Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for each project.

Give a short description of the nature of the problem and the eventual numerical methods
you have used.

Describe the algorithm you have used and/or developed. Here you may find it convenient
to use pseudocoding. In many cases you can describe the algorithm in the program itself.

Include the source code of your program. Comment your program properly.

If possible, try to find analytic solutions, or known limits in order to test your program
when developing the code.

Include your results either in figure form or in a table. Remember to label your results.
All tables and figures should have relevant captions and labels on the axes.

Try to evaluate the reliabilty and numerical stability /precision of your results. If pos-
sible, include a qualitative and/or quantitative discussion of the numerical stability,
eventual loss of precision etc.

Try to give an interpretation of you results in your answers to the problems.

Critique: if possible include your comments and reflections about the exercise, whether
you felt you learnt something, ideas for improvements and other thoughts you've made
when solving the exercise. We wish to keep this course at the interactive level and your
comments can help us improve it.

Try to establish a practice where you log your work at the computerlab. You may
find such a logbook very handy at later stages in your work, especially when you don’t
properly remember what a previous test version of your program did. Here you could
also record the time spent on solving the exercise, various algorithms you may have
tested or other topics which you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or postscript
formats. As programming language we prefer that you choose between C/C-++, Fortran90/95
or Python. Matlab/Maple/Mathematica/IDL can be used but are strongly discouraged. You
can use them to check your results where possible. The following prescription should be
followed when preparing the report:

Use Classfronter to hand in your projects, log in at blyant.uio.no and choose ’fellesrom
fys3150 og fys4150°. Thereafter you will see an icon to the left with "hand in’ or ’innlev-
ering’. Click on that icon and go to the given project. There you can load up the files
within the deadline.

Upload only the report file and the source code file(s) you have developed. The report
file should include all of your discussions and a list of the codes you have developed.
Do not include library files which are available at the course homepage, unless you have
made specific changes to them.



e Comments from us on your projects, approval or not, corrections to be made etc can be
found under your Classfronter domain and are only visible to you and the teachers of
the course.

Finally, we do prefer that you work two and two together. Optimal working groups consist of
2-3 students. You can then hand in a common report.

Project 1, deadline 17 september 12am (midnight)

The aim of this project is to get familiar with various matrix operations, from dynamic memory
allocation to the usage of programs in the library package of the course. For Fortran users
memory handling and most matrix and vector operations are included in the ANSI standard
of Fortran 90/95. For C++ user however, there are three possible options

1. Make your own functions for dynamic memory allocation of a vector and a matrix. Use
then the library package lib.cpp with its header file lib.hpp for obtaining LU-decomposed
matrices, solve linear equations etc.

2. Use the library package lib.cpp with its header file lib.hpp which includes a function
matrix for dynamic memory allocation. This program package includes all the other
functions discussed during the lectures for solving systems of linear equations, obatining
the determinant, getting the inverse etc.

3. Finally, we provide on the web-page of the course a library package which uses Blitz++’s
classes for array handling. You could then, since Blitz+- is installed on all machines at
the lab, use these classes for handling arrays.

Your program, whether it is written in C++ or Fortran 90/95, should include dynamic
memory handling of matrices and vectors. You should also read the matrix from a file and
write your results to a file. Make sure your code includes these options.

The code you will write in exercise (¢) will also be used project 5,with deadline november
26.

(a) Consider the linear system of equations

1171 + a2 +ai3x3 = wy
2171 + a2 + a23x3 = W2
a31x1 + aspxe + azzrz = wWs.

This can be written in matrix form as
Ax =w.

Use the included programs for LU decomposition to solve the system of equations

—x1+x9—4x3= 0
2x1 + 20 = 1
3x1 + 320 + 223 = %

Use first standard Gaussian elimination and compute the result analytically. Compare
thereafter your analytical results with the numerical ones obtained using the LU pro-
grams in the program library.



(b)

In the rest of this project we will solve the one-dimensional Poissson equation with
Dirichlet boundary conditions by rewriting it as a set of linear equations.

To be more explicit we will solve the equation
—u”(x) = f(z), x€(0,1), wu(0)=u(l)=0.

and we define the discretized approximation to u as v; with grid points x; = ¢h in the
interval from z¢ = 0 to x,,+1 = 1. The step length or spacing is defined as h = 1/(n+1).
We have then the boundary conditions vg = v,4+1 = 0. We approximate the second
derivative of u with

 Vig1 F+ Ui—1 — 205
72

=f; fori=1,...,n,

where f; = f(z;). Show that you can rewrite this equation as a linear set of equations
of the form

Av =D,

where A is an n X n tridiagonal matrix which we rewrite as

2 -1 0 0
-1 2 -1 0
A — O -1 2 -1 0 (1)
0 -1 2 -1
0 0 -1 2

and b; = h2f;.

In our case we will assume that f(r) = (3z + x2)e”, and keep the same interval and
boundary conditions. Then the above differential equation has an analytic solution given
by u(z) = x(1 — x)e® (convince yourself that this is correct by inserting the solution in
the Poisson equation). We will compare our numerical solution with this analytic result
in the next exercise.

xT

We can rewrite our matrix A in terms of one-dimensional vectors a, b, ¢ of length 1 : n.
Our linear equation reads

bi 0 .. .. . U1 él
as bg C9 (%) b2
A a3 by c3 _ 2)

Gp—2 bn—l Cpn—1
G, by, Un, b,

A tridiagonal matrix is a special form of banded matrix where all the elements are zero
except for those on and immediately above and below the leading diagonal. The above
tridiagonal system can be written as

avi_1 + bv; + civip1 = by, (3)



for i = 1,2,...,n. The algorithm for solving this set of equations is rather simple and
requires two steps only, a decomposition and forward substitution and finally a backward
substitution.

Your first task is to set up the algorithm for solving this set of linear equations. Find
also the number of operations needed to solve the above equations. Show that they
behave like O(n) with n the dimensionality of the problem. Compare this with standard
Gaussian elimination.

Then you should code the above algorithm and solve the problem for matrices of the
size 10x, 100 x 100 and 1000 x 1000. That means that you choose n = 10, n = 100 and
n = 1000 grid points.

Compare your results (make plots) with the analytic results for the different number of
grid points in the interval z € (0,1). The different number of grid points corresponds to
different step lengths h.

Compute also the maximal relative error in the data set ¢ = 1,...,n,by setting up

)

as function of logio(h) for the function values u; and v;. For each step length extract the
max value of the relative error. Try to increase n to n = 10000 and n = 10°. Comment
your results.

Vi — Ug

€; = logio <

i

This exercise is optional. If you get time, compare your results with those from the LU
decomposition codes for the matrix of size 1000x 1000. Use for example the unix function
time when you run your codes and compare the time usage between LU decomposition
and your tridiagonal solver. Can you run the standard LU decomposition for a matrix
of the size 10° x 10°? Comment your results.



