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Open-loop control
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Figure 1-3. Open-loap control
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Closed-loop control
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Figure 1-6. Closed-loop control
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Figure I-7. Closed-loop fluid level control




UiO ¢ University of Oslo

Automated test setup

) Logic
Signal Analyzer
Generator O oooo
B poooo
[__1s ﬂgﬂgm I I D Dooo
Circuit or Unit
Under Test
=2 8 > [T
oooo
@ o
Programmable DMM
Power Supply
GPIB

PC

Figure 1-9. Test instrumentation example
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Process control
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Linear control systems

Equation 9-2.

u() = er(ﬂ + P

u(t)
(Control
Output)

e(t)
(Error input)

Figure 9-1. Linear control system proportional response
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Nonlinear control systems
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Sequential control systems

Sequential power control
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Figure 1-8. Sequential power control



UiO ¢ University of Oslo

Control systems block diagram
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Figure 9-3. Control system block diagrams
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Linear Time invariant (LTI) vs. Time
variant systems

LTI example: amplifier

« Time variant system example: aircraft autopilot
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Discrete-time closed loop system
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Figure 9-7. Discrete-time closed-loop control system
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Control software flow / timing
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Figure 9-8. Control system software flow
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Figure 9-9. Control system software timing
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Closed-loop water tank control system
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Figure 9-11. Closed-loop water tank control system details
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Figure 9-12. Water tank conirol system response graphs
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Simple open-loop motor control

« Motor rotation rate will vary with load
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Figure 9-13. Simple open-loop DC motor control
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Closed-loop motor velocity controller
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Figure 9-14. Feed-forward DC motor velocity controller
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PWM motor speed control
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Figure 9-16. PWM motor speed control
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Commercial DC motor controller
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Figure 9-17. Commercial DC motor controlier
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Figure 9-18. Hysteresis

Nonlinear bang-bang controllers

On/off controller that switches between two states: either

completely on or completely off.

Often hysteresis is used!

Hysteresis

f——

Set Point

[ T

1

] T

Temperature

With Hysteresis

Temperature
Set Point

R I
OFF

Without Hysteresis

Temperature
Set Point

e T
OFF

Temperature

Plant

te

sptH -
sp -
sp-HJ!

N

On
Off

Max I I O I S O

ppppppp

Min H-t-t4+{-+H1-E4-14-1-

b= b b g

—————————

Figure 9-20. Bang-bang control response
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PID controller

* Proportional-Integral-Derivative (PID) algorithm is the most
common control algorithm

— Used for heating and cooling systems, fluid level monitoring, flow
control, and pressure control.

« Calculates a term proportional to the error - the P term.

« Calculates a term proportional to the integral of the error -
the | term.

« Calculates a term proportional to the derivative of the error -
the D term.

 The three terms - the P, | and D terms, are added together to
produce a control signal that is applied to the system being
controlled

« Sometimes only a PI controller is used
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PID controller Il

A PID controller continuously calculates an error value as the difference
between a measured process variable and a desired setpoint.

« The controller attempts to minimize the error over time, by adjustment of a
control variable u(t) , such as the position of a control valve.

. : le(t
u(t) = Kye(t) + KI-/D e(t)dt + ffd( zi(f )

« P accounts for present values of the error. feedback
» | accounts for past values of the error, accumulates over time. \ r(t)

» D accounts for possible future values of the
error, based on its current rate of change.

» Must tune the coefficients Kp, Ki og Kd P
u(t)

y(t)_} e(t)

Plant/
—_— B
Process

K.e(t) Iq—

+

:— I K,jc (T)dr I4

+

In general PID does not provide optimal control, 5w |
since no modelling of the Plant/process is used — I ‘

Figure from wikipedia
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Figure 9-24. PID control block diagram
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PID controller tuning examples
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Optimal control

 Estimation and control is related!

« The Kalman filter is typically used to provide optimal estimates
of state variables that are implemented in a control algorithm.
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Figure from Gelb



