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Readings  



Digital filter examples – for comparison 

• Moving average filter: 

 

 

• 1. order low pass filter:  y[n] = (1-a)*y[n-1] + a*x[n] 

– E.g. with a = 0.2 

 

 

• Note: moving average and low pass filtering will result in a 

delay (lag) in the output! 

 

 

 

 

 

Note: x[n] is the measurement at time n 

          y[n] is the filter output at time n 



Data fusion in multi-sensor systems 

Data processing  

algorithm 

 

= Estimator 

 

Computer 
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States 
• Position 

• Velocity 

• Acceleration 

• Attitude/orientation 

Parameters 
• Sensor errors, such as 

bias/offset 

Can be implemented in real-time on an embedded system, 

or as part of post-processing of sensor data on a PC 

Constants 

Time varying 



 

 GNC: Unmanned Aircraft System (UAS)  

GNC : Guidance, Navigation and Control 

Estimated states 

Control law  Data  

fusion  



Guidance, Navigation and Control  

Figure from Palumbo, Johns Hopkins APL Technical Digest 



Two-sensor data fusion example 

• Both sensors take a measurement z of a constant but unknown 

parameter x, in the presence of noise v with standard deviation σ 

• z1 = x + v1     and   z2 = x + v2 

 

Question: How to combine the two measurements to produce an optimal 

estimate of 𝑥  of the unknown parameter x? 

 

Answer: 

 

• 𝑥 = 𝑘1𝑧1 + 1 − 𝑘1 𝑧2    (the estimate is a linear combination of the measurements) 
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• Check: What happens if 𝜎1
2 = 𝜎2

2, or if 𝜎1 or 𝜎2 is equal to zero? 

 

 

 

 

 

 

 



Two-sensor data fusion example II 

• We assume that the measurement z2 taken at time t2 was taken a very 

short time after measurement z1 taken at time t1, so that “nothing has 

changed” 

• At time t1 our best estimate of x is that 𝑥 (𝑡1) = 𝑧1 

 

• At time t2 our best estimate of x is: 

𝑥 (𝑡2) =
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• We can rewrite this equations as: 

 

 

 

 

 

 

 

Form used in the 

Kalman filter! 



Estimation  

 

• In dynamic systems (systems which vary with time) the variables 

are called states.  

 

• Parameters are variables that do not vary with time. 

 

• Sometimes the states/parameters of a system are not or cannot be 

measured directly. 

 

• Any measurements are corrupted by noise and other sensor errors. 

 

• In addition to finding and estimate of the unknown parameters we 

also want to estimate the uncertainty in our estimate.  

 

 



Estimator 
 

• An estimator is a data processing algorithm. 

 

• Often a need to combine measurements from different 

sensors with different data sample rates and accuracies.  

 

• An optimal estimator combines all the available 

information (about the system and sensors). 

 

• The estimator is optimal when it minimizes the estimation 

error in a well-defined statistical sense, based on a 

criterion of optimality.  

 



Filtering in Estimation 

• In estimation the term filtering refers to estimating states 

(and parameters) describing the system at the current time, 

based on all past measurements.  

 

• So, filtering in estimation theory includes much more than just 

filtering out noise, such as a low pass filter. 

 



Standard deviation 

σ = 

The standard deviation is 

the amount of variation 

from the mean 



Multi-sensor data fusion 

• Gives reduced uncertainty! 

• Makes the system more robust! 

1 for sensor B 

1 for sensor A 

1 for sensor fusion 



System of linear equations I 

• A general system of m linear equations with n unknowns xi can 

be written as: 

 

 

 

 

• This can be written as a matrix equation of the form: 

 

 

     where 

 



System of linear equations II 

• If the number of measurements (number of equations) is equal 

to the number of unknowns xi (m = n), the unknowns can be 

found from the inverse solution: 

x = A-1b    (In Matlab: x = A\b,  or x = inv(A)*b) 

 

• In the more common case, there are more measurements 

(equations) than unknown (m > n). This is called an over 

determined systems. Then, a Least squares method can be 

used to estimate the unknown parameters. 



Kalman filter (KF) I 

• One of the most widely used estimation algorithms. 

• The Kalman filter is used for random parameters which can be time 

varying. 

• In the 1960s, the Kalman filter was applied to navigation for the Apollo 

Project, which required estimates of the trajectories of manned 

spacecraft going to the Moon and back.  

• Later the Kalman filter has been applied for all kinds of navigation and 

tracking applications. 

• The Kalman filter is a recursive estimator 

• The Kalman filter is the optimal minimum mean square error 

(MMSE) estimator for linear, Gaussian systems. 

• MMSE one possible (and very often used) optimization criteria.  

• “Gives a best fit (to observed measurements) in a statistical sense”. 

 



Notation  

x  : (column) vector of unknowns 

z  : measurement  (column) vector 

H : measurement matrix 

w : process noise vector 

v  : measurement noise vector 

 

R : Measurement covariance (uncertainty) matrix 

Q : Process covariance (uncertainty) matrix  

    : Estimate (solution) 

P :  Covariance (uncertainty) matrix of the estimate 

k :  discrete time point / sample number 

  
 

 



Kalman filter (KF) II 

• Two sorts of information are utilized: 

– Measurements zk from sensors. 

– Mathematical models of the (dynamic) system  

• describing how the different states depend on each 

other, and how the measurements depend on the states. 

 

 

 

 

where the random variables w and v represent the 

process and measurement noise (respectively) 
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Measurement equation: 

Process equation: 

deterministic input 



KF: a predict-correct algorithm  



Kalman filter equations 

Time update (prediction) 

Measurement update 



The operation of the Kalman filter 

The process noise covariance Q and the measurement noise covariance R 

must be set/tuned correctly! 



 

Example:  

Estimating a random constant with KF 



Models 

• Voltage measurements with a 0.1 V RMS white noise 

• Process model: 

 

 

 

 

 

• Measurement model: 
A = I (identity matrix) 

H = I 

B = 0 



Filter equations 



Initial conditions 



Simulation results with correct R  



(Q and) R tuning examples 



Estimation in nonlinear systems  

 

• Based on linearization (taylor series expanion) of the non-linear 

equations  Extended Kalman Filter (EKF) 

• Requires an initial estimate of the parameters close to the true 

parameter values, in order to ensure that the data processing 

algorithm converges to the true solution 

• This makes non-linear (in the unknown parameters/states) problems 

much more complicated! 

• Most real-world problems are non-linear! 

 

Extra 



Example: GPS position calculation 

• The measured pseudorange 𝑃 𝑘 from a satellite k can be expressed as 

(since we can assume no clock error in the satellite): 

𝑃 𝑘 = (𝑋𝑘 − 𝑥)2+ (𝑌𝑘 − 𝑦)2+ (𝑍𝑘 − 𝑧)2+  𝑑 + 𝑣 =  𝜌𝑘  +  𝑑 + 𝑣    

• 𝑐𝜏 = d is the position error due to receiver clock error, (Xk,Yk,Zk) is the 

known position of satellite k, (x,y,c) is the true receiver position, and v is  

zero mean Gaussian white noise with variance σ2 

• This is a nonlinear problem on the form: 

where  

ℎ(𝒙) =  (𝑋𝑘 − 𝑥)2+ (𝑌𝑘 − 𝑦)2+(𝑍𝑘 − 𝑧)2+  𝑑 

  

• x = [x, y, z , 𝑑]T are the unknown parameters to be estimated. 

 

 

Extra 



NOT THE OPTIMAL SOLUTION, BUT EASIER TO IMPLEMENT  

Alternatives to the Kalman filter 



Alpha filter – a first-order estimator 

• If you have a measurement 𝑧𝑘, you can apply a first order filter: 

    

   𝑥 𝑘 = (1 − 𝛼)𝑥 𝑘 + 𝛼𝑧𝑘 

 

• 𝑥 𝑘 is the updated (from measurements) estimate at time k 

• 𝑥 𝑘 is the predicted (time propagated) estimate at time k, from a model: 

𝑥 𝑘 = f(𝑥 𝑘−1) 
– Data fusion example: rate gyro measurement used for predicting a rotation angle 

and an accelerometer used as an inclinometer to measure the absolute angle. 

• 𝛼 is a scalar gain between 0 and 1 (typically constant) 

• If no measurements 𝑧𝑘 are available, 𝛼 is set to 0  only prediction 

• This approach will filter out noise, but a good 𝛼 must be found from 

“trial and error” (possibly with some “guidelines”) 

• Not as good as a Kalman filter!  

– Not an optimal solution! 

 

 

 

 

g 
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Complimentary filter for data fusion 

• Another  simpler alternative to the Kalman filter 

– Not an optimal solution for a properly modelled random process. 

– Can be a good solution if the signals are not well-modelled, and/or 

the signal-to-noise ratio in the measurements are high. 

 

• The idea behind the complementary filter is to take slow 

moving signals and fast moving signals and combine 

them. 

– The filter is based on an analysis in the frequency domain. 

 

• The complementary filter fuses the sensor1 and sensor2 data 

by passing the former through a 1st-order low pass and the 

latter through a 1st-order high pass filter and adding the outputs. 

 

• Possibly easy to implement on a embedded processor. 

 

 



Complimentary filter architectures 

• Assume two sensors that take a measurement z of a constant but 

unknown parameter x, in the presence of noise v. 

• z1 = x + v1     and   z2 = x + v2 

• Assume that the noise in z2 is mostly high frequency, and the noise in 

z1 is mostly low frequency. 

• Need to come up with a mathematical equation to combine the data, 

e.g                                                      where a good value of α need to 

be determined. 

 

HP 

LP 

z1 

z2 

𝑥  + 
Video YouTube 

𝜃 𝑘 = 𝛼 𝜃𝑘−1 + 𝜔𝑘∆𝑡 + (1 − 𝛼)𝑎𝑘  

https://www.youtube.com/watch?v=6iSl4WL1PkI

