
Introduction to numerical projects

Here follows a brief recipe and recommendation on how to write a report for each project.

• Give a short description of the nature of the problem and the eventual numerical
methods you have used.

• Describe the algorithm you have used and/or developed. Here you may find it con-
venient to use pseudocoding. In many cases you can describe the algorithm in the
program itself.

• Include the source code of your program. Comment your program properly.

• If possible, try to find analytic solutions, or known limits in order to test your program
when developing the code.

• Include your results either in figure form or in a table. Remember to label your
results. All tables and figures should have relevant captions and labels on the axes.

• Try to evaluate the reliabilty and numerical stability/precision of your results. If pos-
sible, include a qualitative and/or quantitative discussion of the numerical stability,
eventual loss of precision etc.

• Try to give an interpretation of you results in your answers to the problems.

• Critique: if possible include your comments and reflections about the exercise, whether
you felt you learnt something, ideas for improvements and other thoughts you’ve
made when solving the exercise. We wish to keep this course at the interactive level
and your comments can help us improve it.

• Try to establish a practice where you log your work at the computerlab. You may
find such a logbook very handy at later stages in your work, especially when you
don’t properly remember what a previous test version of your program did. Here you
could also record the time spent on solving the exercise, various algorithms you may
have tested or other topics which you feel worthy of mentioning.

Format for electronic delivery of report and programs

The preferred format for the report is a PDF file. You can also use DOC or postscript
formats. As programming language we prefer that you choose between C/C++ and
Fortran90/95. You could also use Java or Python as programming languages. Mat-
lab/Maple/Mathematica/IDL are not allowed as programming languages for the handins,
but you can use them to check your results where possible. The following prescription
should be followed when preparing the report:
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• Use Classfronter to hand in your projects, log in at blyant.uio.no and choose ’fellesrom
fys3150 og fys4150’. Thereafter you will see an icon to the left with ’hand in’ or
’innlevering’. Click on that icon and go to the given project. There you can load up
the files within the deadline.

• Upload only the report file and the source code file(s) you have developed. The
report file should include all of your discussions and a list of the codes you have
developed. Do not include library files which are available at the course homepage,
unless you have made specific changes to them.

• Comments from us on your projects, approval or not, corrections to be made etc can
be found under your Classfronter domain and are only visible to you and the teachers
of the course.

Finally, we do prefer that you work two and two together. Optimal working groups consist
of 2-3 students. You can then hand in a common report.

Project 4, Variational Monte Carlo studies of light

atoms, deadline 12 november 12am (midnight)

For this project you can build upon program programs/chapter11/program1.cpp (or the
f90 version). You will need to parallelize exercises b-e and you should therefore use parts
of project 2.

The aim of this project is to investigate the variational Monte Carlo method applied to
light atoms such as helium and litium. Various trial wave functions are to be tested and
compared. The aim is to find wave functions which reproduce the experimental energies
as best as possible.

Ground state energy of helium

Helium consists of two electrons and a nucleus with charge Z = 2. We are going to use
the Born-Oppenheimer approximation in modelling the system, assuming thereby that we
can neglect nucleonic degrees of freedom. The nucleus, whose extension is on the order of
∼ 10−15 m (roughly six order of magnitude smaller than interatomic distances), is taken
to be a point charge with mass much larger than that of the electrons. Electrostatic forces
constitute then the essential contribution to the potential energy, given in this case by the
attraction experienced by every electron from the nucleus and the repulsion between the
two electrons.

We label r1 the distance from electron 1 to the nucleus and similarly r2 the distance
between electron 2 and the nucleus. The contribution to the potential energy from the
interactions between the electrons and the nucleus is

−
2

r1
−

2

r2
, (1)
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and if we add the electron-electron repulsion with r12 = |r1−r2|, the total potential energy
V (r1, r2) is

V (r1, r2) = −
2

r1
−

2

r2
+

1

r12
, (2)

yielding the total Hamiltonian

Ĥ = −
∇2

1

2
−

∇2

2

2
−

2

r1
−

2

r2
+

1

r12
, (3)

and Schrödinger’s equation reads
Ĥψ = Eψ. (4)

All equations are in so-called atomic units. The distances ri and r12 are dimensionless. To
have energies in electronvolt you need to multiply all results with 2×E0, where E0 = 13.6
eV. The experimental binding energy for helium in atomic units is a.u. is EHe = −2.9037
a.u.. The basic wave functions we will employ in this exercise are

ψT1(r1, r2, r12) = exp (−α(r1 + r2)), (5)

and

ψT2(r1, r2, r12) = exp (−α(r1 + r2)) exp

(
r12

2(1 + βr12)

)
, (6)

with β as a new variational parameter. Your task is to perform a Variational Monte Carlo
calculation using the Metropolis algorithm to compute the integral

〈H〉 =

∫
dRψ∗

T (R)H(R)ψT (R)
∫
dRψ∗

T (R)ψT (R)
, (7)

with the above trial wave functions.

a) Find analytic expressions for the local energy for the above two trial wave functions
and explain shortly how these trial functions satisfy the cusp condition when r1 → 0
or r2 → 0 or r12 → 0.

b) Compute

〈H〉 =

∫
dRΨ∗

T (R)H(R)ΨT (R)
∫
dRΨ∗

T (R)ΨT (R)
, (8)

for the helium atom using a variational Monte Carlo method employing the Metropo-
lis algorithm to sample over different states. You will have to calculate

〈H〉 =
∫
P (R)EL(R)dR, (9)

where EL is the local energy. Here all calculations are performed with the trial wave
function ψT1(r1, r2, r12) only. Study the stability of your calculation as function
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of the number of Monte Carlo samples and compare these results with the exact
variational result

〈H〉 = α2 − 2α
(
Z −

5

16

)
. (10)

Your Monte Carlo moves are determined by

R′ = R + δ × r, (11)

where r is a random number from the uniform distribution and δ a chosen step length.
In solving this exercise you need to devise an algorithm which finds an optimal value
of δ for each variational parameter α, resulting in roughly 50% accepted moves.

Give a physical interpretation of the best value of α. Make a plot of the variance as
a function of the number of Monte Carlo cycles. You should parallelize your code.

c) Use thereafter the optimal value for α as a starting point for computing the ground
state energy of the helium atom using the trial wave functions ψT2(r1, r2, r12). In
this case you need to vary both α and β. The strategy here is to use α from the
previous exercise, [1b)] and then vary β in order to find the lowest energy as function
of β. Thereafter you change α in order to see whether you find an even lower energy
and so forth.

Which one of the wave functions ψT1(r1, r2, r12) and ψT2(r1, r2, r12) would you pre-
fer? Give arguments for your choices.

Excited states of the helium atom and the ground state of the
litium atom

Now we will only use trial wave functions of the form

ψT (r1, r2) = Det (φ1(r1), φ2(r2))
2∏

i<j

exp

(
rij

2(1 + βrij)

)
, (12)

for helium and

ψT (r1, r2, r3) = Det (φ1(r1), φ2(r2), φ3(r3))
3∏

i<j

exp

(
rij

2(1 + βrij)

)
, (13)

for litium where Det is a determinant and the single-particle wave functions are the hy-
drogen wave functions for the 1s and 2s orbitals. Their form within the variational ansatz
is given by

φ1s(ri) = e−αri , (14)

and
φ2s(ri) = (2 − αri) e

−αri/2. (15)
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The variational parameters are still α and β only. Observe that ri =
√
r2
ix + r2

iy + r2
iz . Here

you will need to employ the best optimization result from the previous exercise, that is the
results from exercise [c)]. The experimental binding energy for litium is ELi = −7.4781
a.u. while the two first excited states of helium have energies of −2.1752 a.u. and −2.1460.

d) The first two excited states of the helium atom can be thought of, within a single-
particle picture, as consisting of an electron in the 1s orbital and one in the 2s orbital.
There are two possibilities for the total trial wave function

ψTas(r1, r2) = (φ1s(r1)φ2s(r2) − φ1s(r2)φ2s(r1))
2∏

i<j

exp

(
rij

2(1 + βrij)

)
, (16)

where the subscript as stands for antisymmetric and

ψTs(r1, r2) = (φ1s(r1)φ2s(r2) + φ1s(r2)φ2s(r1))
2∏

i<j

exp

(
rij

2(1 + βrij)

)
, (17)

where s means symmetric. You can think of r1 and r2 as the positions of electrons
1 and 2, respectively. Which wave function do you expect to give the lowest en-
ergy (most bound)? Perform a variational Monte Carlo calculation and see if your
arguments are correct. Compare your results with the experimental values.

e) For litium we assume that a possible trial wave function for the ground state is given
by

ψT (r1, r2, r3) = (φ1s(r1)φ2s(r2) − φ1s(r2)φ2s(r1))φ1s(r3)

×
3∏

i<j

exp

(
rij

2(1 + βrij)

)
. (18)

Compute the ground state energy and compare with experiment. Comment your
results.

5


