i I
i 9 i J =] ]
- = t
- ! | 3 .
3 {
{ - =

B | 2
¢ | i

' '.i " ’ﬁ‘é:@eg_ |

UIO £ University of Oslo

FYS3240- 4240
Data acquisition & control

Data fusion & estimation

Spring 2019 — Lecture #12

Reading: Articles by Maybeck and Welch & Bishop

Bekkeng 28.12.2018



UiO ¢ University of Oslo

Readings

An Introduction to the Kalman Filter

Chapter 1, "Introduc tion" from STOCHASTIC MODELS, ESTIMATION, AND CONTROL,
Volume 1, by Peter S. Maybeck, copyright © 1979 by Academic Press, reproduced by
permission of the publisher. All rights of reproduction in any form reserved.

by
Greg Welch!

and
Gary Bishop

2

Stochastic models,
" N TR 95-041 .
estimation, University of North Carolina at Chapel Hil
and control

Chapel Hill, NC 27599-3175

VOLUME 1
Abstract
In 1960, R.E. Kalman published his famous paper describing a recursive solution
to the discrete-data linear i’ ~ problem. Since that time, due in large part to ad-
vances in digital computir Q “an filter has been the subject of extensive re-
search and application, par. . area of autonomous or assisted
PETER S. MAYBECK avigation, T
DEPARTMENT OF ELECTRICAL ENGINEERING /7 7
AIR FORCE INSTITUTE OF TECHNOLOGY The Kalman filter is a set of mathematica. a “t provides an efficient com-
WRIGHT-PATTERSON AIR FORCE BASE putational (recursive) solution of the least-sq. /70, The filter is very pow-
OHIO erful in several aspects: it supports estimations o, A, and even future
states, and it can do so even when the precise nature o. nodeled system is un-
known.

The purpose of this paper is to provide a practical introduction to the discrete Kal-
man filter. This introduction includes a deseription and some discussion of the basic
discrete Kalman filter, a derivation, description and some discussion of the extend-
ed Kalman filter, and a relatively simple (tangible) example with real numbers &
results.
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Digital filter examples — for comparison

« Moving average filter: y[n] = %(x[n] +x[n—1]+x[n-2])

« 1. order low pass filter: y[n] = (1-a)+y[n-1] + ax[n]
— E.g.witha=0.2

« Note: moving average and low pass filtering will result in a
delay (lag) in the output!

Note: x[n] is the measurement at time n
y[n] is the filter output at time n
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Data fusion in multi-sensor systems

Time varying
Computer

> States

Data processing ' \F}‘gﬁ;ﬂ,‘i;‘

Sensor 2 algorithm « Acceleration
« Attitude/orientation

\ 4

Sensor 1

= Estimator /Constants

Sensorn > Parameters
« Sensor errors, such as

bias/offset

Can be implemented in real-time on an embedded system,
or as part of post-processing of sensor data on a PC
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GNC: Unmanned Aircraft System (UAS)

GNC : Guidance, Navigation and Control
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JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 31, NUMBER 2 (2012)
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Guidance, Navigation and Control

Kalman Filter Optimal Control Servomechanism
Theory Theory Theory
(1960s) (1960s) (1930s—1950s)
Target Target state Acceleration Actuation
direction estimates commands commands
1 1 1 1
Target E E E E
motion Target y .| Guidance y .| Guidance Y o : vy .| Airframe/
g sensors i filter I law ] Autopilot 1 propulsion
A A A
Inertial
navigation
Vehicle
motion

Figure 1. The traditional guidance, navigation, and control topology for a guided missile comprises guidance filter, guidance law,
autopilot, and inertial navigation components. Each component may be synthesized by using a variety of techniques, the most
popular of which are indicated here in blue text.

Figure from Palumbo, Johns Hopkins APL Technical Digest
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Two-sensor data fusion example

 Both sensors take a measurement z of a constant but unknown
parameter x, in the presence of noise v with standard deviation o

e Z;,=X+v;, and z,=Xx+V,

Question: How to combine the two measurements to produce an optimal
estimate of X of the unknown parameter x?

Answer:

e X=kiz1+ (1 —k{)z the estimate is a linear combination of the measurements
1Z1 1)Z7

2 2
o o
2 1
Z1 + ( ) Z
(012+022) 1 o2+0,2) 72

« Check: What happens if 6, = 0,2, or if o, or o, is equal to zero?

e X
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Two-sensor data fusion example |l

- We assume that the measurement z, taken at time t, was taken a very
short time after measurement z, taken at time t;, so that “nothing has
changed”

« Attime t, our best estimate of x is that X(t,) = z;

e Attime t, our best estimate of x is:

2 2
26 = (i )+ (-3 )2
g% + 0,2 g% + 7,2

« We can rewrite this equations as:

=)

X(t,) = [Ui/((}gl + 0;;’2)]z1 + [-::vgl/(ogI +02)]z,

=z, + [ogl/(crg] +02)][z,- 2]

where

«%(fz) = -i'(fl) + K(fz)[zz _-i'(ﬁ)]

K(1,) = 03]/(031 +02)

Form used in the
Kalman filter!
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Estimation

* In dynamic systems (systems which vary with time) the variables
are called states.

« Parameters are variables that do not vary with time.

« Sometimes the states/parameters of a system are not or cannot be
measured directly.

« Any measurements are corrupted by noise and other sensor errors.

« In addition to finding and estimate of the unknown parameters we
also want to estimate the uncertainty in our estimate.
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Estimator

« An estimator is a data processing algorithm.

« Often a need to combine measurements from different
sensors with different data sample rates and accuracies.

* An optimal estimator combines all the available
iInformation (about the system and sensors).

« The estimator is optimal when it minimizes the estimation
error in a well-defined statistical sense, based on a
criterion of optimality.
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Filtering In Estimation

* |In estimation the term filtering refers to estimating states
(and parameters) describing the system at the current time,
based on all past measurements.

* So, filtering in estimation theory includes much more than just
filtering out noise, such as a low pass filter.
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Standard deviation
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Multi-sensor data fusion

« Gives reduced uncertainty!
» Makes the system more robust!

1o for sensor fusion

lo for sensor B
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System of linear equations |

* A general system of m linear equations with n unknowns x; can

be written as:
(11T + Qo + -+ ATy = by

(p1 X1 + Qoo + -+ AopTy = by

lm1 + (L2 +- AmnLn = E:"m.

« This can be written as a matrix equation of the form:
Ax=Db

1y a1z - fp Ty by
where 1 — tpy  dgp -+ fgp T2 by
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System of linear equations |l

« |f the number of measurements (number of equations) is equal
to the number of unknowns x; (m = n), the unknowns can be
found from the inverse solution:

x =A'b (In Matlab: x = A\b, or x = inv(A)*b)

« In the more common case, there are more measurements
(equations) than unknown (m > n). This is called an over
determined systems. Then, a Least squares method can be
used to estimate the unknown parameters.
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Kalman filter (KF) |

* One of the most widely used estimation algorithms.

« The Kalman filter is used for random parameters which can be time

varying.

* Inthe 1960s, the Kalman filter was applied to navigation for the Apollo
Project, which required estimates of the trajectories of manned

spacecraft going to the Moon and back.

« Later the Kalman filter has been applied for all kinds of navigation and

tracking applications.
« The Kalman filter is a recursive estimator

« The Kalman filter is the optimal minimum mean square error

(MMSE) estimator for linear, Gaussian systems.

«  MMSE one possible (and very often used) optimization criteria.
« “Gives a best fit (to observed measurements) in a statistical sense”.

/
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Notation
X :(column) vector of unknowns
z : measurement (column) vector
H : measurement matrix
W : process noise vector
vV : measurement noise vector

~ TR O R

: Measurement covariance (uncertainty) matrix

: Process covariance (uncertainty) matrix

: Estimate (solution)

: Covariance (uncertainty) matrix of the estimate
. discrete time point / sample number
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Kalman filter (KF) I

Two sorts of information are utilized:
— Measurements z, from sensors.

— Mathematical models of the (dynamic) system

 describing how the different states depend on each
other, and how the measurements depend on the states.

deterministic input

Process equation: X, = Ax;,_+Bu, _+w, 4

Measurement equation: 2 = HX, + V.

where the random variables w and v represent the
process and measurement noise (respectively)

p(w)~N(0, Q)
p(v)~N(0,R)
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KF: a predict-correct algorithm

S

Time Update Measurement Update
(“Predict™) (*Correct™)

N

Figure 1-1. The ongoing discrete Kalman filter cycle. The time update
projects the current state estimate ahead in time. The measurement update
adjusts the projected estimate by an actual measurement at that time.
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Kalman filter equations

X, = AX,_+Bu,_,
— Time update (prediction)

P, = AP, AT+ Q

—

K, = P,HT(HP,HT +R)"

Measurement update
.)Ck — *xk+Kk(zk_ka) L

P}( — (I_KFCH)P:R'
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The operation of the Kalman filter

Measurement Update (“Correct”)

Time Update (‘“Predict™)

(1) Compute the Kalman gain

‘O] S1d d B ) -1
(D) mect the 5t'1te ahead Kk — PkHT(HPkHT + R)

X, = AX,_ | +Bu;,
(2) Update estimate with measurement z;

(2) Project the error covariance ahead X P = :)E‘_;\_ + K r ( Zp — H ’){k)
P = AP I IAT + Q (3) Update the error covariance

Initial estimates for 1, _; and P,

The process noise covariance Q and the measurement noise covariance R
must be set/tuned correctly!
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Example:
Estimating a random constant with KF
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Models

* Voltage measurements with a 0.1 V RMS white noise
* Process model.

X, = Ax, _+Bu, +w,
— Ik_l + Hf’k
A = | (identity matrix)
 Measurement model: :> H=|
B=0

zk — HJC;\, + 1”}(

— Ik+ Vk
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Filter equations

Our time update equations are

~

X = Xp_1s
P.=P,_+0.
and our measurement update equations are
K, = P,(P,+R)"
P, ,
P, +R

Yy = X+ Ki(z, - %),

Pk - (1—K;‘_)P}(
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Initial conditions

Presuming a very small process variance, we let Q = 1e —5. (We could certainly let Q = O but
assuming a small but non-zero value gives us more flexibility in “tuning” the filter as we will
demonstrate below.) Let’s assume that from experience we know that the true value of the random
constant has a standard normal probability distribution, so we will “seed” our filter with the guess
that the constant is 0. In other words, before starting we let X, | = 0.

Similarly we need to choose an initial value for P, _, callit P, . If we were absolutely certain that
our Initial state estimate X, = 0 was correct, we would let P, = 0. However given the
uncertainty in our initial estimate X, choosing P, = 0 would cause the filter to initially and
always believe X, = 0. As it turns out, the alternative choice is not critical. We could choose
almost any P, = 0 and the filter would eventually converge. We’ll start our filter with P, = 1.
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Simulation results with correct R

+
-0.2
o -0.3
Th}
S
2
-0.4
-0.5
Iteration
Figure 3-1. The first simulation:R = (0.1)2 = 0.01 . The true value of the
random constant x = —0.37727 is given by the solid line, the noisy mea-

surements by the cross marks, and the filter estimate by the remaining curve.
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(Q and) R tuning examples

+
-0.2
D] —0 . 3
ch
ﬁ
- -0.4
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, g , .
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0.2
3. Second simulation: R = 1. The filter 1s slower to respond to
-0.

Figure 3-
the measmements, resulting in reduced estimate variance
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Figure 3-4. Third simulation: R = 0.0001 . The filter responds to measure-
ments quickly, increasing the estimate variance
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Estimation in nonlinear systems

 Based on linearization (taylor series expanion) of the non-linear
equations - Extended Kalman Filter (EKF)

 Requires an initial estimate of the parameters close to the true
parameter values, in order to ensure that the data processing
algorithm converges to the true solution

« This makes non-linear (in the unknown parameters/states) problems
much more complicated!

* Most real-world problems are non-linear!
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Example: GPS position calculation

- The measured pseudorange P* from a satellite k can be expressed as
(since we can assume no clock error in the satellite):

Pk = J(Xk —x)24+ (Yk —y)24+ (Zk —2)24+ d+v= pk + d+v
e ¢t =dis the position error due to receiver clock error, (XX, Yk ZX) is the

known position of satellite k, (x,y,c) is the true receiver position, and v is
zero mean Gaussian white noise with variance g2

 This is a nonlinear problem on the form: zx = hg(Xg) + v
where

h(x) = (X* — x)%2+ (Y% — y)24+(ZK — 2)2+ d

« X =[xV, z,d]" are the unknown parameters to be estimated.

‘‘‘‘‘‘‘‘‘
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Alternatives to the Kalman filter

NOT THE OPTIMAL SOLUTION, BUT EASIER TO IMPLEMENT
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Alpha filter — a first-order estimator

« |If you have a measurement z,, you can apply a first order filter:

5C\k = (1 — C()?Ek + Az

e X, Is the updated (from measurements) estimate at time k
e X, IS the predicted (time propagated) estimate at time k, from a model:

X = f(Xk—-1)
— Data fusion example: rate gyro measurement used for predicting a rotation angle
and an accelerometer used as an inclinometer to measure the absolute angle.

e « Is a scalar gain between 0 and 1 (typically constant)
« |f no measurements z; are available, a is set to O = only prediction

« This approach will filter out noise, but a good a« must be found from
“trial and error” (possibly with some “guidelines”) W

« Not as good as a Kalman filter!
— Not an optimal solution! g
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Complimentary filter for data fusion

« Another simpler alternative to the Kalman filter
— Not an optimal solution for a properly modelled random process.

— Can be a good solution if the signals are not well-modelled, and/or
the signal-to-noise ratio in the measurements are high.

« The idea behind the complementary filter is to take slow
moving signals and fast moving signals and combine
them.

— Thefilter is based on an analysis in the frequency domain.

« The complementary filter fuses the sensorl and sensor2 data
by passing the former through a 1s-order low pass and the
latter through a 15t-order high pass filter and adding the outputs.

« Possibly easy to implement on a embedded processor.
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Complimentary filter architectures

« Assume two sensors that take a measurement z of a constant but
unknown parameter X, in the presence of noise v.

e Z;,=X+v, and z,=Xx+V,

« Assume that the noise in z, is mostly high frequency, and the noise in
z, iIs mostly low frequency.

 Need to come up with a mathematical equation to combine the data,
e.g 0, =a(0,_, +w,At) + (1 —a)a, Where agood value of a need to
be determined.

z,—> HP

Video YouTube



https://www.youtube.com/watch?v=6iSl4WL1PkI

