Introductory Fortran Programming, Part |l

Gunnar Wollan!

Dept. of Geosciences, University of Oslo!

January 27th, 2006

Wollan Introductory Fortran Programming, Part Il

@ Modules

© A simple module

© Modules and Operator Overloading
O Modules and more modules

e Making programs run faster

@ Exercises part 2

© More about modules

© Exercises part 3

© The promise of Fortran 2003

Wollan Introductory Fortran Programming, Part Il

Modules

List of Topics

@ Modules

Wollan Introductory Fortran Programming, Part Il

Modules
Traditional programming

@ Traditional programming:

Wollan Introductory Fortran Programming, Part Il

Modules
Traditional programming

@ Traditional programming:
s subroutines/procedures/functions
o data structures = variables, arrays
¢ data are shuffled between functions

Wollan Introductory Fortran Programming, Part Il

Modules
Traditional programming

@ Traditional programming:

s subroutines/procedures/functions
o data structures = variables, arrays
o data are shuffled between functions

@ Problems with procedural approach

Wollan Introductory Fortran Programming, Part Il

Modules
Traditional programming

@ Traditional programming:
s subroutines/procedures/functions
o data structures = variables, arrays
¢ data are shuffled between functions

@ Problems with procedural approach
o Numerical codes are usually large, resulting in lots of functions
with lots of large arrays and their dimensions)
@ Too many visible details
@ Little correspondence between mathematical abstraction and
computer code
o Redesign and reimplementation tend to be expensive

Wollan Introductory Fortran Programming, Part Il

Modules
Introduction to modules

@ Modules was introduced in Fortran with the Fortran 90
standard

Wollan Introductory Fortran Programming, Part Il

Modules
Introduction to modules

@ Modules was introduced in Fortran with the Fortran 90
standard

@ A module can be looked upon as some sort of a class in C++

Wollan Introductory Fortran Programming, Part Il

Modules
Introduction to modules

@ Modules was introduced in Fortran with the Fortran 90
standard

@ A module can be looked upon as some sort of a class in C++

@ The module lacks some of the features of the C+-+ class so
until Fortran 2003 is released we cannot use the OOP
approach

Wollan Introductory Fortran Programming, Part Il

Modules
Introduction to modules

@ Modules was introduced in Fortran with the Fortran 90
standard

@ A module can be looked upon as some sort of a class in C++

@ The module lacks some of the features of the C+-+ class so
until Fortran 2003 is released we cannot use the OOP
approach

@ But we can use modules as objects and get something that
approaches the OOP style

Wollan Introductory Fortran Programming, Part Il

Modules
Programming with objects

@ Programming with objects makes it easier to handle large and
complicated code:

Wollan Introductory Fortran Programming, Part Il

Modules
Programming with objects

@ Programming with objects makes it easier to handle large and
complicated code:
@ Well-known in computer science/industry
@ Can group large amounts of data (arrays) as a single variable
@ Can make different implementation look the same for a user
]

Not much explored in numerical computing (until late 1990s)
ot

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ Mathematical problem:

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ Mathematical problem:

@ Matrix-matrix product: C = MB
¢ Matrix-vector product: y = Mx

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ Mathematical problem:

@ Matrix-matrix product: C = MB
¢ Matrix-vector product: y = Mx

@ Points to consider:

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ Mathematical problem:
@ Matrix-matrix product: C = MB
@ Matrix-vector product: y = Mx
@ Points to consider:
o What is a matrix
@ How do we program with matrices?

@ Do standard arrays in any computer language give good
enough support for matrices?

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ What is a matrix?

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ What is a matrix?

@ A well defined mathematical quantity, containing a table of
numbers and a set of legal operations

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ How do we program with matrices?

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ How do we program with matrices?
¢ By utilizing loops or nested loops

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ Do standard arrays in any computer language give good
enough support for matrices?

Wollan Introductory Fortran Programming, Part Il

Modules
Example: programming with matrices

@ Do standard arrays in any computer language give good
enough support for matrices?

o Both yes and no, we usually have to rely on using nested loops
to travers an array in 2 or more dimensions

@ If the compiler is not properly desinged for optimizing loops
the result will be a slow program

o You have to be aware of the programming language's way of
storing the matrice to avoid indexing the array the wrong way)

Wollan Introductory Fortran Programming, Part Il

Modules

A dense matrix in Fortran 77(1)

@ Fortran 77 syntax

c234567
integer p, q, T
real*8 M, B, C
dimension(p,q) M
dimension(q,r) B
dimension(p,r) C
real*8 y, x
dimension(p) y
dimension(q) x

C matrix-matrix product: C = MxB
call prodm(M,B,C,p,q,r)

C matrix-vector product y = M*x
call prodv(M,p,q,x,y)

Wollan Introductory Fortran Programming, Part Il

Modules

A dense matrix in Fortran 77(2)

@ Drawback with this implementation

Wollan Introductory Fortran Programming, Part Il

Modules

A dense matrix in Fortran 77(2)

@ Drawback with this implementation

o Array sizes must be explicitly transferred
@ New routines for different precisions

Wollan Introductory Fortran Programming, Part Il

Modules

Working with a dense matrix in Fortran 95

o Code

DOUBLE PRECISION, DIMENSION(p,q)
DOUBLE PRECISION, DIMENSION(q,r)
DOUBLE PRECISION, DIMENSION(p,r)
DOUBLE PRECISION, DIMENSION(p)
DOUBLE PRECISION, DIMENSION(q)
M(@j,k) = 3.14

C = MATMUL(M,B)

y = MATMUL(M,x)

<M QW=

Wollan Introductory Fortran Programming, Part Il

Modules

Working with a dense matrix in Fortran 95

o Code

DOUBLE PRECISION, DIMENSION(p,q)
DOUBLE PRECISION, DIMENSION(q,r)
DOUBLE PRECISION, DIMENSION(p,r)
DOUBLE PRECISION, DIMENSION(p)
DOUBLE PRECISION, DIMENSION(q)
M(@j,k) = 3.14

C = MATMUL(M,B)

y = MATMUL(M,x)

<M QW=

@ Observe that

Wollan Introductory Fortran Programming, Part Il

Modules

Working with a dense matrix in Fortran 95

o Code

DOUBLE PRECISION, DIMENSION(p,q)
DOUBLE PRECISION, DIMENSION(q,r)
DOUBLE PRECISION, DIMENSION(p,r)
DOUBLE PRECISION, DIMENSION(p)
DOUBLE PRECISION, DIMENSION(q)
M(@j,k) = 3.14

C = MATMUL(M,B)

y = MATMUL(M,x)

<M QW=

@ Observe that

@ We hide information about array sizes
@ The computer code is as compact as the mathematical
notation

Wollan Introductory Fortran Programming, Part Il

Modules
Array declarations in Fortran 95

@ In Fortran 95 an array is in many ways like a C++ class, but
with less functionality

Wollan Introductory Fortran Programming, Part Il

Modules
Array declarations in Fortran 95

@ In Fortran 95 an array is in many ways like a C++ class, but
with less functionality

@ A Fortran 95 array contains information about the array
structure and the length of each dimension

Wollan Introductory Fortran Programming, Part Il

Modules
Array declarations in Fortran 95

@ In Fortran 95 an array is in many ways like a C++ class, but
with less functionality

@ A Fortran 95 array contains information about the array
structure and the length of each dimension

@ As a part of the Fortran 95 language, functions exists to
extract the shape and dimension(s) from arrays

Wollan Introductory Fortran Programming, Part Il

Modules
Array declarations in Fortran 95

@ In Fortran 95 an array is in many ways like a C++ class, but
with less functionality

@ A Fortran 95 array contains information about the array
structure and the length of each dimension

@ As a part of the Fortran 95 language, functions exists to
extract the shape and dimension(s) from arrays

@ This means we no loger have to pass the array sizes as part of
a function call

-

Wollan Introductory Fortran Programming, Part Il

Modules
What is this module, class or object

@ A module is a collection of data structures and operations on
them

Wollan Introductory Fortran Programming, Part Il

Modules
What is this module, class or object

@ A module is a collection of data structures and operations on
them

@ The module is not a new type of variable, but the TYPE
construct is

Wollan Introductory Fortran Programming, Part Il

Modules
What is this module, class or object

@ A module is a collection of data structures and operations on
them

@ The module is not a new type of variable, but the TYPE
construct is

@ A module can use other modules so we can create complex
units which are easy to program with

Wollan Introductory Fortran Programming, Part Il

Modules
Extensions to sparse matrices

@ Matrix for the discretization of —V2u = f

Wollan Introductory Fortran Programming, Part Il

Modules
Extensions to sparse matrices

@ Matrix for the discretization of —V2u = f

@ Only 5n out of n? entries are nonzero

Wollan Introductory Fortran Programming, Part Il

Modules
Extensions to sparse matrices

@ Matrix for the discretization of —V?u = f
@ Only 5n out of n? entries are nonzero

@ Many iterative solution methods for Au = b can operate on
the nonzeroes only

Wollan Introductory Fortran Programming, Part Il

Modules

How to store sparse matrices(1)

@ An equation

a1l 0 0 a1 a 0
0 a2 a3 0 azs
A= 0 432 433 0 0 (1)
as1 O 0 a4 ass
0 a2 0 as5 ass

Wollan Introductory Fortran Programming, Part Il

Modules

How to store sparse matrices(1)

@ An equation

a1l 0 0 a1 a 0
0 a2 a3 0 azs
A= 0 432 433 0 0 (1)
as1 O 0 a4 ass
0 a2 0 as5 ass

@ Working with nonzeroes only is important for efficiency

Wollan Introductory Fortran Programming, Part Il

Modules

How to store sparse matrices(2)

@ The nonzeroes can be stacked in a one-dimensional array

Wollan Introductory Fortran Programming, Part Il

Modules

How to store sparse matrices(2)

@ The nonzeroes can be stacked in a one-dimensional array

@ We need two extra arrays to tell where a column starts and
the row index of a nonzero

A = (al,1,al1,4,a82,2,a2,3,32,5,...)
irow = (1,3,6,8,11, 14) (2)
jeol = (1,4,2,3,5,2,3,1,4,52 45)

Wollan Introductory Fortran Programming, Part Il

Modules

How to store sparse matrices(2)

@ The nonzeroes can be stacked in a one-dimensional array

@ We need two extra arrays to tell where a column starts and
the row index of a nonzero

A = (al,1,al1,4,a82,2,a2,3,32,5,...)
irow = (1,3,6,8,11, 14) (2)
jeol = (1,4,2,3,5,2,3,1,4,52 45)

@ = more complicated data structures and hence more
complicated programs

Wollan Introductory Fortran Programming, Part Il

Modules
Sparse matrices in Fortran 77

@ Code example for y = Mx

integer p, q, nnz
integer irow(p+1), jcol(nnz)
double precision M(mnz), x(q), y(p)

call prodvs(M, p, q, nnz, irow, jcol, x, y)

Wollan Introductory Fortran Programming, Part Il

Modules
Sparse matrices in Fortran 77

@ Code example for y = Mx
integer p, q, nnz
integer irow(p+1), jcol(nnz)
double precision M(mnz), x(q), y(p)

call prodvs(M, p, q, nnz, irow, jcol, x, y)

@ Two major drawbacks:

Wollan Introductory Fortran Programming, Part Il

Modules
Sparse matrices in Fortran 77

@ Code example for y = Mx

integer p, q, nnz
integer irow(p+1), jcol(nnz)
double precision M(mnz), x(q), y(p)

call prodvs(M, p, q, nnz, irow, jcol, x, y)

@ Two major drawbacks:

o Explicit transfer of storage structure (5 args)
@ Different name for two functions that perform the same task

on two different matrix formats)

Wollan Introductory Fortran Programming, Part Il

Modules

Sparse matrix as a Fortran 95 module(1)

@ A module

MODULE mattypes
TYPE sparse
DOUBLE PRECISION, POINTER :: A(:) long vector with

nonzero matrix

! entries
INTEGER, POINTER :: irow(:)! indexing array
INTEGER, POINTER :: jcol(:)! indexing array
INTEGER im, n ! A is logically

! m times n
INTEGER :: nnz ! number of

! nonzeroes

END TYPE sparse
END MODULE mattypes

Wollan Introductory Fortran Programming, Part Il

Modules

Sparse matrix as a Fortran 95 module(2)

@ A module

MODULE mathsparse
USE mathtypes
TYPE (sparse) ,PRIVATE :: hidden_sparse
CONTAINS
SUBROUTINE prod(x, z)
DOUBLE PRECISION, POINTER :: x(:), z(:)

END SUBROUTINE prod
END MODULE mathsparse

Wollan Introductory Fortran Programming, Part Il

Modules

Sparse matrix as a Fortran 95 module(3)

@ What has been gained?

Wollan Introductory Fortran Programming, Part Il

Modules

Sparse matrix as a Fortran 95 module(3)

@ What has been gained?

@ Users cannot see the sparse matrix data structure

Wollan Introductory Fortran Programming, Part Il

Modules

Sparse matrix as a Fortran 95 module(3)

@ What has been gained?
@ Users cannot see the sparse matrix data structure

@ Matrix-vector product syntax remains the same

Wollan Introductory Fortran Programming, Part Il

Modules

Sparse matrix as a Fortran 95 module(3)

@ What has been gained?
@ Users cannot see the sparse matrix data structure
@ Matrix-vector product syntax remains the same

@ The usage of sparse and dense matrix is the same

Wollan Introductory Fortran Programming, Part Il

Modules

Sparse matrix as a Fortran 95 module

(]
(*]
(]
(]
(*]

Wollan Introductory Fortran Programming, Part Il

What has been gained?
Users cannot see the sparse matrix data structure
Matrix-vector product syntax remains the same

The usage of sparse and dense matrix is the same

Easy to switch between the two

Modules
The jungle of matrix formats

@ When solving PDEs by finite element/difference methods
there are numerous advantageous matrix formats:

Wollan Introductory Fortran Programming, Part Il

Modules
The jungle of matrix formats

@ When solving PDEs by finite element/difference methods
there are numerous advantageous matrix formats:
@ dense matrix
banded matrix
tridiagonal matrix
general sparse matrix
structured sparse matrix
diagonal matrix
finite differece stencil as a matrix

¢ € ¢ ¢ e @

Wollan Introductory Fortran Programming, Part Il

Modules
The jungle of matrix formats

@ When solving PDEs by finite element/difference methods
there are numerous advantageous matrix formats:
@ dense matrix
banded matrix
tridiagonal matrix
general sparse matrix
structured sparse matrix
diagonal matrix
finite differece stencil as a matrix

¢ € ¢ ¢ e @

@ The efficiency of numerical algorithms is often strongly
dependend on the matrix storage scheme

Wollan Introductory Fortran Programming, Part Il

Modules
The jungle of matrix formats

@ When solving PDEs by finite element/difference methods
there are numerous advantageous matrix formats:
@ dense matrix
banded matrix
tridiagonal matrix
general sparse matrix
structured sparse matrix
diagonal matrix
finite differece stencil as a matrix

¢ € ¢ ¢ e @

@ The efficiency of numerical algorithms is often strongly
dependend on the matrix storage scheme

@ Goal: hide the details of the storage schemes

Wollan Introductory Fortran Programming, Part Il

Modules
Bad news

@ Programming with modules can be a great thing, but it might
be inefficient

Wollan Introductory Fortran Programming, Part Il

Modules
Bad news

@ Programming with modules can be a great thing, but it might
be inefficient

@ Adjusted picture: When indexing a matrix, one needs to know
its data storage structure because of efficiency

Wollan Introductory Fortran Programming, Part Il

Modules
Bad news

@ Programming with modules can be a great thing, but it might
be inefficient

@ Adjusted picture: When indexing a matrix, one needs to know
its data storage structure because of efficiency

@ Module based numerics: balance between efficiency and the
use of objects

Wollan Introductory Fortran Programming, Part Il

Simple module

List of Topics

© A simple module

Wollan Introductory Fortran Programming, Part Il

Simple module
A simple module example

@ We want to avoid the problems which often occurs when we
need to use global variables

Wollan Introductory Fortran Programming, Part Il

Simple module
A simple module example

@ We want to avoid the problems which often occurs when we
need to use global variables

@ We starts out showing the Fortran 77 code for global variables
with an example of a problem using them

Wollan Introductory Fortran Programming, Part Il

Simple module
A simple module example

@ We want to avoid the problems which often occurs when we
need to use global variables

@ We starts out showing the Fortran 77 code for global variables
with an example of a problem using them

@ Then we show the Fortran 95 module avoiding this particular
problem

Wollan Introductory Fortran Programming, Part Il

Simple module
Modules and common blocks

@ In Fortran 77 we had to use what is called a common block
for global variables

Wollan Introductory Fortran Programming, Part Il

Simple module
Modules and common blocks

@ In Fortran 77 we had to use what is called a common block
for global variables

@ This common block is used to give a name to the part of the
memory where we have global variables

INTEGER i, j

REAL X, ¥

COMMON /ints/ i, j
COMMON /floats/ x, y

Wollan Introductory Fortran Programming, Part Il

Simple module
Modules and common blocks

@ In Fortran 77 we had to use what is called a common block
for global variables

@ This common block is used to give a name to the part of the
memory where we have global variables

INTEGER i, j

REAL X, ¥

COMMON /ints/ i, j
COMMON /floats/ x, y

@ One problem here is that until late nineties the variables in a
common block was position dependent

Wollan Introductory Fortran Programming, Part Il

Simple module

Common blocks

@ An example of an error in the use of a common block

SUBROUTINE t1
REAL x, y
COMMON /floats/ y, x
PRINT *, y

END SUBROUTINE t1

Wollan Introductory Fortran Programming, Part Il

Simple module

Common blocks

@ An example of an error in the use of a common block

SUBROUTINE t1
REAL x, y
COMMON /floats/ y, x
PRINT *, y

END SUBROUTINE t1

@ Here we use the common block floats with the variables x and
y

Wollan Introductory Fortran Programming, Part Il

Simple module

Common blocks

@ An example of an error in the use of a common block

SUBROUTINE t1
REAL x, y
COMMON /floats/ y, x
PRINT *, y

END SUBROUTINE t1

@ Here we use the common block floats with the variables x and
Yy

@ The problem is that we have put y before x in the common
declaration inside the subroutine

Wollan Introductory Fortran Programming, Part Il

Simple module
Common blocks

@ An example of an error in the use of a common block

SUBROUTINE t1
REAL x, y
COMMON /floats/ y, x
PRINT *, y

END SUBROUTINE t1

@ Here we use the common block floats with the variables x and

y
@ The problem is that we have put y before x in the common
declaration inside the subroutine

@ What we are printing out is not the value of y, but that of x

Wollan Introductory Fortran Programming, Part Il

Simple module
Common blocks

@ An example of an error in the use of a common block

SUBROUTINE t1
REAL x, y
COMMON /floats/ y, x
PRINT *, y

END SUBROUTINE t1

@ Here we use the common block floats with the variables x and
y

@ The problem is that we have put y before x in the common
declaration inside the subroutine

@ What we are printing out is not the value of y, but that of x

@ The good news is that as mentioned the new Fortran
compilers use the variable names instead of position in a
common block

Wollan Introductory Fortran Programming, Part Il

Simple module

Use a module for global variables(1)

@ To avoid the previous problem we are using a module to
contain the global variables

Wollan Introductory Fortran Programming, Part Il

Simple module

Use a module for global variables(1)

@ To avoid the previous problem we are using a module to
contain the global variables

@ In a module it is the name of the variable and not the position
that counts

Wollan Introductory Fortran Programming, Part Il

Simple module

Use a module for global variables(1)

@ To avoid the previous problem we are using a module to
contain the global variables

@ In a module it is the name of the variable and not the position
that counts

@ Our global variables in a module:

MODULE global
INTEGER 58 g J
REAL X, ¥
END MODULE global

Wollan Introductory Fortran Programming, Part Il

Simple module

Use a module for global variables(2)

@ Accessing a module and its varaibles

SUBROUTINE t1
USE global
PRINT *, y

END SUBROUTINE t1

Wollan Introductory Fortran Programming, Part Il

Simple module

Use a module for global variables(2)

@ Accessing a module and its varaibles

SUBROUTINE t1
USE global
PRINT *, y

END SUBROUTINE t1

@ Now we are printing the value of variable y and not x as we
did in the previous Fortran 77 example

Wollan Introductory Fortran Programming, Part Il

Simple module

Use a module for global variables(2)

@ Accessing a module and its varaibles

SUBROUTINE t1
USE global
PRINT *, y

END SUBROUTINE t1

@ Now we are printing the value of variable y and not x as we
did in the previous Fortran 77 example

@ This is because we now are using the variable names directly
and not the name of the common block

Wollan Introductory Fortran Programming, Part Il

Operator overloading

List of Topics

© Modules and Operator Overloading

Wollan Introductory Fortran Programming, Part Il

Operator overloading
Doing arithmetic on derived datatypes

@ We have a derived datatype:

TYPE mytype
INTEGER R
REAL, POINTER :: rvector(:)
DOUBLE PRECISION, POINTER :: darray(:,:)
END TYPE mytype

Wollan Introductory Fortran Programming, Part Il

Operator overloading
Doing arithmetic on derived datatypes

@ We have a derived datatype:

TYPE mytype
INTEGER R
REAL, POINTER :: rvector(:)
DOUBLE PRECISION, POINTER :: darray(:,:)
END TYPE mytype

@ To be able to perform arithmetic operations on this derived
datatype by using the same operators as for ordinary integer
and real variables we need to create a module which does the
job

Wollan Introductory Fortran Programming, Part Il

Operator overloading
Doing arithmetic on derived datatypes

@ We have a derived datatype:

TYPE mytype
INTEGER R
REAL, POINTER :: rvector(:)
DOUBLE PRECISION, POINTER :: darray(:,:)
END TYPE mytype

@ To be able to perform arithmetic operations on this derived
datatype by using the same operators as for ordinary integer
and real variables we need to create a module which does the
job

@ We want to overload the operators +, -, *, /, =

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(1)

@ What is operator overloading?

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(1)

@ What is operator overloading?

@ By this we mean that we extends the functionality of the

intrinsic operators +, -, *, /, = to also perform the operations
on other datatypes

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(1)

@ What is operator overloading?

@ By this we mean that we extends the functionality of the

intrinsic operators +, -, *, /, = to also perform the operations
on other datatypes

o How do we do this in Fortran 957

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(2)

@ This is how:

MODULE overload
INTERFACE OPERATOR(+)
TYPE (mytype) FUNCTION add(a,b)
USE typedefs
TYPE (mytype) , INTENT(in) :: a
TYPE (mytype) , INTENT(in) :: b
END FUNCTION add
END INTERFACE
END MODULE overload

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(2)

@ This is how:

MODULE overload
INTERFACE OPERATOR(+)
TYPE (mytype) FUNCTION add(a,b)
USE typedefs
TYPE (mytype) , INTENT(in) :: a
TYPE (mytype) , INTENT(in) :: b
END FUNCTION add
END INTERFACE
END MODULE overload

@ We have now extended the traditional addition functionality
to also incorporate our derived datatype mytype

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(2)

@ This is how:

MODULE overload
INTERFACE OPERATOR(+)
TYPE (mytype) FUNCTION add(a,b)
USE typedefs
TYPE (mytype) , INTENT(in) :: a
TYPE (mytype) , INTENT(in) :: b
END FUNCTION add
END INTERFACE
END MODULE overload

@ We have now extended the traditional addition functionality
to also incorporate our derived datatype mytype

@ We extends the other operators in the same way except for
the equal operator

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(3)

@ What the do we do to extend the equal operator?

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(3)

@ What the do we do to extend the equal operator?

@ Not so very different than from the others

MODULE overload
INTERFACE ASSIGNMENT (=)
SUBROUTINE equals(a,b)
USE typedefs
TYPE (mytype) , INTENT(OUT) :: a
TYPE (mytype) , INTENT(IN) :: b
END SUBROUTINE equals
END INTERFACE
END MODULE overload

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(4)

@ Some explanations of what we have done

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Operator overloading(4)

@ Some explanations of what we have done

@ The keywords INTERFACE OPERATOR signal to the compiler
that we want to extend the default operations of the operator

o In the same way we signal to the compiler we want to extend
the default behaviour of the assignment by using the keyword
it INTERFACE ASSIGNMENT

@ The difference between the assignment and operator
implementation is that the assignment is implemented using a
subroutine while the others usually are implemented using a
function

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Implementation of the multiplication operator(1)

@ The multiplication operator for mytype

FUNCTION multiply(a,b) RESULT(c)
USE typedefs
TYPE(mytype) , INTENT(in) :: a
TYPE(mytype), INTENT(in) :: b
TYPE (mytype) HE]
INTEGER :: rstat
ALLOCATE(c%rvector(5) ,STAT=rstat)
IF(rstat /= 0) THEN
PRINT *, ’Error in allocating x.rvector ’, rstat
END IF

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Implementation of the multiplication operator(1)

@ The multiplication operator for mytype

FUNCTION multiply(a,b) RESULT(c)
USE typedefs
TYPE(mytype) , INTENT(in) :: a
TYPE(mytype), INTENT(in) :: b
TYPE (mytype) HE]
INTEGER :: rstat
ALLOCATE(c%rvector(5) ,STAT=rstat)
IF(rstat /= 0) THEN
PRINT *, ’Error in allocating x.rvector ’, rstat
END IF

@ [t is important to remember that the implementation of the
operators is kept in a separate file

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Implementation of the multiplication operator(2)

@ The multiplication operator for mytype

ALLOCATE (cYdarray(5,5) ,STAT=rstat)
IF(rstat /= 0) THEN
PRINT *, ’Error in allocating x.darray ’, rstat
END IF
chi = aki * bhi
chrvector = ajrvector * bjrvector
chdarray = ajdarray * bjdarray
END FUNCTION multiply

Wollan Introductory Fortran Programming, Part Il

Operator overloading

Implementation of the multiplication operator(2)

@ The multiplication operator for mytype

ALLOCATE (cYdarray(5,5) ,STAT=rstat)
IF(rstat /= 0) THEN
PRINT *, ’Error in allocating x.darray ’, rstat
END IF
chi = aki * bhi
chrvector = ajrvector * bjrvector
chdarray = ajdarray * bjdarray
END FUNCTION multiply

@ [t is important to remember to allocate the memory space for
the result of the multiplication. Unless you do this the
program will crash

Wollan Introductory Fortran Programming, Part Il

Operator overloading

How we implement the assignment operator

@ The assigmnent operator for mytype

SUBROUTINE equals(a,b)
USE typedefs
TYPE(mytype) , INTENT(OUT) :: a
TYPE(mytype) , INTENT(IN) :: b
a%ki = bhi
ajrvector = bjrvector
alidarray = bjdarray

END SUBROUTINE equals

Wollan Introductory Fortran Programming, Part Il

Operator overloading

How we implement the assignment operator

@ The assigmnent operator for mytype

SUBROUTINE equals(a,b)
USE typedefs
TYPE(mytype) , INTENT(OUT) :: a
TYPE(mytype) , INTENT(IN) :: b
a%ki = bhi
ajrvector = bjrvector
alidarray = bjdarray

END SUBROUTINE equals

@ It is important to remember that the implementation of the
assignment is kept in a separate file

Wollan Introductory Fortran Programming, Part Il

Operator overloading

What have we really done in these two examples(1)

@ The multiply function takes two input arguments and returns
the result of the multiplication in a variable of mytype

Wollan Introductory Fortran Programming, Part Il

Operator overloading

What have we really done in these two examples(1)

@ The multiply function takes two input arguments and returns
the result of the multiplication in a variable of mytype

@ To avoid mistakes of changing the value of any of the two
arguments both have the attibute INTENT(IN)

Wollan Introductory Fortran Programming, Part Il

Operator overloading

What have we really done in these two examples(1)

@ The multiply function takes two input arguments and returns
the result of the multiplication in a variable of mytype

@ To avoid mistakes of changing the value of any of the two
arguments both have the attibute INTENT(IN)

@ In C++ we would typically use the keyword const as an
attribute to the argument

Wollan Introductory Fortran Programming, Part Il

Operator overloading

What have we really done in these two examples(1)

@ The multiply function takes two input arguments and returns
the result of the multiplication in a variable of mytype

@ To avoid mistakes of changing the value of any of the two
arguments both have the attibute INTENT(IN)

@ In C++ we would typically use the keyword const as an
attribute to the argument

@ The default attribute for arguments to functions and
subroutines in Fortran is INTENT(INOUT) which allows us to
modify the value of the argument

Wollan Introductory Fortran Programming, Part Il

Operator overloading

What have we really done in these two examples(1)

@ The multiply function takes two input arguments and returns
the result of the multiplication in a variable of mytype

@ To avoid mistakes of changing the value of any of the two
arguments both have the attibute INTENT(IN)

@ In C++ we would typically use the keyword const as an
attribute to the argument

@ The default attribute for arguments to functions and
subroutines in Fortran is INTENT(INOUT) which allows us to
modify the value of the argument

@ Fortran has the nice feature that we can multiply an array
with another provided they have the same shape and size. We
therefore do not need to go through one or more loops to
perform the multiplication

Wollan Introductory Fortran Programming, Part Il

Operator overloading

What have we really done in these two examples(2)

@ The assigment is implemented using a subroutine

Wollan Introductory Fortran Programming, Part Il

Operator overloading

What have we really done in these two examples(2)

@ The assigment is implemented using a subroutine

@ Like in the multiplicaion we use the INTENT(IN) attribute to
the second argument

Wollan Introductory Fortran Programming, Part Il

Operator overloading

What have we really done in these two examples(2)

@ The assigment is implemented using a subroutine
@ Like in the multiplicaion we use the INTENT(IN) attribute to
the second argument

@ To the first argument we use the INTENT(OUT) attribute to
signal that this argument is for the return of a value only

Wollan Introductory Fortran Programming, Part Il

More module

List of Topics

O Modules and more modules

Wollan Introductory Fortran Programming, Part Il

More module
A Fortran 95 “class

@ To attemtp to get some OOP functionality for a Fortran 95
module we will attempt to write a class-like module

Wollan Introductory Fortran Programming, Part Il

More module
A Fortran 95 “class

@ To attemtp to get some OOP functionality for a Fortran 95
module we will attempt to write a class-like module

@ This module is based on a C++ class called MyVector

Wollan Introductory Fortran Programming, Part Il

More module
A Fortran 95 “class

@ To attemtp to get some OOP functionality for a Fortran 95
module we will attempt to write a class-like module
@ This module is based on a C++ class called MyVector

@ We will begin by define a set of datatypes containing vector
definitions for the three standard datatypes double precision,
real and integer

Wollan Introductory Fortran Programming, Part Il

More module
A Fortran 95 “class

@ To attemtp to get some OOP functionality for a Fortran 95
module we will attempt to write a class-like module
@ This module is based on a C++ class called MyVector

@ We will begin by define a set of datatypes containing vector
definitions for the three standard datatypes double precision,
real and integer

@ We keep the various parts of the code in separate files

Wollan Introductory Fortran Programming, Part Il

More module

Vector definitions

@ The mytypes module

MODULE mytypes
TYPE dpvector
DOUBLE PRECISION, POINTER :: v(:)
END TYPE dpvector

TYPE spvector
REAL, POINTER oov(s)
END TYPE spvector

TYPE ivector
INTEGER, POINTER rov(:)
END TYPE ivector
END MODULE mytypes

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(1)

@ We begin by define some overloading of operators

MODULE myvectordefs
INTERFACE myvector
MODULE PROCEDURE myvectord
MODULE PROCEDURE myvectors
MODULE PROCEDURE myvectori
END INTERFACE

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(1)

@ We begin by define some overloading of operators

MODULE myvectordefs
INTERFACE myvector
MODULE PROCEDURE myvectord
MODULE PROCEDURE myvectors
MODULE PROCEDURE myvectori
END INTERFACE

@ We now can use myvector for all three types of vectors
defined in mytypes

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(2)

@ The double precision vector allocation subroutine

CONTAINS
SUBROUTINE myvectord(p,n)
USE mytypes, ONLY: dpvector
IMPLICIT NONE
TYPE(dpvector), POINTER :: p
INTEGER, INTENT(IN) 38 @
INTEGER :: rstat
ALLOCATE(p,STAT=rstat)
IF (rstat /= 0) THEN
PRINT *, ’Error in allocating mytype, ’,&
rstat
NULLIFY(p)
RETURN
END IF

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(3)

@ The double precision vector allocation subroutine cont.

ALLOCATE (p%v(n) ,STAT=rstat)
IF (rstat /= 0) THEN

PRINT *, ’Error in allocating vector, ’,&
rstat
NULLIFY (p)
RETURN
END IF
piv = 0.

END SUBROUTINE myvectord

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(4)

@ Multiplication of two vectors

INTERFACE OPERATOR (*)
SUBROUTINE multiplyd(a,b)
USE mytypes, ONLY: dpvector
TYPE(dpvector), INTENT(IN) :: a, b
TYPE (dpvector), INTENT(OUT) :: c
END FUNCTION multiplyd
END INTERFACE

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(5)

@ Copying one vector to another

INTERFACE ASSIGNMENT (=)
SUBROUTINE equald(a,b)
USE mytypes, ONLY: dpvector
TYPE(dpvector), INTENT(IN) :: b
TYPE (dpvector), INTENT(OUT) :: a
END SUBROUTINE equald
END INTERFACE

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(6)

@ The multiplication of a double precision vector

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(6)

@ The multiplication of a double precision vector

@ The source code in a separate file and separately compiled

SUBROUTINE multiplyd(a,b,c)
USE mytypes, ONLY: dpvector
IMPLICIT NONE
TYPE(dpvector), INTENT(IN) :: a, b
TYPE (dpvector), INTENT(OUT) :: c
IF (ASSOCIATED (c%v)) DEALLOCATE(c%v)
ALLOCATE (c%v (SIZE(a%v)))
chv(:) = akv(:) * biv(:)

END SUBROUTINE multiplyd

Wollan Introductory Fortran Programming, Part Il

More module

The myvector module(7)

@ The copying of a double precision vector

SUBROUTINE equald(a,b)
USE mytypes, ONLY: dpvector
IMPLICIT NONE
TYPE(dpvector), INTENT(OUT) :: a
TYPE(dpvector), INTENT(IN) :: b
aljv(:) = blhv(:)

END SUBROUTINE equald

Wollan Introductory Fortran Programming, Part Il

More module

Testprogram for myvector module(1)

@ To see if this module does what it it meant to do we need to
test it

Wollan Introductory Fortran Programming, Part Il

More module

Testprogram for myvector module(1)

@ To see if this module does what it it meant to do we need to
test it

@ This is a small program testing the module

PROGRAM t2
USE mytypes
USE myvectordefs
TYPE(dpvector), POINTER :: pl, p2, p3
CALL myvector(pl,3)
pllv(:) =1
CALL myvector(p2,3)
p2hv(:) = 6
CALL myvector(p3,3)
p3kv(:) = 3

Wollan Introductory Fortran Programming, Part Il

More module

Testprogram for myvector module(2)

@ The rest of the program

p3 = pl * p2

PRINT *, ’Mul: ’> ,p3%v(:)

p3 = pl / p2

PRINT *, ’Div: ’, p3%v(:)

p3 = pl + p2

PRINT *, ’Add: ’, p3%v(:)

p3 = pl - p2

PRINT *, ’Sub: ’, p3%v(:)

p3 = p2

PRINT *, ’Equ: ’, p3%v(:)
END PROGRAM t2

Wollan Introductory Fortran Programming, Part Il

More module

The result of testing myarray module

@ Running the program gave this result:

bullet.uio.no> t2

Mul: 6.00000000000000 6.00000000000000 6.00000000000000
Div: 0.166666666666667 0.166666666666667 0.166666666666667
Add: 7.00000000000000 7.00000000000000 7.00000000000000
Sub: -5.00000000000000 -5.00000000000000 -5.00000000000000
Equ: 6.00000000000000 6.00000000000000 6.00000000000000
bullet.uio.no>

Wollan Introductory Fortran Programming, Part Il

More module

The result of testing myarray module

@ Running the program gave this result:

bullet.uio.no> t2

Mul: 6.00000000000000 6.00000000000000 6.00000000000000
Div: 0.166666666666667 0.166666666666667 0.166666666666667
Add: 7.00000000000000 7.00000000000000 7.00000000000000
Sub: -5.00000000000000 -5.00000000000000 -5.00000000000000
Equ: 6.00000000000000 6.00000000000000 6.00000000000000
bullet.uio.no>

@ |t seems the program works as expected

Wollan Introductory Fortran Programming, Part Il

© Making programs run faster

Wollan Introductory Fortran Programming, Part Il

Optimising your program

@ Let us start with some questions

Wollan Introductory Fortran Programming, Part Il

Optimising your program

@ Let us start with some questions
@ Why do we optimise our program
@ When do we optimise it
@ What to optimise
@ How to optimise

Wollan Introductory Fortran Programming, Part Il

Optimising your program

@ Let us start with some questions
@ Why do we optimise our program
@ When do we optimise it
@ What to optimise
@ How to optimise

@ Now we shall look at some answers to these questions

Wollan Introductory Fortran Programming, Part Il

Why do we optimise our program

@ Wether we are scientists or students we need our big
computer models to execute as fast as possible to get our
result before the financing runs out

Wollan Introductory Fortran Programming, Part Il

Why do we optimise our program

@ Wether we are scientists or students we need our big

computer models to execute as fast as possible to get our
result before the financing runs out

@ For Ph.D. and Master students this is especially important
since they "live on borrowed time"

Wollan Introductory Fortran Programming, Part Il

When do we optimise

@ Program is very time consuming

Wollan Introductory Fortran Programming, Part Il

When do we optimise

@ Program is very time consuming
@ As mentioned students and researchers both need the results
of their computations as fast as possible
o Long execution time means less time to analyse the results

Wollan Introductory Fortran Programming, Part Il

When do we optimise

@ Program is very time consuming

@ As mentioned students and researchers both need the results
of their computations as fast as possible
o Long execution time means less time to analyse the results

@ Increase the resolution of the model

Wollan Introductory Fortran Programming, Part Il

When do we optimise

@ Program is very time consuming
@ As mentioned students and researchers both need the results
of their computations as fast as possible
o Long execution time means less time to analyse the results
@ Increase the resolution of the model

@ The need to increase the resolution of the model in time
and/or space

Wollan Introductory Fortran Programming, Part Il

When do we optimise

@ Program is very time consuming

@ As mentioned students and researchers both need the results
of their computations as fast as possible
o Long execution time means less time to analyse the results

@ Increase the resolution of the model

@ The need to increase the resolution of the model in time
and/or space

@ The program is running on a regular schedule

Wollan Introductory Fortran Programming, Part Il

When do we optimise

@ Program is very time consuming
@ As mentioned students and researchers both need the results
of their computations as fast as possible
o Long execution time means less time to analyse the results
@ Increase the resolution of the model
@ The need to increase the resolution of the model in time
and/or space
@ The program is running on a regular schedule
@ Think about a large meteorological model for weather forecast

@ This model is run several times a day and is time consuming
ot

Wollan Introductory Fortran Programming, Part Il

What to optimise(1)

@ The development cycle of a program

Wollan Introductory Fortran Programming, Part Il

What to optimise(1)

@ The development cycle of a program
o Use library routines if they do the job for you, it is a waste of
time to invent the wheel over and over again
@ Use the Make utility or other similiar tools to speed up compile
time, it is time consuming to compile parts of a program
already compiled

Wollan Introductory Fortran Programming, Part Il

What to optimise(2)

@ Use the compiler. It has many options helping you find bugs
in your program

Wollan Introductory Fortran Programming, Part Il

What to optimise(2)

@ Use the compiler. It has many options helping you find bugs
in your program
@ CPU cycles, where do they go?

Wollan Introductory Fortran Programming, Part Il

What to optimise(2)

@ Use the compiler. It has many options helping you find bugs
in your program
@ CPU cycles, where do they go?

@ The main CPU consumption in a Fortran program is looping
through arrays

o This is specially important for arrays with two or more
dimensions

Wollan Introductory Fortran Programming, Part Il

What to optimise(3)

@ Memory usage can be a bottleneck

Wollan Introductory Fortran Programming, Part Il

What to optimise(3)

@ Memory usage can be a bottleneck
o Large programs will be slow especially if your computer has
little main memory
@ The organisation of your program also influence memory usage

Wollan Introductory Fortran Programming, Part Il

What to optimise(3)

@ Memory usage can be a bottleneck
o Large programs will be slow especially if your computer has
little main memory
@ The organisation of your program also influence memory usage

e |/0O

Wollan Introductory Fortran Programming, Part Il

What to optimise(3)

@ Memory usage can be a bottleneck
o Large programs will be slow especially if your computer has
little main memory
@ The organisation of your program also influence memory usage

e |/0O
@ Only perform 1/O when neccessary

¢ Avoid debug printout if possible
o Read as large a chunk of data as possible from disk to memory

Wollan Introductory Fortran Programming, Part Il

How to optimise(1)

@ The compiler

Wollan Introductory Fortran Programming, Part Il

How to optimise(1)

@ The compiler
o Know your compiler, it has several options to increase the
speed of your program
@ Use the man-pages to get information about the options
@ The options can be formulated differently for compilers from
two providers

Wollan Introductory Fortran Programming, Part Il

How to optimise(1)

@ The compiler
o Know your compiler, it has several options to increase the
speed of your program
@ Use the man-pages to get information about the options
@ The options can be formulated differently for compilers from
two providers

@ Some important options

Wollan Introductory Fortran Programming, Part Il

How to optimise(1)

@ The compiler
o Know your compiler, it has several options to increase the
speed of your program
@ Use the man-pages to get information about the options
@ The options can be formulated differently for compilers from
two providers

@ Some important options
@ —OIn], tells the compiler to otimise the program using the
optimising level [n]
@ -inline, tells the compiler to include small functions and
subroutines directly into the program instead of calling them.
This avoids shuffling of data to and from functions

Wollan Introductory Fortran Programming, Part Il

Finding the bottlenecks in your program

@ Sometimes our program is performing really slow, but we are
unable to directly see what is the cause of this

Wollan Introductory Fortran Programming, Part Il

Finding the bottlenecks in your program

@ Sometimes our program is performing really slow, but we are
unable to directly see what is the cause of this

@ A couple of useful tools are available to let us study the
behaviour or our program

Wollan Introductory Fortran Programming, Part Il

Finding the bottlenecks in your program

@ Sometimes our program is performing really slow, but we are
unable to directly see what is the cause of this

@ A couple of useful tools are available to let us study the
behaviour or our program

@ The prof utility: This is providing information per function or
subroutine as a total including the call of other functions and
subroutines

Wollan Introductory Fortran Programming, Part Il

Finding the bottlenecks in your program

@ Sometimes our program is performing really slow, but we are
unable to directly see what is the cause of this

@ A couple of useful tools are available to let us study the
behaviour or our program

@ The prof utility: This is providing information per function or
subroutine as a total including the call of other functions and
subroutines

@ The gprof utility: Gives more detailed information on functions
and subroutines

-

Wollan Introductory Fortran Programming, Part Il

Example of the output of the gprof

o Gprof listing

Flat profile:
Each sample counts as 0.01 seconds.

% cumulative self self
time seconds seconds calls s/call
80.90 3.05 3.05 19660800 0.00
17.77 3.72 0.67 196608 0.00

1.33 3.77 0.05 1 0.05

total

s/call
0.00
0.00
3.77

nam
f1
si

MAIN__

Wollan Introductory Fortran Programming, Part Il

List of Topics

@ Exercises part 2

Wollan Introductory Fortran Programming, Part Il

Exercise 7: Getting aquaintanced with modules(1)

@ Make a small program with the following code:

MODULE x
INTEGER, PRIVATE :: i, j
CONTAINS
SUBROUTINE init(ni, nj)
i=mni; j =nj
END
SUBROUTINE myprint ()
PRINT *, ’i=’,i,’ j=’,j
END
END MODULE x

Wollan Introductory Fortran Programming, Part Il

Exercise 7: Getting aquaintanced with modules(1)

@ Make a small program with the following code:

MODULE x
INTEGER, PRIVATE :: i, j
CONTAINS
SUBROUTINE init(ni, nj)
i=mni; j =nj
END
SUBROUTINE myprint ()
PRINT *, ’i=’,i,’ j=’,j
END
END MODULE x

@ plus the main program testing MODULE x
CALL init(3,9); CALL myprint()

Wollan Introductory Fortran Programming, Part Il

Exercise 7: Getting aquaintanced with modules(1)

@ Make a small program with the following code:

MODULE x
INTEGER, PRIVATE :: i, j
CONTAINS
SUBROUTINE init(ni, nj)
i=mni; j =nj
END
SUBROUTINE myprint ()
PRINT *, ’i=’,i,’ j=’,j
END
END MODULE x

@ plus the main program testing MODULE x
CALL init(3,9); CALL myprint()

@ You must fill in all the missing parts in the module and the
main program

Wollan Introductory Fortran Programming, Part Il

Exercise 7: Getting aquaintanced with modules(2)

@ Compile and run and test that the program is working properly

Wollan Introductory Fortran Programming, Part Il

Exercise 7: Getting aquaintanced with modules(2)

@ Compile and run and test that the program is working properly
@ How can you change the MODULE such that the following
code is legal:
i=5;3j=10; CALL myprint()

Wollan Introductory Fortran Programming, Part Il

Exercise 8: Working with including files(1)

o Consider the program from the previous exercise

Wollan Introductory Fortran Programming, Part Il

Exercise 8: Working with including files(1)

o Consider the program from the previous exercise

@ Place the module declaration in a file xmod.f90
MODULE x

CONTAINS

END MODULE x

Wollan Introductory Fortran Programming, Part Il

Exercise 8: Working with including files(2)

@ Place the main program in antother file xmain.f90

PROGRAM xmain
include ¢ ‘xmod.f90’’

END PROGRAM xmain

Wollan Introductory Fortran Programming, Part Il

Exercise 8: Working with including files(3)

@ Compile the program

ifort -static -02 -o xmain xmain.f90

Wollan Introductory Fortran Programming, Part Il

Exercise 8: Working with including files(3)

@ Compile the program

ifort -static -02 -o xmain xmain.f90

@ Explain why we do not have to precompile the xmod.f90 file
and link it to the main program

Wollan Introductory Fortran Programming, Part Il

Exercise 8: Working with including files(3)

@ Compile the program

ifort -static -02 -o xmain xmain.f90

@ Explain why we do not have to precompile the xmod.f90 file
and link it to the main program

@ |s this a good programming style 7

Wollan Introductory Fortran Programming, Part Il

Exercise 8: Working with including files(3)

@ Compile the program

ifort -static -02 -o xmain xmain.f90

@ Explain why we do not have to precompile the xmod.f90 file
and link it to the main program

@ |s this a good programming style 7

@ If you think it is explain why

Wollan Introductory Fortran Programming, Part Il

Exercise 8: Working with including files(3)

Compile the program

ifort -static -02 -o xmain xmain.f90

Explain why we do not have to precompile the xmod.f90 file
and link it to the main program

(]

Is this a good programming style ?

(]

If you think it is explain why

(]

If you think is not explain why

Wollan Introductory Fortran Programming, Part Il

Exercise 9: Implement MODULE myvector

@ Type in the code of the module myvector and add what is
missing to perform the standard operations +,-,/, %=

Wollan Introductory Fortran Programming, Part Il

Exercise 9: Implement MODULE myvector

@ Type in the code of the module myvector and add what is
missing to perform the standard operations +,-,/, %=

@ Collect the declarations of the modules in one file

Wollan Introductory Fortran Programming, Part Il

Exercise 9: Implement MODULE myvector

@ Type in the code of the module myvector and add what is
missing to perform the standard operations +,-,/, %=

@ Collect the declarations of the modules in one file

@ Write the operator overloading functions in one file and the
main program in another file

Wollan Introductory Fortran Programming, Part Il

Exercise 10: DAXPY(1)

@ The mathematical vector operation u < ax + y where a is
scalar and x and y are vectors, is often referred to as a
DAXPY operation because DAXPY is the Fortran subroutine
name for this operation in the standardized BLASLI library

Wollan Introductory Fortran Programming, Part Il

Exercise 10: DAXPY(1)

@ The mathematical vector operation u < ax + y where a is
scalar and x and y are vectors, is often referred to as a
DAXPY operation because DAXPY is the Fortran subroutine
name for this operation in the standardized BLASLI library

@ Make a Fortran 95 subroutine

SUBROUTINE daxpy (u,a,x,y)
TYPE (dpvector) ttu, X, ¥
DOUBLE PRECISION :: a

END SUBROUTINE daxpy

Wollan Introductory Fortran Programming, Part Il

Exercise 10: DAXPY(1)

@ The mathematical vector operation u < ax + y where a is
scalar and x and y are vectors, is often referred to as a
DAXPY operation because DAXPY is the Fortran subroutine
name for this operation in the standardized BLASLI library

@ Make a Fortran 95 subroutine

SUBROUTINE daxpy (u,a,x,y)
TYPE (dpvector) ttu, X, ¥
DOUBLE PRECISION :: a

END SUBROUTINE daxpy

@ The subroutine is performing a loop over the array entries for
computing u

Wollan Introductory Fortran Programming, Part Il

Exercise 10: DAXPY(2)

@ Make a Fortran 95 subroutine

SUBROUTINE daxpy (u,a,x,y)
TYPE (dpvector) ttu, X, ¥
DOUBLE PRECISION :: a

using overloaded operators in the myvector module

Wollan Introductory Fortran Programming, Part Il

Exercise 10: DAXPY(2)

@ Make a Fortran 95 subroutine

SUBROUTINE daxpy (u,a,x,y)
TYPE (dpvector) ttu, X, ¥
DOUBLE PRECISION :: a

using overloaded operators in the myvector module

@ Compare the efficiency of the two subroutines (hint: run 107
daxpy operations with vectors of length 109, e.g., with p = 4
and g =5

Wollan Introductory Fortran Programming, Part Il

Exercise 11: Communicate with C

@ Recall one of our first fortran programs hwl.f90 where we
used a fortran function a2d(argv) to convert a commandline
argument to a double precision number

Wollan Introductory Fortran Programming, Part Il

Exercise 11: Communicate with C

@ Recall one of our first fortran programs hwl.f90 where we
used a fortran function a2d(argv) to convert a commandline
argument to a double precision number

@ Suppose we wanted to use the similiar C function atof(argv)
instead

Wollan Introductory Fortran Programming, Part Il

Exercise 11: Communicate with C

@ Recall one of our first fortran programs hwl.f90 where we
used a fortran function a2d(argv) to convert a commandline
argument to a double precision number

@ Suppose we wanted to use the similiar C function atof(argv)
instead

@ How can we manage to combine these two languages?

Wollan Introductory Fortran Programming, Part Il

Exercise 11: Communicate with C

@ Recall one of our first fortran programs hwl.f90 where we
used a fortran function a2d(argv) to convert a commandline
argument to a double precision number

@ Suppose we wanted to use the similiar C function atof(argv)
instead

@ How can we manage to combine these two languages?

@ Remember Fortran uses the address to variables as arguments
not the variable value

Wollan Introductory Fortran Programming, Part Il

Exercise 11: Communicate with C

@ Recall one of our first fortran programs hwl.f90 where we
used a fortran function a2d(argv) to convert a commandline
argument to a double precision number

@ Suppose we wanted to use the similiar C function atof(argv)
instead

@ How can we manage to combine these two languages?

@ Remember Fortran uses the address to variables as arguments
not the variable value

@ Test the use of the C function atof in a Fortran 95 program

r = atof (argv)

Wollan Introductory Fortran Programming, Part Il

Exercise 11: Communicate with C

@ Hint: Depending on the Fortran compiler add the following
option -assume nounderscore since most Fortran compilers
adds an underscore to every function and subroutine name

Wollan Introductory Fortran Programming, Part Il

Exercise 11: Communicate with C

@ Hint: Depending on the Fortran compiler add the following
option -assume nounderscore since most Fortran compilers
adds an underscore to every function and subroutine name

@ Use the man pages for the compiler to check which option is
correct for the compiler you will be using

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(1)

@ Write a Fortran 95 program

PROGRAM slow
IMPLICIT NONE
DOUBLE PRECISION :: v1(128,64,20)

CALL stepl(vl)
END PROGRAM slow

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(2)

@ Write the subroutine stepl

SUBROUTINE stepl(argl)
IMPLICIT NONE
DOUBLE PRECISION :: argl(:,:,:)

DOk =1, 11; DO j = 1, 12; DO i = 1, 13
argl(i,j,k) = fi(arg(i,j,k))
END DO; END DO; END DO;
END SUBROUTINE stepl

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(2)

@ Write the subroutine stepl

SUBROUTINE stepl(argl)
IMPLICIT NONE
DOUBLE PRECISION :: argl(:,:,:)

DOk =1, 11; DO j = 1, 12; DO i = 1, 13
argl(i,j,k) = fi(arg(i,j,k))
END DO; END DO; END DO;
END SUBROUTINE stepl

@ Get the size of the array using the SIZE(argl, n) function
where the n is the dimension number starting at 1

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottleneck

@ Write the function f1

DOUBLE PRECISION FUNCTION f£1(x)
IMPLICIT NONE
DOUBLE PRECISION :: x
DO i =1, 100
y =y +x %k 3.14
END DO
fl =y
END FUNCTION f1

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(3)

@ Write the function f1

DOUBLE PRECISION FUNCTION f£1(x)
IMPLICIT NONE
DOUBLE PRECISION :: x
DO i =1, 100
y =y +x %k 3.14
END DO
fl =y
END FUNCTION f1

@ Remember to always use IMPLICIT NONE in all your
functions and subroutines

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(4)

@ Compile the program and run it taking the time (i.e. time
prog)

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(4)

@ Compile the program and run it taking the time (i.e. time
prog)

@ Compile the program with the -p option and run the program
again

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(4)

@ Compile the program and run it taking the time (i.e. time
prog)

@ Compile the program with the -p option and run the program
again

@ Now run the program using the gprof utility:
gprof prog > prog.out

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(4)

@ Compile the program and run it taking the time (i.e. time
prog)

@ Compile the program with the -p option and run the program
again

@ Now run the program using the gprof utility:
gprof prog > prog.out

@ Look at the contents of the prog.out file and identify the
bottleneck

Wollan Introductory Fortran Programming, Part Il

Exercise 12: Using tools to identify bottlenecks(4)

@ Compile the program and run it taking the time (i.e. time
prog)

@ Compile the program with the -p option and run the program
again

@ Now run the program using the gprof utility:
gprof prog > prog.out

@ Look at the contents of the prog.out file and identify the
bottleneck

@ Suggest improvements (if there are any) for the program in
order to increase speed

Wollan Introductory Fortran Programming, Part Il

List of Topics

@ More about modules

Wollan Introductory Fortran Programming, Part Il

A vector sorting utility

@ Often we need to sort a vector in ascending or descending
order

Wollan Introductory Fortran Programming, Part Il

A vector sorting utility

@ Often we need to sort a vector in ascending or descending
order

@ One way of sorting this is to use the quicksort algorithm
which is a divide and conquer method

Wollan Introductory Fortran Programming, Part Il

The quicksort algorithm

@ The essence of quicksort is to sort an array by picking some
key value in the array as a pivot element around which to
rearrange the elements in the array

Wollan Introductory Fortran Programming, Part Il

The quicksort algorithm

@ The essence of quicksort is to sort an array by picking some
key value in the array as a pivot element around which to
rearrange the elements in the array

@ The idea is to permute the elements in the array so that for
an index i all elements with key less than the pivot value
appears in the lower part of the array and those with keys
greater or even with the pivot value appears in the upper part
of the array

Wollan Introductory Fortran Programming, Part Il

The quicksort algorithm

@ The essence of quicksort is to sort an array by picking some
key value in the array as a pivot element around which to
rearrange the elements in the array

@ The idea is to permute the elements in the array so that for
an index i all elements with key less than the pivot value
appears in the lower part of the array and those with keys
greater or even with the pivot value appears in the upper part
of the array

@ Then we apply the quicksort recursively on the two parts of
the array

Wollan Introductory Fortran Programming, Part Il

Finding the pivot index(1)

@ Let us sketch a function returning the pivot index
INTEGER FUNCTION findpivot(array, startpoint, endpoint)

DO WHILE(.NOT. found)
IF (i>endpoint)
findpivot = 0
EXIT
END IF
END DO

Wollan Introductory Fortran Programming, Part Il

Finding the pivot index(2)

@ The findpivot function
INTEGER FUNCTION findpivot(array, startpoint, endpoint)

DO WHILE(.NOT. found) !// continued

IF(array(i) > array(startpoint))
findpivot = 1
EXIT

ELSE IF(array(i) < array(startpoint))
findpivot = startpoint
EXIT

ELSE
findpivot = 0
EXIT

END IF

END DO

Wollan Introductory Fortran Programming, Part Il

Partitioning the array(1)

@ After we find the pivot index we need to partition the array
before recursively calling quicksort again with the new array
partitions

INTEGER FUNCTION partition(startpoint, endpoint, &
pivot, array)

DO
tmp = array(left)
array(left) = array(right)
array(right) = tmp
DO WHILE (array(left) < pivot)
left = left + 1
END DO
DO WHILE (array(right) >= pivot)
right = right - 1
END DO
IF (left > right) EXIT
END DO
partition = left

o

Wollan Introductory Fortran Programming, Part Il

The quicksort subroutine

@ Subroutine igsort
RECURSIVE SUBROUTINE igsort(spoint, epoint, array)

pivotindex = findpivot(spoint, epoint, array)
IF (pivotindex /= 0) THEN
pivot = array(pivotindex)
k = partition(spoint, epoint, pivot, array)
CALL igsort(spoint, k-1, array)
CALL igsort(k, epoint, array)
END IF

Wollan Introductory Fortran Programming, Part Il

The linked list(1)

@ Sometimes we need to use a list structure instead of a simple
vector

v

Wollan Introductory Fortran Programming, Part Il

The linked list(1)

@ Sometimes we need to use a list structure instead of a simple
vector

@ To create such a linked list we need to define our own list
datatype

v

Wollan Introductory Fortran Programming, Part Il

The linked list(1)

@ Sometimes we need to use a list structure instead of a simple
vector

@ To create such a linked list we need to define our own list

datatype
@ Such a type can be like this
TYPE 1list
TYPE(1list), POINTER :: prev, next, this
DOUBLE PRECISION 2 vl

END TYPE 1list

v

Wollan Introductory Fortran Programming, Part Il

The linked list(1)

@ Sometimes we need to use a list structure instead of a simple
vector

@ To create such a linked list we need to define our own list

datatype
@ Such a type can be like this
TYPE 1list
TYPE(1list), POINTER :: prev, next, this
DOUBLE PRECISION 2 vl

END TYPE 1list

@ We need to write at least four procedures

v

Wollan Introductory Fortran Programming, Part Il

The linked list(1)

@ Sometimes we need to use a list structure instead of a simple
vector

@ To create such a linked list we need to define our own list

datatype
@ Such a type can be like this
TYPE 1list
TYPE(1list), POINTER :: prev, next, this
DOUBLE PRECISION 2 vl

END TYPE 1list

o W

[¢)

need to write at least four procedures
Create an element

Insert an element

Delete an element

Traverse the list

¢ ¢ ¢ ¢

v

Wollan Introductory Fortran Programming, Part Il

The linked list(1)

@ Sometimes we need to use a list structure instead of a simple
vector

@ To create such a linked list we need to define our own list

datatype
@ Such a type can be like this
TYPE 1list
TYPE(1list), POINTER :: prev, next, this
DOUBLE PRECISION 2 vl

END TYPE 1list

o W

[¢)

need to write at least four procedures
Create an element

Insert an element

Delete an element

Traverse the list

¢ ¢ ¢ ¢

@ In addition we can think of writing a procedure for sorting the
list in ascending or descendong order

Wollan Introductory Fortran Programming, Part Il

The linked list(2)

@ Let us sketch the create_element subroutine

Wollan Introductory Fortran Programming, Part Il

The linked list(2)

@ Let us sketch the create_element subroutine

@ We need to create an element of type llist

SUBROUTINE create_element (element)
TYPE(1list), POINTER, INTENT(out) :: element
ALLOCATE(element,STAT=rstat)
IF(rstat /= 0) THEN
NULLIFY(element)
ELSE
element’vl = 0.
NULLIFY(elementy,prev); NULLIFY(element/next)
END IF
END SUBROUTINE create_element

Wollan Introductory Fortran Programming, Part Il

The linked list(3)

@ We sketch also the insert subroutine

SUBROUTINE insert(p,n,e)
TYPE(1list), POINTER :: p, n, e
e/jprev => p; el/next =>n
njprev => e; pknext => e

Wollan Introductory Fortran Programming, Part Il

The linked list(4)

@ Either in the main program or in a module it is important to
have a set of pointers pointing to the head and tail of the list
and also a pointer pointing to the element currently in use

o

Wollan Introductory Fortran Programming, Part Il

The linked list(4)

@ Either in the main program or in a module it is important to
have a set of pointers pointing to the head and tail of the list
and also a pointer pointing to the element currently in use

@ Such a module can look something like this:

MODULE listhandler
USE listdefs
TYPE list

TYPE(1list), POINTER :: head, tail, current
END TYPE 1list

TYPE(1list), POINTER :: the_list
CONTAINS

SUBROUTINE create_list()

SUBROUTINE create_element (element)

SUBROUTINE insert(p,n,e)

END MODULE listhandler

Wollan Introductory Fortran Programming, Part Il

The linked list(5)

@ The subroutine create_list will the list pointer and initialize the
head, tail and current to NULL pointers

Wollan Introductory Fortran Programming, Part Il

The linked list(5)

@ The subroutine create_list will the list pointer and initialize the
head, tail and current to NULL pointers

@ In addition to these subroutines it can sometimes be useful to
sort the list elements in an ascending or descending order

Wollan Introductory Fortran Programming, Part Il

The linked list(5)

@ The subroutine create_list will the list pointer and initialize the
head, tail and current to NULL pointers

@ In addition to these subroutines it can sometimes be useful to
sort the list elements in an ascending or descending order

@ An adaption of the quicksort algorithm can be used for this
purpose

Wollan Introductory Fortran Programming, Part Il

List of Topics

© Exercises part 3

Wollan Introductory Fortran Programming, Part Il

Exercise 13: The quicksort module

@ Write the rest of the functionality of the quicksort algorithm
and put it in a module

Wollan Introductory Fortran Programming, Part Il

Exercise 13: The quicksort module

@ Write the rest of the functionality of the quicksort algorithm
and put it in a module
@ Test it with the following data:
INTEGER, TARGET, IARRAY :: = (/1,4,3,7,9,6,8,9,3,5/)

Wollan Introductory Fortran Programming, Part Il

Exercise 13: The quicksort module

@ Write the rest of the functionality of the quicksort algorithm
and put it in a module
@ Test it with the following data:
INTEGER, TARGET, IARRAY :: = (/1,4,3,7,9,6,8,9,3,5/)

@ Check that the program works as ind ended

Wollan Introductory Fortran Programming, Part Il

Exercise 14: Linked list

@ Write the functionality missing from the linked list examples

Wollan Introductory Fortran Programming, Part Il

Exercise 14: Linked list

@ Write the functionality missing from the linked list examples

@ Write a main program that creates a list with up to 10
elements

Wollan Introductory Fortran Programming, Part Il

Exercise 14: Linked list

@ Write the functionality missing from the linked list examples

@ Write a main program that creates a list with up to 10
elements

@ Compile and link it and see that it works with traversing,
inserting and deleting elelments

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(1)

@ Studies of bordered layers can often be done in approximately
one dimensional models. A wellknown example of this is the
Ekman layer.

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(1)

@ Studies of bordered layers can often be done in approximately
one dimensional models. A wellknown example of this is the
Ekman layer.

@ The solution presented here is originally written by Jens
Debernard during his Ph.D. studies at the Department of
Geophysics

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(1)

@ Studies of bordered layers can often be done in approximately
one dimensional models. A wellknown example of this is the
Ekman layer.

@ The solution presented here is originally written by Jens
Debernard during his Ph.D. studies at the Department of
Geophysics

@ We select here an oceanographic approach and looks at an
icefloe drifting in an ocean with a speed Vs = ui + vj. Sizes
in italic are vectors and i and j is unit vectors in x- and
y-direction

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(2)

@ The ocean is assumed homogenous and incompressible. We
assumes the speed in the ocean are negligible far from the ice,
more closely in a certain depth z = —H. The turbulent
Reynolds tensions are modelled by a constant Eddy-viscosity
coefficient K. This is of course a strong simplification of the
physics involved, but it is of small consequence for the
principles used here. The advantage is that it makes the
whole problem "cleaner”

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(3)

@ Assumed homogenous horisontal conditions the problem can
be written 52
u
0%v
fu=K— 4
u=Ko—y (4)
with the border conditions u = u;s and v = vjs with z = 0,
alsou=v=0with z=—-H

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(4)

@ When we are going to solve this system of equations it is an
advantage to use complex numbers. Using the complex speed
W = u + iv where i is the imaginary unit. We can then
reform the system of equations to

*PwW f W= 0 (5)
_— | — —
0z2 K
With the border conditions W = Wis = ujs + ivis by z=10
and W =0 with z= —H

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(5)

@ To solve the problem numerically we split the z-direction into
N discrete points such that zz = —H and zy = 0, with grid
distance Az. We also let W, be an approximation to W(z;).
The system of egations above can then be approximated by

f.’
W1 —2W,; + Wj_l—iAZQRWj =0, forj=2...N-1 (6)

with Wi =0 and Wy = Wi,

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(6)

o If welet 6 = Az2%, the system of equations can be written
as AW = D where

[1 0 0 0 7]
-1 2+i0 -1 0o ... 0
0 -1 2+44i -1 0 0

A= 0 0 (7)

0 =i s =il

| 0 0 1

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(7)

@ and the right side is given with
D =d; =[0,0,...,0, Wy]" (8)

This system of equations is tridiagonal but can, with complex
matrix A and vectors D and W, be solved with standard very
efficient algoritms for tridiagonal systems. We only saves the
three diagonals from the matrix A

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(8)

*]
a= [0,-1,-1,...,-1,0] (9)
b= [1,2+i6,,...,2+i6,1] (10)
c= [0,-1,...,-1,0] (11)

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(8)

*]
a= [0,-1,-1,...,-1,0] (9)
b= [1,2+i6,,...,2+i6,1] (10)
c= [0,-1,...,-1,0] (11)

@ Here a,, b, and ¢, now belongs to row number n in the
original matrix

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(9)

@ The standard algorithm for solving this is first an elimination

of all a. 4
/ 1 / 1
== d === 12
and the further c
= 13
Cn bn _ anC,g_l ()
d, — a,d’
dy = = (14)
b, — anc,_4

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(10)

o for i =2,..., N, and then a backwards insertion.
Wy =dy, and (15)
W, =d) — W,i1c! (16)
forn=N-1,N—-2,...,1

Wollan Introductory Fortran Programming, Part Il

A mathematical problem, the Ekman Spiral(11)

@ To finish all up it is only to extract u and v as
uj = Re(W)) (17)

v = Im(W}) (18)

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman Spiral(1)

@ In this exercise you shall program the Ekman Spiral from the
information given in the equations

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman Spiral(1)

@ In this exercise you shall program the Ekman Spiral from the
information given in the equations

@ The program needs some initializing values

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman Spiral(1)

@ In this exercise you shall program the Ekman Spiral from the
information given in the equations

@ The program needs some initializing values
@ The speed in X-direction of the ice flow: uis = 1.0

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman Spiral(1)

@ In this exercise you shall program the Ekman Spiral from the
information given in the equations

@ The program needs some initializing values
@ The speed in X-direction of the ice flow: uis = 1.0
@ The speed in Y-direction of the ice flow: vis = 0.0

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman Spiral(1)

In this exercise you shall program the Ekman Spiral from the
information given in the equations

The program needs some initializing values
The speed in X-direction of the ice flow: wuis = 1.0
The speed in Y-direction of the ice flow: vis = 0.0

e © ¢ ¢

A calculation constant: p = 1.0E — 3

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman Spiral(1)

In this exercise you shall program the Ekman Spiral from the
information given in the equations

The program needs some initializing values

The speed in X-direction of the ice flow: wuis = 1.0
The speed in Y-direction of the ice flow: vis = 0.0
A calculation constant: p = 1.0E — 3

A start value: /= —30

e © ¢ ¢ ¢

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman Spiral(1)

In this exercise you shall program the Ekman Spiral from the
information given in the equations

The program needs some initializing values

The speed in X-direction of the ice flow: wuis = 1.0
The speed in Y-direction of the ice flow: vis = 0.0
A calculation constant: p = 1.0E — 3

A start value: /= —30

e ¢ ¢ ¢ ¢ ¢

The array length: n =101

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman spiral(2)

@ In addition we need a subroutine to initalize the startvalues of
the complex array z

Wollan Introductory Fortran Programming, Part Il

Exercise 15: Program the Ekman spiral(2)

@ In addition we need a subroutine to initalize the startvalues of

the complex array z

@ The linspace subroutine:

SUBROUTINE linspace(z,1,k)

COMPLEX iz (:)
INTEGER :: 1, k
INTEGER ::n, i, d

n = SIZE(z); d = (k-1)/n
z(1) = REAL(1)
DO i=2,n
z(i) = z(i-1) + d
END DO

END SUBROUTINE linspace

Wollan Introductory Fortran Programming, Part Il

© The promise of Fortran 2003

Wollan Introductory Fortran Programming, Part Il

Extensions to the module(1)

@ We shall look at a small example taken from the book Fortran
95/2003 explained by Michael Metcalf, John Reid and
Malcolm Cohen

Wollan Introductory Fortran Programming, Part Il

Extensions to the module(1)

@ We shall look at a small example taken from the book Fortran
95/2003 explained by Michael Metcalf, John Reid and

Malcolm Cohen

@ The points module:

MODULE points

TYPE :: point
REAL :: x, y

END TYPE point

INTERFACE
REAL MODULE FUNCTION point_dist(a,b)

TYPE(point), INTENT(IN) :: a, b

END FUNCTION point_dist

END INTERFACE END MODULE points

Wollan Introductory Fortran Programming, Part Il

Extensions to the module(2)

@ The submodule points_a

SUBMODULE (points) points_a
CONTAINS REAL MODULE FUNCTION point_dist(a,b)
TYPE(point), INTENT(IN) :: a, b
point_dist = &
SQRT ((a%x-b%x) **2+ (aky-b%hy) **2)
END FUNCTION point_dist
END SUBMODULE points_a

Wollan Introductory Fortran Programming, Part Il

Extensions to the type(1)

@ We shall look at a small example taken from the book Fortran
95/2003 explained by Michael Metcalf, John Reid and
Malcolm Cohen

Wollan Introductory Fortran Programming, Part Il

Extensions to the type(1)

@ We shall look at a small example taken from the book Fortran
95/2003 explained by Michael Metcalf, John Reid and
Malcolm Cohen

@ The matrix type

TYPE matrix(real_kind,n,m)
INTEGER, KIND :: real_kind
INTEGER, LEN :: n,m
REAL(real_kind) :: value(n,m)

END TYPE matrix

Wollan Introductory Fortran Programming, Part Il

Extensions to the type(2)

@ The labelled matrix

TYPE, EXTENDS(matrix) :: labl_matrix(max_lbl_len)
INTEGER, LEN :: max_lbl_len
CHARACTER (max_label_length) :: label = ’’
END TYPE labelled_matrix
TYPE(labelled_matrix(kind(0.0),10,20,200)) :: x

Wollan Introductory Fortran Programming, Part Il

	Modules
	A simple module
	Modules and Operator Overloading
	Modules and more modules
	Making programs run faster
	Exercises part 2
	More about modules
	Exercises part 3
	The promise of Fortran 2003

