eβJ cosh(βJ)−
“

e2βJ sinh2(βH) + e−β∈J
”1/2

. (95)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: one-dimensional Ising model

It is now useful to compute the expectation value of the magnetisation per spin

〈M/N〉 =
1

NZ

MX
i

Mi e
−βEi = −

1

N

∂F

∂H
, (96)

resulting in

〈M/N〉 =
sinh(βH)`

sinh2(βH) + e−β∈J
´1/2

. (97)

We see that for H = ′ the magnetisation is zero. This means that for a one-dimensional

Ising model we cannot have a spontaneous magnetization. And there is no second

order phase transition as well.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: two-dimensional Ising model

The analytic expression for the Ising model in two dimensions was obtained in 1944 by
the Norwegian chemist Lars Onsager (Nobel prize in chemistry). The exact partition
function for N spins in two dimensions and with zero magnetic field H is given by

ZN =
h
2cosh(βJ)eI

iN
, (98)

with

I =
1

2π

Z π

0
dφln

»
1

2

“
1 + (1− κ2sin2φ)1/2

”–
, (99)

and
κ = 2sinh(2βJ)/cosh2(2βJ). (100)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: two-dimensional Ising model

The resulting energy is given by

〈E〉 = −Jcoth(2βJ)

»
1 +

2

π
(2tanh2(2βJ)− 1)K1(q)

–
, (101)

with q = 2sinh(2βJ)/cosh2(2βJ) and the complete elliptic integral of the first kind

K1(q) =

Z π/2

0

dφp
1− q2sin2φ

. (102)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: two-dimensional Ising model

Differentiating once more with respect to temperature we obtain the specific heat given
by

CV =
4kB

π
(βJcoth(2βJ))2

n
K1(q)− K2(q)− (1− tanh2(2βJ))

hπ
2

+ (2tanh2(2βJ)− 1)K1(q)
io
,

with

K2(q) =

Z π/2

0
dφ
q

1− q2sin2φ. (103)

is the complete elliptic integral of the second kind. Near the critical temperature TC the
specific heat behaves as

CV ≈ −
2

kBπ

„
J

TC

«2

ln

˛̨̨̨
1−

T

TC

˛̨̨̨
+ const. (104)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: two-dimensional Ising model

In theories of critical phenomena one has that

CV ∼
˛̨̨̨
1−

T

TC

˛̨̨̨−α

, (105)

and Onsager’s result is a special case of this power law behavior. The limiting form of
the function

limα→0
1

α
(Y−α − 1) = −lnY , (106)

meaning that the analytic result is a special case of the power law singularity with

α = 0.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Analytic Results: two-dimensional Ising model

One can also show that the mean magnetization per spin is

»
1−

(1− tanh2(βJ))4

16tanh4(βJ)

–1/8

for T < TC and 0 for T > TC . The behavior is thus as T → TC from below

M(T) ∼ (TC − T)1/8

The susceptibility behaves as

χ(T) ∼ |TC − T |−7/4

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Scaling Reuslts

Near TC we can characterize the behavior of many physical quantities by a power law
behavior. As an example, the mean magnetization is given by

〈M(T)〉 ∼ (T − TC)β , (107)

where β is a so-called critical exponent. A similar relation applies to the heat capacity

CV (T) ∼ |TC − T |−γ , (108)

and the susceptibility
χ(T) ∼ |TC − T |−α . (109)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Scaling Results

Through finite size scaling relations it is possible to relate the behavior at finite lattices
with the results for an infinitely large lattice. The critical temperature scales then as

TC(L)− TC(L = ∞) ∼ aL−1/ν , (110)

〈M(T)〉 ∼ (T − TC)β → L−β/ν , (111)

CV (T) ∼ |TC − T |−γ → Lγ/ν , (112)

and
χ(T) ∼ |TC − T |−α → Lα/ν . (113)

We can compute the slope of the curves for M, CV and χ as function of lattice sites

and extract the exponent ν.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo and Schrödinger’s equation

For one-body problems (one dimension)

−
~2

2m
∇2Ψ(x , t) + V (x , t)Ψ(x , t) = ı~

∂Ψ(x , t)

∂t
,

P(x , t) = Ψ(x , t)∗Ψ(x , t)

P(x , t)dx = Ψ(x , t)∗Ψ(x , t)dx

Interpretation: probability of finding the system in a region between x and x + dx .
Always real

Ψ(x , t) = R(x , t) + ıI(x , t)

yielding
Ψ(x , t)∗Ψ(x , t) = (R − ıI)(R + ıI) = R2 + I2

Variational Monte Carlo uses only P(x , t)!!

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo and Schrödinger’s equation

Petit digression
Choose τ = it/~.
The time-dependent (1-dim) Schrödinger equation becomes then

∂Ψ(x , τ)

∂τ
=

~2

2m

∂2Ψ(x , τ)

∂x2
− V (x , τ)Ψ(x , τ).

With V = 0 we have a diffusion equation in complex time with diffusion constant

D =
~2

2m
.

Used in diffusion Monte Carlo calculations. Topic for FYS4410, Computational Physics

II

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo and Schrödinger’s equation

Conditions which Ψ has to satisfy:

1 Normalization Z ∞

−∞
P(x , t)dx =

Z ∞

−∞
Ψ(x , t)∗Ψ(x , t)dx = 1

meaning that Z ∞

−∞
Ψ(x , t)∗Ψ(x , t)dx <∞

2 Ψ(x , t) and ∂Ψ(x , t)/∂x must be finite

3 Ψ(x , t) and ∂Ψ(x , t)/∂x must be continuous.

4 Ψ(x , t) and ∂Ψ(x , t)/∂x must be single valued

Square integrable functions.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

First Postulate

Any physical quantity A(~r , ~p) which depends on position~r and momentum ~p has a
corresponding quantum mechanical operator by replacing ~p −i~~5, yielding the
quantum mechanical operator bA = A(~r ,−i~ ~5).

Quantity Classical definition QM operator

Position ~r b̃r = ~r
Momentum ~p b̃p = −i~~5
Orbital momentum ~L = ~r × ~p b̃L = ~r × (−i~~5)

Kinetic energy T = (~p)2/2m bT = −(~2/2m)(~5)2

Total energy H = (p2/2m) + V (~r) bH = −(~2/2m)(~5)2 + V (~r)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Second Postulate

The only possible outcome of an ideal measurement of the physical quantity A are the
eigenvalues of the corresponding quantum mechanical operator bA.

bAψν = aνψν ,

resulting in the eigenvalues a1, a2, a3, · · · as the only outcomes of a measurement.

The corresponding eigenstates ψ1, ψ2, ψ3 · · · contain all relevant information about the

system.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Third Postulate

Assume Φ is a linear combination of the eigenfunctions ψν for bA,

Φ = c1ψ1 + c2ψ2 + · · · =
X

ν

cνψν .

The eigenfunctions are orthogonal and we get

cν =

Z
(Φ)∗ψνdτ.

From this we can formulate the third postulate:

When the eigenfunction is Φ, the probability of obtaining the value aν as the outcome

of a measurement of the physical quantity A is given by |cν |2 and ψν is an

eigenfunction of bA with eigenvalue aν .

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Third Postulate

As a consequence one can show that:
when a quantal system is in the state Φ, the mean value or expectation value of a
physical quantity A(~r , ~p) is given by

〈A〉 =

Z
(Φ)∗bA(~r ,−i~~5)Φdτ.

We have assumed that Φ has been normalized, viz.,
R

(Φ)∗Φdτ = 1. Else

〈A〉 =

R
(Φ)∗bAΦdτR
(Φ)∗Φdτ

.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Fourth Postulate

The time development of of a quantal system is given by

i~
∂Ψ

∂t
= bHΨ,

with bH the quantal Hamiltonian operator for the system.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

Most quantum mechanical problems of interest in e.g., atomic, molecular, nuclear and
solid state physics consist of a large number of interacting electrons and ions or
nucleons. The total number of particles N is usually sufficiently large that an exact
solution cannot be found. Typically, the expectation value for a chosen hamiltonian for a
system of N particles is

〈H〉 =R
dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)H(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)R

dR1dR2 . . . dRNΨ∗(R1,R2, . . . ,RN)Ψ(R1,R2, . . . ,RN)
,

an in general intractable problem.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

As an example from the nuclear many-body problem, we have Schrödinger’s equation
as a differential equation

ĤΨ(r1, .., rA, α1, .., αA) = EΨ(r1, .., rA, α1, .., αA)

where
r1, .., rA,

are the coordinates and
α1, .., αA,

are sets of relevant quantum numbers such as spin and isospin for a system of A

nucleons (A = N + Z , N being the number of neutrons and Z the number of protons).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

There are

2A ×
„

A
Z

«
coupled second-order differential equations in 3A dimensions.

For a nucleus like 10Be this number is 215040. This is a truely challenging many-body

problem.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

Given a hamiltonian H and a trial wave function ΨT , the variational principle states that
the expectation value of 〈H〉, defined through

〈H〉 =

R
dRΨ∗T (R)H(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
,

is an upper bound to the ground state energy E0 of the hamiltonian H, that is

E0 ≤ 〈H〉.

In general, the integrals involved in the calculation of various expectation values are

multi-dimensional ones. Traditional integration methods such as the Gauss-Legendre

will not be adequate for say the computation of the energy of a many-body system.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

The trial wave function can be expanded in the eigenstates of the hamiltonian since
they form a complete set, viz.,

ΨT (R) =
X

i

aiΨi (R),

and assuming the set of eigenfunctions to be normalized one obtainsP
n a2

nEnP
n a2

n
≥ E0.

In general, the integrals involved in the calculation of various expectation values are

multi-dimensional ones.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

In most cases, a wave function has only small values in large parts of configuration
space, and a straightforward procedure which uses homogenously distributed random
points in configuration space will most likely lead to poor results. This may suggest that
some kind of importance sampling combined with e.g., the Metropolis algorithm may
be a more efficient way of obtaining the ground state energy. The hope is then that
those regions of configurations space where the wave function assumes appreciable
values are sampled more efficiently.

The tedious part in a VMC calculation is the search for the variational minimum. A

good knowledge of the system is required in order to carry out reasonable VMC

calculations. This is not always the case, and often VMC calculations serve rather as

the starting point for so-called diffusion Monte Carlo calculations (DMC). DMC is a way

of solving exactly the many-body Schrödinger equation by means of a stochastic

procedure. A good guess on the binding energy and its wave function is however

necessary. A carefully performed VMC calculation can aid in this context.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

Construct first a trial wave function ψα
T (R), for a many-body system consisting of

N particles located at positions R = (R1, . . . ,RN). The trial wave function
depends on α variational parameters α = (α1, . . . , αN).

Then we evaluate the expectation value of the hamiltonian H

〈H〉 =

R
dRΨ∗Tα

(R)H(R)ΨTα
(R)R

dRΨ∗Tα
(R)ΨTα

(R)
. (114)

Thereafter we vary α according to some minimization algorithm and return to the
first step.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo
Choose a trial wave function ψT (R).

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

This is our new probability distribution function (PDF).

〈E〉 =

R
dRΨ∗(R)H(R)Ψ(R)R

dRΨ∗(R)Ψ(R)
,

where Ψ is the exact eigenfunction.

EL(R) =
1

ψT (R)
HψT (R),

the local energy, which, together with our trial PDF yields

〈H〉 =

Z
P(R)EL(R)dR.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

Algo:

Initialisation: Fix the number of Monte Carlo steps. Choose an initial R and
variational parameters α and calculate

˛̨
ψα

T (R)
˛̨2.

Initialise the energy and the variance and start the Monte Carlo calculation
(thermalize)

1 Calculate a trial position Rp = R + r ∗ step where r is a random variable
r ∈ [0, 1].

2 Metropolis algorithm to accept or reject this move

w = P(Rp)/P(R).

3 If the step is accepted, then we set R = Rp . Update averages

Finish and compute final averages.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 43, 24-28 October

Quantum Monte Carlo, Ordinary Differential Equations

Monday: Repetition from last week

Discussion of project 4

Last Monte Carlo lecture, Variational Monte Carlo

Wednesday:

Ordinary Differential Equations, standard methods with
emphasis on fourth order Runge-Kutta

The Classical pendulum

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

The radial Schrödinger equation for the hydrogen atom can be written as

−
~2

2m

∂2u(r)

∂r2
−
„

ke2

r
−

~2l(l + 1)

2mr2

«
u(r) = Eu(r),

or with dimensionless variables

−
1

2

∂2u(ρ)

∂ρ2
−

u(ρ)

ρ
+

l(l + 1)

2ρ2
u(ρ)− λu(ρ) = 0,

with the hamiltonian

H = −
1

2

∂2

∂ρ2
−

1

ρ
+

l(l + 1)

2ρ2
.

Use variational parameter α in the trial wave function

uα
T (ρ) = αρe−αρ.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

Inserting this wave function into the expression for the local energy EL gives

EL(ρ) = −
1

ρ
−
α

2

„
α−

2

ρ

«
.

α 〈H〉 σ2 σ/
√

N
7.00000E-01 -4.57759E-01 4.51201E-02 6.71715E-04
8.00000E-01 -4.81461E-01 3.05736E-02 5.52934E-04
9.00000E-01 -4.95899E-01 8.20497E-03 2.86443E-04
1.00000E-00 -5.00000E-01 0.00000E+00 0.00000E+00
1.10000E+00 -4.93738E-01 1.16989E-02 3.42036E-04
1.20000E+00 -4.75563E-01 8.85899E-02 9.41222E-04
1.30000E+00 -4.54341E-01 1.45171E-01 1.20487E-03

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

We note that at α = 1 we obtain the exact result, and the variance is zero, as it should.
The reason is that we then have the exact wave function, and the action of the
hamiltionan on the wave function

Hψ = constant× ψ,

yields just a constant. The integral which defines various expectation values involving
moments of the hamiltonian becomes then

〈Hn〉 =

R
dRΨ∗T (R)Hn(R)ΨT (R)R

dRΨ∗T (R)ΨT (R)
= constant×

R
dRΨ∗T (R)ΨT (R)R
dRΨ∗T (R)ΨT (R)

= constant.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

The helium atom consists of two electrons and a nucleus with charge Z = 2. The
contribution to the potential energy due to the attraction from the nucleus is

−
2ke2

r1
−

2ke2

r2
,

and if we add the repulsion arising from the two interacting electrons, we obtain the
potential energy

V (r1, r2) = −
2ke2

r1
−

2ke2

r2
+

ke2

r12
,

with the electrons separated at a distance r12 = |r1 − r2|.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

The hamiltonian becomes then

bH = −
~2∇2

1

2m
−

~2∇2
2

2m
−

2ke2

r1
−

2ke2

r2
+

ke2

r12
,

and Schrödingers equation reads bHψ = Eψ.

All observables are evaluated with respect to the probability distribution

P(R) =
|ψT (R)|2R
|ψT (R)|2 dR

.

generated by the trial wave function. The trial wave function must approximate an exact

eigenstate in order that accurate results are to be obtained. Improved trial wave

functions also improve the importance sampling, reducing the cost of obtaining a

certain statistical accuracy.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo

Choice of trial wave function for Helium: Assume r1 → 0.

EL(R) =
1

ψT (R)
HψT (R) =

1

ψT (R)

„
−

1

2
∇2

1 −
Z

r1

«
ψT (R) + finite terms.

EL(R) =
1

RT (r1)

−

1

2

d2

dr2
1

−
1

r1

d

dr1
−

Z

r1

!
RT (r1) + finite terms

For small values of r1, the terms which dominate are

lim
r1→0

EL(R) =
1

RT (r1)

„
−

1

r1

d

dr1
−

Z

r1

«
RT (r1),

since the second derivative does not diverge due to the finiteness of Ψ at the origin.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Quantum Monte Carlo
This results in

1

RT (r1)

dRT (r1)

dr1
= −Z ,

and
RT (r1) ∝ e−Zr1 .

A similar condition applies to electron 2 as well. For orbital momenta l > 0 we have

1

RT (r)

dRT (r)

dr
= −

Z

l + 1
.

Similalry, studying the case r12 → 0 we can write a possible trial wave function as

ψT (R) = e−α(r1+r2)er12/2.

The last equation can be generalized to

ψT (R) = φ(r1)φ(r2) . . . φ(rN)
Y
i<j

f (rij),

for a system with N electrons or particles.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

The order of the ODE refers to the order of the derivative on the left-hand side in the
equation

dy

dt
= f (t , y). (115)

This equation is of first order and f is an arbitrary function. A second-order equation
goes typically like

d2y

dt2
= f (t ,

dy

dt
, y). (116)

A well-known second-order equation is Newton’s second law

m
d2x

dt2
= −kx , (117)

where k is the force constant. ODE depend only on one variable

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

partial differential equations like the time-dependent Schrödinger equation

i~
∂ψ(x, t)
∂t

= −
~2

2m

„
∂2ψ(r, t)
∂x2

+
∂2ψ(r, t)
∂y2

+
∂2ψ(r, t)
∂z2

«
+ V (x)ψ(x, t), (118)

may depend on several variables. In certain cases, like the above equation, the wave

function can be factorized in functions of the separate variables, so that the

Schrödinger equation can be rewritten in terms of sets of ordinary differential

equations. These equations are discussed in chapter 15. Involve boundary conditions

in addition to initial conditions.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

We distinguish also between linear and non-linear differential equation where e.g.,

dy

dt
= g3(t)y(t), (119)

is an example of a linear equation, while

dy

dt
= g3(t)y(t)− g(t)y2(t), (120)

is a non-linear ODE.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

Another concept which dictates the numerical method chosen for solving an ODE, is
that of initial and boundary conditions. To give an example, in our study of neutron
stars below, we will need to solve two coupled first-order differential equations, one for
the total mass m and one for the pressure P as functions of ρ

dm

dr
= 4πr2ρ(r)/c2,

and
dP

dr
= −

Gm(r)

r2
ρ(r)/c2.

where ρ is the mass-energy density. The initial conditions are dictated by the mass
being zero at the center of the star, i.e., when r = 0, yielding m(r = 0) = 0. The other
condition is that the pressure vanishes at the surface of the star.
In the solution of the Schrödinger equation for a particle in a potential, we may need to
apply boundary conditions as well, such as demanding continuity of the wave function
and its derivative.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

In many cases it is possible to rewrite a second-order differential equation in terms of
two first-order differential equations. Consider again the case of Newton’s second law
in Eq. (117). If we define the position x(t) = y (1)(t) and the velocity v(t) = y (2)(t) as
its derivative

dy (1)(t)

dt
=

dx(t)

dt
= y (2)(t), (121)

we can rewrite Newton’s second law as two coupled first-order differential equations

m
dy (2)(t)

dt
= −kx(t) = −ky (1)(t), (122)

and
dy (1)(t)

dt
= y (2)(t). (123)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations, Finite Difference

These methods fall under the general class of one-step methods. The algoritm is rather
simple. Suppose we have an initial value for the function y(t) given by

y0 = y(t = t0). (124)

We are interested in solving a differential equation in a region in space [a,b]. We define
a step h by splitting the interval in N sub intervals, so that we have

h =
b − a

N
. (125)

With this step and the derivative of y we can construct the next value of the function y
at

y1 = y(t1 = t0 + h), (126)

and so forth.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

If the function is rather well-behaved in the domain [a,b], we can use a fixed step size.
If not, adaptive steps may be needed. Here we concentrate on fixed-step methods only.
Let us try to generalize the above procedure by writing the step yi+1 in terms of the
previous step yi

yi+1 = y(t = ti + h) = y(ti) + h∆(ti , yi (ti)) + O(hp+1), (127)

where O(hp+1) represents the truncation error. To determine ∆, we Taylor expand our
function y

yi+1 = y(t = ti + h) = y(ti) + h(y ′(ti) + · · ·+ y (p)(ti)
hp−1

p!
) + O(hp+1), (128)

where we will associate the derivatives in the parenthesis with

∆(ti , yi (ti)) = (y ′(ti) + · · ·+ y (p)(ti)
hp−1

p!
). (129)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

We define
y ′(ti) = f (ti , yi) (130)

and if we truncate ∆ at the first derivative, we have

yi+1 = y(ti) + hf (ti , yi) + O(h2), (131)

which when complemented with ti+1 = ti + h forms the algorithm for the well-known

Euler method. Note that at every step we make an approximation error of the order of

O(h2), however the total error is the sum over all steps N = (b − a)/h, yielding thus a

global error which goes like NO(h2) ≈ O(h).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

To make Euler’s method more precise we can obviously decrease h (increase N).
However, if we are computing the derivative f numerically by e.g., the two-steps formula

f ′2c(x) =
f (x + h)− f (x)

h
+ O(h),

we can enter into roundoff error problems when we subtract two almost equal numbers
f (x + h)− f (x) ≈ 0. Euler’s method is not recommended for precision calculation,
although it is handy to use in order to get a first view on how a solution may look like.
As an example, consider Newton’s equation rewritten in Eqs. (122) and (123). We
define y0 = y (1)(t = 0) an v0 = y (2)(t = 0). The first steps in Newton’s equations are
then

y (1)
1 = y0 + hv0 + O(h2) (132)

and
y (2)

1 = v0 − hy0k/m + O(h2). (133)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

The Euler method is asymmetric in time, since it uses information about the derivative
at the beginning of the time interval. This means that we evaluate the position at y (1)

1

using the velocity at y (2)
0 = v0. A simple variation is to determine y (1)

n+1 using the

velocity at y (2)
n+1, that is (in a slightly more generalized form)

y (1)
n+1 = y (1)

n + hy (2)
n+1 + O(h2) (134)

and
y (2)

n+1 = y (2)
n + han + O(h2). (135)

The acceleration an is a function of an(y
(1)
n , y (2)

n , t) and needs to be evaluated as well.

This is the Euler-Cromer method.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

Let us then include the second derivative in our Taylor expansion. We have then

∆(ti , yi (ti)) = f (ti) +
h

2

df (ti , yi)

dt
+ O(h3). (136)

The second derivative can be rewritten as

y ′′ = f ′ =
df

dt
=
∂f

∂t
+
∂f

∂y

∂y

∂t
=
∂f

∂t
+
∂f

∂y
f (137)

and we can rewrite Eq. (128) as

yi+1 = y(t = ti + h) = y(ti) + hf (ti) +
h2

2

„
∂f

∂t
+
∂f

∂y
f
«

+ O(h3), (138)

which has a local approximation error O(h3) and a global error O(h2).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

These approximations can be generalized by using the derivative f to arbitrary order so
that we have

yi+1 = y(t = ti + h) = y(ti) + h(f (ti , yi) + . . . f (p−1)(ti , yi)
hp−1

p!
) + O(hp+1). (139)

These methods, based on higher-order derivatives, are in general not used in

numerical computation, since they rely on evaluating derivatives several times. Unless

one has analytical expressions for these, the risk of roundoff errors is large.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

The most obvious improvements to Euler’s and Euler-Cromer’s algorithms, avoiding in
addition the need for computing a second derivative, is the so-called midpoint method.
We have then

y (1)
n+1 = y (1)

n +
h

2

“
y (2)

n+1 + y (2)
n

”
+ O(h2) (140)

and
y (2)

n+1 = y (2)
n + han + O(h2), (141)

yielding

y (1)
n+1 = y (1)

n + hy (2)
n +

h2

2
an + O(h3) (142)

implying that the local truncation error in the position is now O(h3), whereas Euler’s or

Euler-Cromer’s methods have a local error of O(h2).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

Thus, the midpoint method yields a global error with second-order accuracy for the
position and first-order accuracy for the velocity. However, although these methods
yield exact results for constant accelerations, the error increases in general with each
time step.
One method that avoids this is the so-called half-step method. Here we define

y (2)
n+1/2 = y (2)

n−1/2 + han + O(h2), (143)

and
y (1)

n+1 = y (1)
n + hy (2)

n+1/2 + O(h2). (144)

Note that this method needs the calculation of y (2)
1/2. This is done using e.g., Euler’s

method
y (2)

1/2 = y (2)
0 + ha0 + O(h2). (145)

As this method is numerically stable, it is often used instead of Euler’s method.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations

Another method which one may encounter is the Euler-Richardson method with

y (2)
n+1 = y (2)

n + han+1/2 + O(h2), (146)

and
y (1)

n+1 = y (1)
n + hy (2)

n+1/2 + O(h2). (147)

The program program2.cpp includes all of the above methods.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations, Runge-Kutta methods

Runge-Kutta (RK) methods are based on Taylor expansion formulae, but yield in
general better algorithms for solutions of an ODE. The basic philosophy is that it
provides an intermediate step in the computation of yi+1.
To see this, consider first the following definitions

dy

dt
= f (t , y), (148)

and

y(t) =

Z
f (t , y)dt , (149)

and

yi+1 = yi +

Z ti+1

ti

f (t , y)dt . (150)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations, Runge-Kutta methods

To demonstrate the philosophy behind RK methods, let us consider the second-order
RK method, RK2. The first approximation consists in Taylor expanding f (t , y) around
the center of the integration interval ti to ti+1, i.e., at ti + h/2, h being the step. Using
the midpoint formula for an integral, defining y(ti + h/2) = yi+1/2 and
ti + h/2 = ti+1/2, we obtain

Z ti+1

ti

f (t , y)dt ≈ hf (ti+1/2, yi+1/2) + O(h3). (151)

This means in turn that we have

yi+1 = yi + hf (ti+1/2, yi+1/2) + O(h3). (152)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations, Runge-Kutta methods

However, we do not know the value of yi+1/2. Here comes thus the next approximation,
namely, we use Euler’s method to approximate yi+1/2. We have then

y(i+1/2) = yi +
h

2

dy

dt
= y(ti) +

h

2
f (ti , yi). (153)

This means that we can define the following algorithm for the second-order
Runge-Kutta method, RK2.

k1 = hf (ti , yi), (154)

k2 = hf (ti+1/2, yi + k1/2), (155)

with the final value
yi+i ≈ yi + k2 + O(h3). (156)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations, Runge-Kutta methods

The difference between the previous one-step methods is that we now need an

intermediate step in our evaluation, namely ti + h/2 = t(i+1/2) where we evaluate the

derivative f . This involves more operations, but the gain is a better stability in the

solution.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Differential Equations, Runge-Kutta methods

The fourth-order Runge-Kutta, RK4, which we will employ in the solution of various
differential equations below, has the following algorithm

k1 = hf (ti , yi), (157)

k2 = hf (ti + h/2, yi + k1/2), (158)

k3 = hf (ti + h/2, yi + k2/2) (159)

k4 = hf (ti + h, yi + k3) (160)

with the final value

yi+1 = yi +
1

6
(k1 + 2k2 + 2k3 + k4) . (161)

Thus, the algorithm consists in first calculating k1 with ti , y1 and f as inputs. Thereafter,

we increase the step size by h/2 and calculate k2, then k3 and finally k4. Global error

as O(h4).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Runge-Kutta methods, code

void runge_kutta_4(double *y, double *dydx, int n,
double x, double h,

double *yout, void (*derivs)(double, double *, double *))
{

int i;
double xh,hh,h6;
double *dym, *dyt, *yt;
// allocate space for local vectors
dym = new double [n];
dyt = new double [n];
yt = new double [n];
hh = h*0.5;
h6 = h/6.;
xh = x+hh;

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Runge-Kutta methods, code

for (i = 0; i < n; i++) {
yt[i] = y[i]+hh*dydx[i];

}
(*derivs)(xh,yt,dyt); // computation of k2
for (i = 0; i < n; i++) {

yt[i] = y[i]+hh*dyt[i];
}
(*derivs)(xh,yt,dym); // computation of k3
for (i=0; i < n; i++) {

yt[i] = y[i]+h*dym[i];
dym[i] += dyt[i];

}
(*derivs)(x+h,yt,dyt); // computation of k4
// now we upgrade y in the array yout
for (i = 0; i < n; i++){

yout[i] = y[i]+h6*(dydx[i]+dyt[i]+2.0*dym[i]);
}
delete []dym;
delete [] dyt;
delete [] yt;

} // end of function Runge-kutta 4

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 44, 31 October - 4 November

Ordinary Differential Equations

Monday: Repetition from last week

Discussion of project 5

Discussion of the Pendulum and driven nonlinear
oscillations.

Wednesday:

Ordinary Differential Equations: driven nonlinear
oscillations and the route to chaos.

Ordinary Differential equations with boundary conditions

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on the Pendulum Project

The angular equation of motion of the pendulum is given by Newton’s equation and
with no external force it reads

ml
d2θ

dt2
+ mgsin(θ) = 0, (162)

with an angular velocity and acceleration given by

v = l
dθ

dt
, (163)

and

a = l
d2θ

dt2
. (164)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on the Pendulum Project

We do however expect that the motion will gradually come to an end due a viscous
drag torque acting on the pendulum. In the presence of the drag, the above equation
becomes

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = 0, (165)

where ν is now a positive constant parameterizing the viscosity of the medium in
question. In order to maintain the motion against viscosity, it is necessary to add some
external driving force. We choose here a periodic driving force. The last equation
becomes then

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = Asin(ωt), (166)

with A and ω two constants representing the amplitude and the angular frequency

respectively. The latter is called the driving frequency.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on the Pendulum Project

b) Write then a code which solves

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = 0,

using the fourth-order Runge Kutta method. Perform calculations for at least ten
periods with N = 100, N = 1000 and N = 10000 mesh points and values of
ν = 1, ν = 5 and ν = 10. Set l = 1.0 m, g = 1 m/s2 and m = 1 kg. Choose as
initial conditions θ(0) = 0.2 (radians) and v(0) = 0 (radians/s). Make plots of θ
(in radians) as function of time and phase space plots of θ versus the velocity v .
Check the stability of your results as functions of time and number of mesh
points. Which case corresponds to damped, underdamped and overdamped
oscillatory motion? Comment your results.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on the Pendulum Project

c) Now we switch to

ml
d2θ

dt2
+ ν

dθ

dt
+ mgsin(θ) = Asin(ωt),

for the rest of the project. Add an external driving force and set l = g = 1,
m = 1, ν = 1/2 and ω = 2/3. Choose as initial conditions θ(0) = 0.2 and
v(0) = 0 and A = 0.5 and A = 1.2. Make plots of θ (in radians) as function of
time for at least 300 periods and phase space plots of θ versus the velocity v .
Choose an appropriate time step. Comment and explain the results for the
different values of A.

This driving force will pump energy into the system and the externally imposed

frequency ω will compete with the natural frequency ω0 =
p

g/l . There is an

interesting situation when the driving frequency matches the naturalfrequency of the

pendulum. This yields a resonance and the amplitude of θ can become very large

especially if the friction is small.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on the Pendulum Project

You will see that the first few oscillations are affected by the decay of an initial transient
as is the case with no driving force. That is, the initial displacement of the pendulum
leads to a component of the motion that decays with time and has an angular
frequency ∼ ω0. Afer this motion is damped away the pendulum settles in a steady
motion drivenby ω.

For large A (FD in the slides) the vertical jumps in θ are due to our resetting of the

angle to keep it in the range −π to π and thus corresponds to the pendulum swinging

’over the top’. For this value there is no settlement towards a steady behavior. Also, the

behavior would be different with other initial conditions. Does not settle into a stable

attractor in phase-space. Cannot predict the fate of the pendulum. At askance with the

determinism of Newton’s equations.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on the Pendulum Project, Period Doubling

d) Keep now the constants from the previous exercise fixed but set now A = 1.35,
A = 1.44 and A = 1.465. Plot θ (in radians) as function of time for at least 300
periods for these values of A and comment your results.

When a nonlinear system is excited or driven by a single frequency, the response is in

general not limited to the driving frequency. We can have multiples nω with

n = 1, 2, 3, Well-known from Fourier’s theorem and wave theory. This means that

the periods of these harmonics will be smaller than the drive period (T = 2π/ω). We

see from the figure however that the middle figure with FD = 1.44 exhibits a response

ω/2, a lower frequency! For the middle curve the bumps alternate in amplitude. We

have a period which is twice as large as the FD = 1.35 case. For FD = 1.465 it is four

times as large. If we increase FD we will se further period doublings. Bifurcation plot is

very useful. In the figure we waited 300 periods and plotted θ at times in phase with the

driving period 2nπ = T up to 400 periods. Below 1.44 there is only value although that

value is plotted many times.Called period-1. At 1.44 it alternates between two values.

Period-2. Then at 1.465 we have period-4.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on the Pendulum Project

e) We want to analyse further these results by making phase space plots of θ
versus the velocity v using only the points where we have ωt = 2nπ where n is
an integer. These are normally called the drive periods. This is an example of
what is called a Poincare section and is a very useful way to plot and analyze the
behavior of a dynamical system. Comment your results.

If you look at the non-chaotic case you will get only one point in the Poincare plot.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

More on the Pendulum

Petit summary

1 Need a driving force and frequency

2 Strong dependence on the amplitude

3 In the chaotic regime we do not get a normal attractor in phase space. Cannot
predict a path.

4 The path in the chaotic regime changes from initial condition to initial condition.

Can one extract universal behaviors for the chaotic pendulum? Period doubling is one
route towards case. Another are the Lyapunov coefficients

∆θ = eλt

Negative value is regular, λ ≥ 0 is chaotic.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Classes for ODE methods

In this course we have not emphasized the use of classes.
However for the ordinary differential equations it can be very
useful to make a Class which contains all possible methods
discussed. In Fortran we can use the MODULE keyword in
order to can methods and keep the variables private and
hidden from other parts of our code. This allows for a
generalization which can be used to tackle other ODEs as well.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Classes for ODE methods

In program2.cpp of chapter13 we have canned the following methods

void euler();

void euler cromer();

void midpoint();

void euler richardson();

void half step();

void rk2(); //runge-kutta-second-order

void rk4 step(double,double*,double*,double); // we need it in function rk4() and
asc()

void rk4(); //runge-kutta-fourth-order

void asc(); //runge-kutta-fourth-order with adaptive stepsize control

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Classes for ODE methods

class pendelum
{
private:

double Q, A_roof, omega_0, omega_roof,g; //
double y[2]; //for the initial-values of phi and v
int n; // how many steps
double delta_t,delta_t_roof;

public:
void derivatives(double,double*,double*);
void initialise();
void euler();
void euler_cromer();
void midpoint();
void euler_richardson();
void half_step();
void rk2(); //runge-kutta-second-order
void rk4_step(double,double*,double*,double); // we need it in function rk4() and asc()
void rk4(); //runge-kutta-fourth-order
void asc(); //runge-kutta-fourth-order with adaptive stepsize control

};

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Classes for ODE methods

void pendelum::derivatives(double t, double* in, double* out)
{ /* Here we are calculating the derivatives at (dimensionless) time t

’in’ are the values of phi and v, which are used for the calculation
The results are given to ’out’ */

out[0]=in[1]; //out[0] = (phi)’ = v
if(Q)

out[1]=-in[1]/((double)Q)-sin(in[0])+A_roof*cos(omega_roof*t); //out[1] = (phi)’’
else

out[1]=-sin(in[0])+A_roof*cos(omega_roof*t); //out[1] = (phi)’’
}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Classes for ODE methods

int main()
{

pendelum testcase;
testcase.initialise();
testcase.euler();
testcase.euler_cromer();
testcase.midpoint();
testcase.euler_richardson();
testcase.half_step();
testcase.rk2();
testcase.rk4();
return 0;

} // end of main function

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Classes for ODE methods

In Fortran we would use

MODULE pendelum
USE CONSTANTS
IMPLICIT NONE
REAL(DP), PRIVATE :: Q, A_roof, omega_0, omega_roof,g
REAL(DP), PRIVATE :: y(2) ! for the initial-values of phi and v
INTEGER, PRIVATE :: n ! how many steps
REAL(DP), PRIVATE :: delta_t,delta_t_roof

CONTAINS
SUBROUTINE derivatives(..)
SUBROUTINE initialise(..)
ETC ETC

END MODULE pendulum

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 45, 7- 11 November

Ordinary Differential Equations and Eigenvalue Problems

Monday: Repetition from last week

Discussion of project 5

Ordinary Differential equations with boundary conditions

Eigenvalues: Jacobi’s method and Householder’s QR
algorithm

Wednesday:

QR Algorithm of Francis for the eigenvalue problem

Eigenvalue problems for large matrices, Lanczo’s
algorithm.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

−
~2

2mα2

d2

dρ2
u(r) +

„
V (ρ) +

l(l + 1)

ρ2

~2

2mα2

«
u(ρ) = Eu(ρ).

In our case we are interested in attractive potentials

V (r) = −V0f (r),

where V0 > 0 and analyze bound states where E < 0.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

The final equation can be written as

d2

dρ2
u(ρ) + k(ρ)u(ρ) = 0,

where

k(ρ) = γ

„
f (ρ)−

1

γ

l(l + 1)

ρ2
− ε

«
γ =

2mα2V0

~2

ε =
|E |
V0

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

f (r) =

1

−0
for

r ≤ a
r > a

and choose α = a. Then

k(ρ) = γ

8<: 1− ε− 1
γ

l(l+1)

ρ2

−ε−− 1
γ

l(l+1)

ρ2

for
r ≤ a
r > a

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

For small ρ we get
d2

dρ2
u(ρ)−

l(l + 1)

ρ2
u(ρ) = 0,

with solutions u(ρ) = ρl+1 or u(ρ) = ρ−l . Since the final solution must be finite
everywhere we get the condition for our numerical solution

u(ρ) = ρl+1 for small ρ

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

For large ρ we get
d2

dρ2
u(ρ)− γεu(ρ) = 0 γ > 0,

with solutions u(ρ) = exp(±γερ) and the condition for large ρ means that our
numerical solution must satisfy

u(ρ) = e−γερ for large ρ

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

In order to find a bound state we start integrating, with a trial negative value for the

energy, from small values of the variable ρ, usually zero, and up to some large value of

ρ. As long as the potential is significantly different from zero the function oscillates.

Outside the range of the potential the function will approach an exponential form. If we

have chosen a correct eigenvalue the function decreases exponetially as

u(ρ) = e−γερ. However, due to numerical inaccuracy the solution will contain small

admixtures of the undesireable exponential growing function u(ρ) = e+γερ.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

The final solution will then become unstable. Therefore, it is better to generate two

solutions, with one starting from small values of ρ and integrate outwards to some

matching point ρ = ρm. We call that function u<(ρ). The next solution u>(ρ) is then

obtained by integrating from some large value ρ where the potential is of no

importance, and inwards to the same matching point ρm. Due to the quantum

mechanical requirements the logarithmic derivative at the matching point ρm should be

well defined.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

We obtain the following condition

d
dρ

u<(ρ)

u<(ρ)
=

d
dρ

u>(ρ)

u>(ρ)
at ρ = ρm.

We can modify this expression by normalizing the function u<u<(ρm) = Cu>u<(ρm).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

d

dρ
u<(ρ) =

d

dρ
u>(ρ) at ρ = ρm

We can calculate the first order derivatives by

d

dρ
u<(ρm) ≈

u<(ρm)− u<(ρm − h)

h

d

dρ
u>(ρm) ≈

u>(ρm + h)− u>(ρm)

h

Thus the criterium for a proper eigenfunction will be

f = u<(ρm − h)− u>(ρm + h)

which should be smaller than a fixed number.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

The algorithm could then take the following form

Initialise the problem by choosing minimum and maximum values for the energy,
Emin and Emax, the maximum number of iterations max iter and the desired
numerical precision.

Search then for the roots of the function f (E), where the root(s) is(are) in the
interval E ∈ [Emin,Emax] using e.g., the bisection method.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

do {
i++;
e = (e_min+e_max)/2.; //bisection
if (f(e)*f(e_max) > 0) {

e_max = e; //change search interval
}
else { e_min = e; }

} while ((fabs(f(e) > convergence_test) !! (i <= max_iterations))

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

The use of a root-searching method forms the shooting part of the algorithm. We
have however not yet specified the matching part.

The matching part is given by the function f (e) which receives as argument the
present value of E . This function forms the core of the method and is based on
an integration of Schrödinger’s equation from ρ = 0 and ρ = ∞. If

f = u<(ρm − h)− u>(ρm + h) ≤ test

we have a solution.

The function f (E) receives as input a guess for the energy. In the version implemented
below, we use the standard three-point formula for the second derivative, namely

f ′′0 ≈
fh − 2f0 + f−h

h2
.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

void f(double step, int max_step, double energy, double *w, double *wf)
{

int loop, loop_1,match;
double fac, wwf, norm;

// adding the energy guess to the array containing the potential
for(loop = 0; loop <= max_step; loop ++) {

w[loop] = (w[loop] - energy) * step * step + 2;
}

}

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

// integrating from large r-values
wf[max_step] = 0.0;
wf[max_step - 1] = 0.5 * step * step;

// search for matching point
for(loop = max_step - 2; loop > 0; loop--) {

wf[loop] = wf[loop + 1] * w[loop + 1] - wf[loop + 2];
if(wf[loop] <= wf[loop + 1]) break;

}
match = loop + 1;
wwf = wf[match];

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Boundary Value Problems

// start integrating up to matching point from r =0
wf[0] = 0.0; wf[1] = 0.5 * step * step;
for(loop = 2; loop <= match; loop++) {

wf[loop] = wf[loop -1] * w[loop - 1] - wf[loop - 2];
if(fabs(wf[loop]) > INFINITY) {

for(loop_1 = 0; loop_1 <= loop; loop_1++) {
wf[loop_1] /= INFINITY;

}
}

}
return fabs(wf[match-1]-wf[match+1]);

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 46, 14- 18 November

Partial Differential Equations (PDEs)

Monday: Repetition from last week

Parabolic PDEs: The diffusion equation, implicit and
explicit finite difference schemes

Discussion of project 6

Wednesday:

Discussion of project 6

Hyperbolic and Elliptic PDEs: Laplace’s equation and the
standard wave equation

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 47, 21- 25 November

Partial Differential Equations (PDEs)

Monday: Repetition from last week and discussion of
Project 6

Hyperbolic and Elliptic PDEs: Laplace’s equation and the
standard wave equation

Wednesday:

Examples of physical systems which can be solved with
PDEs

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Partial Differential Equations

General 2+1-dim PDE

A(x , y)
∂2U

∂x2
+ B(x , y)

∂2U

∂x∂y
+ C(x , y)

∂2U

∂y2
= F (x , y ,U,

∂U

∂x
,
∂U

∂y
)

Examples
B = C = 0,

give e.g., 1+1-dim diffusion equation

A
∂2U

∂x2
=
∂U

∂t

and is an example of a parabolic PDE

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Partial Differential Equations

More examples 2+1-dim wave equation

A
∂2U

∂x2
+ C

∂2U

∂y2
=
∂2U

∂t2

Poisson’s (Laplace’s ρ = 0) equation

∇2U(x) = −4πρ(x).

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Heat Diffusion Equation

Diffusion equation
κ

Cρ
∇2T (x, t) =

∂T (x, t)
∂t

κ

Cρ(x, t)
∇2T (x, t) =

∂T (x, t)
∂t

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Explicit Scheme for the Diffusion Equation

In one dimension we have thus the following equation

∇2u(x , t) =
∂u(x , t)

∂t
, (167)

or
uxx = ut , (168)

with initial conditions, i.e., the conditions at t = 0,

u(x , 0) = g(x) 0 ≤ x ≤ L (169)

with L = 1 the length of the x-region of interest. The boundary conditions are

u(0, t) = a(t) t ≥ 0, (170)

and
u(L, t) = b(t) t ≥ 0, (171)

where a(t) and b(t) are two functions which depend on time only, while g(x) depends

only on the position x .

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Explicit Scheme, Forward Euler

ut ≈
ui,j+1 − ui,j

∆t
, (172)

and

uxx ≈
ui+i,j − 2ui,j + ui−1,j

∆x2
. (173)

The one-dimensional diffusion equation can then be rewritten in its discretized version
as

ui,j+1 − ui,j

∆t
=

ui+i,j − 2ui,j + ui−1,j

∆x2
. (174)

Defining α = ∆t/∆x2 results in the explicit scheme

ui,j+1 = αui−1,j + (1− 2α)ui,j + αui+1,j . (175)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Explicit Scheme

Vj+1 = AVj

with

A =

0BB@
1− 2α α 0 0 . . .
α 1− 2α α 0 . . .
.

0 . . . 0 . . . α 1− 2α

1CCA
yielding

Vj+1 = AVj = · · · = Aj V0

The explicit scheme, although being rather simple to implement has a very weak
stability condition given by

∆t/∆x2 ≤ 1/2 (176)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Implicit Scheme

Choose now

ut ≈
u(xi , tj)− u(xi , tj − k)

k

and

uxx ≈
u(xi + h, tj)− 2u(xi , tj) + u(xi − h, tj)

h2

Define α = k/h2. Gives

ui,j−1 = −αui−1,j + (1− 2α)ui,j − αui+1,j

Here ui,j−1 is the only unknown quantity.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Have
AVj = Vj−1

with

A =

0BB@
1 + 2α −α 0 0 . . .
−α 1 + 2α −α 0 . . .
.

0 . . . 0 . . . −α 1 + 2α

1CCA
which gives

Vj = A−1Vj−1 = · · · = A−j V0

Need only to invert a matrix

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Brute Force Implicit Scheme, inefficient algo

! now invert the matrix
CALL matinv(a, ndim, det)
DO i = 1, m

DO l=1, ndim
u(l) = DOT_PRODUCT(a(l,:),v(:))

ENDDO
v = u
t = i*k
DO j=1, ndim

WRITE(6,*) t, j*h, v(j)
ENDDO

ENDDO

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Brief Summary of the Explicit and the Implicit Methods

Explicit is straightforward to code, but avoid doing the matrix vector multiplication
since the matrix is tridiagonal.

ut ≈
u(x , t)− u(x , t −∆t)

∆t
=

u(xi , tj)− u(xi , tj −∆t)

∆t

The implicit method can be applied in a brute force way as well as long as the
element of the matrix are constants.

ut ≈
u(x , t)− u(x , t −∆t)

∆t
=

u(xi , tj)− u(xi , tj −∆t)

∆t

However, it is more efficient to use a linear algebra solver for tridiagonal matrices.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Simple Test

Problem 8>><>>:
uxx = ut

u(x , 0) = sin(πx)
u(0, t) = u(1, t) = 0

u(x , t) = e−π2t sin(πx)

More complicated initial and boundary conditions can be included.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Crank-Nicolson

θ

∆x2

`
ui−1,j − 2ui,j + ui+1,j

´
+

1− θ

∆x2

`
ui+1,j−1 − 2ui,j−1 + ui−1,j−1

´
=

1

∆t

`
ui,j − ui,j−1

´
,

which for θ = 0 yields the forward formula for the first derivative and the explicit
scheme, while θ = 1 yields the backward formula and the implicit scheme. These two
schemes are called the backward and forward Euler schemes, respectively. For
θ = 1/2 we obtain a new scheme after its inventors, Crank and Nicolson.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Crank Nicolson

Using our previous definition of α = ∆t/∆x2 we can rewrite the latter equation as

−αui−1,j + (2 + 2α) ui,j − αui+1,j = αui−1,j−1 + (2− 2α) ui,j−1 + αui+1,j−1,

or in matrix-vector form as“
2̂I + 2αB̂

”
Vj =

“
2̂I − 2αB̂

”
Vj−1,

where the vector Vj is the same as defined in the implicit case while the matrix B̂ is

B̂ =

0BB@
2 −1 0 0 . . .
−1 2 −1 0 . . .
.

0 . . . 0 . . . 2

1CCA

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Tip for the analytic Solution of Project 6

Define a new function
v(x , t) = u(x , t)− x

and expand v(x , t) as a Fourier Sine series

v(x , t) =
X

k

ak (t)sinπkx

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Laplace’s and Poisson’s equations

Laplace’s equation reads
∇2u(x) = uxx + uyy = 0. (177)

with possible boundary conditions u(x , y) = g(x , y) on the border. There is no
time-dependence. Choosing equally many steps in both directions we have a quadratic
or rectangular grid, depending on whether we choose equal steps lengths or not in the
x and the y directions. Here we set ∆x = ∆y = h and obtain a discretized version

uxx ≈
u(x + h, y)− 2u(x , y) + u(x − h, y)

h2
, (178)

and

uyy ≈
u(x , y + h)− 2u(x , y) + u(x , y − h)

h2
, (179)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Laplace’s and Poisson’s equations

uxx ≈
ui+1,j − 2ui,j + ui−1,j

h2
, (180)

and

uyy ≈
ui,j+1 − 2ui,j + ui,j−1

h2
, (181)

which gives when inserted in Laplace’s equation

ui,j =
1

4

ˆ
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

˜
. (182)

This is our final numerical scheme for solving Laplace’s equation. Poisson’s equation
adds only a minor complication to the above equation since in this case we have

uxx + uyy = −ρ(x),

and we need only to add a discretized version of ρ(x) resulting in

ui,j =
1

4

ˆ
ui,j+1 + ui,j−1 + ui+1,j + ui−1,j

˜
+ ρi,j . (183)

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Solution Approach

The way we solve these equations is based on an iterative scheme called the

relaxation method. Its steps are rather simple. We start with an initial guess for u(0)
i,j

where all values are known. To obtain a new solution we solve Eq. (182) or Eq. (183) in

order to obtain a new solution u(1)
i,j . Most likely this solution will not be a solution to

Eq. (182). This solution is in turn used to obtain a new and improved u(2)
i,j . We continue

this process till we obtain a result which satisfies some specific convergence criterion.

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Iterative Scheme

! set up of initial conditions at t = 0 and boundary conditions
......

! iteration algorithm starts here
iterations = 0
DO WHILE ((iterations <= 20) .OR. (diff > 0.00001))

u_temp = u; diff = 0.
DO j = 2, ndim - 1

DO l = 2, ndim -1
u(j,l) = 0.25*(u_temp(j+1,l)+u_temp(j-1,l)+ &

u_temp(j,l+1)+u_temp(j,l-1))
diff = diff + ABS(u_temp(i,j)-u(i,j))

ENDDO
ENDDO
iterations = iterations + 1
diff = diff/(ndim+1)**2

ENDDO
! write out results

DO j = 1, ndim
DO l = 1, ndim

WRITE(6,*) j*h, l*h, u(j,l)
ENDDO

ENDDO
Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Laplace’s Equation, Simple Case

A simple example may help in visualizing this method. We consider a condensator with

parallel plates separated at a distance L resulting in e.g., the voltage differences

u(x , 0) = 100sin(2πx/L) and u(x , 1) = −100sin(2πx/L). These are our boundary

conditions and we ask what is the voltage u between the plates?

Computational Physics I FYS3150/4150

Introduction
C/C++

Style
Numerical Precision
C/C++

Week 48, 28 November - 2 December

End of PDE part, Summary and exam discussion

Monday: Repetition from last week and discussion of
Project 6

End of partial differential equations part, discussion of how
to solve Schrödinger’s equation.

Fast Fourier transforms, Danielson-Lanczos’ algorithm.

Wednesday:

Summary and exam discussions. Project 6 ends this week.

Computational Physics I FYS3150/4150

	Outline
	Introduction to FYS3150/4150
	Presentation
	Format

	Introduction to C/C++ and Numerical Precision
	Style
	Numerical Precision
	C/C++

