
FYS3240- 4240

Data acquisition & control

 LabVIEW programming II

Spring 2019 – Lecture #3

Bekkeng 28.12.2018

Dataflow programming

• With a dataflow model, nodes on a block diagram are

connected to one another to express the logical execution flow

• When a block diagram node receives all required inputs, it

produces output data and passes that data to the next

node in the dataflow path. The movement of data through the

nodes determines the execution order of the functions on the

block diagram

LabVIEW Graphical Programming –

Dataflow

How LabVIEW Implements Multithreading

• Parallel code paths on a block diagram can execute in

unique threads

• LabVIEW automatically divides each application into multiple

execution threads (originally introduced in 1998 with LabVIEW

5.0)

LabVIEW Example – Two separat

threads

Two separate tasks that are not dependent on one another

for data will run in parallel (two threads) without the need

for any additional program code.

How LabVIEW Implements Multithreading

Balan

ced

Basic LabVIEW code architecture

SubVIs

• A LabVIEW program is called a Virtual Instrument (VI)

• A subVI is a VI used in a block diagram of another VI

• SubVIs makes the code more readable, scalable,

and maintainable

• How to create sub VIs:

– Create an Icon with I/O connections for the VI

SubVIs

VI

Add SubVI:

Property Nodes

• Used to manipulate the appearance and behavior of the user

interface (Front Panel controls and indicators)

• Limit the number of property nodes due to performance

degradation

• Right click the control/indicator to create

Type conversion

• LabVIEW will convert data types as it sees appropriate

• Avoiding coercions (represented by a red dot) can

speed up the application

• To select/change representation, right click the numeric on the block

diagram and select Representation

• Right clicking the I/O of a block diagram icon and select create will

create the proper data type

Coercion dot (means that

a type conversion is done)

Arrays

• Can be multidimensional.

• Must have the same data type for each element

Simple method to create an array:

Clusters

• Used to group related data

– Reduce the number of terminals (I/O) required on a SubVI

– Minimize the number of wires on the diagram

• The elements can be of different data types

• Can not contain a mixture of controls and indicators

Local & Global variables

• Minimize the use (especially

global variables)

– Use wires when possible

– Each local variable creates a

copy of the data!

• Global variables can create

race conditions!

– When two or more events can

occur in any order, but they need

to occur in a particular order

– The data dependency (dataflow) in

LabVIEW generally prevents race

conditions, but global variables

provides a way to violate the strict

dataflow

– Use global variables only when no

other good options!

Local variables: Right-click:

Case structure

Event Structure

• To limit the CPU usage while waiting

for user interface events (mouse

clicks, key pressed etc.)

– Avoids polling!

• Detects all events!

• Do minimal processing inside event

structures!

• How it works:

– Operating system broadcasts

system events (mouse click,

keyboard, etc.) to applications

– Registered events are captured by

event structure and executes

appropriate case

– Event structure enqueues events

that occur while it’s busy

Sequence structure

• Can be used to enforce the order of execution

• Use dataflow programming (data input dependence) to control

the dataflow!

Program like this!

Shift registers

• Memory elements available in For Loops and While Loops

• Transfer values from completion of one loop iteration to the

beginning of the next

• Initialize the shift registers (unless you want to create a

Functional Global)

Right-click the loop: Initialization!

File I/O

• File Types supported in LabVIEW

– ASCII

– Binary

– TDMS

– Config File

– Spreadsheet

– AVI

– XML

File I/O – Write binary file example

Software Timing I

• The functions Wait Until Next ms Multiple, Wait (ms) and Tick Count

(ms) attempts to resolve milliseconds on a PC within the limitations of

the operating system (such as Windows) and the computer clock.

• If you need better resolution or accuracy (determinism) you have to use

another hardware solution.

Software Timing II

• To make a while loop run at nice regular intervals add the Wait

Until Next ms Multiple

– always use the Wait Until Next ms Multiple (or another timer) in a

loop to avoid using unnecessary CPU power.

– without any “wait” a while loop will run as fast as possible ...

• Two loops can be software synchronized using the Wait Until

Next ms Multiple in both loops.

• To prioritize execution of different parallel loops use Wait

functions to slow down lower priority loops in the application.

Software Timing III

• If you use software timer functions to control a loop, then you

can expect differences in the time interval between each

iteration (jitter) of the loop, depending on what other processes

are running on the computer at that instant.

– If you have several windows open at the same time and you are

switching between different windows during your data acquisition,

then you can expect a lot of overhead on the Central Processing

Unit (CPU), which might slow down the loop that is performing the

data acquisition.

– In DAQ applications you should use hardware timing instead of

software timing, if possible.

 jitter

Error handling example

• Propagate the error cluster

through every SubVI

Loop terminates if an

error occur

Report errors using

dialog/and or log files

Loop initialization

• Important to preset the controls to a correct initial value at startup

of the program

• A sequence structure can be used, see illustration below

– If a state machine is implemented initialization states are used.

Parallel loops – simplest case

• Sometimes no data need to be exchanged between loops

(independent loops)

– e.g. different sensor signals to be logged at two different rates

• Parallel loops can be stopped

using local variables

• Master-Slave pattern

• Client – Server pattern

• Producer / Consumer pattern

Design Patterns for loop communication

communication

Loop Communication mechanisms

• Variables

• Occurrences

• Notifier

• Queues

• Semaphores

• Rendezvous

Queues

• Used for synchronization and data transfer between loops

• Data are stored in a FIFO buffer, and the useful queue depth is limited

(only) by the computer’s RAM

– No data are lost

• A read (dequeue) from the queue is destructive

– Data can only be read by one consumer loop (without a new enqueue)

• Different queues must have unique names!

Adding Elements to the Queue

Select the data

type the queue will hold

Reference to existing queue in memory

Dequeue will wait for data or time-out

Dequeueing Elements

Design patterns (templates)

 http://zone.ni.com/devzone/cda/tut/p/id/7605

Producer – consumer

• Queues are used for loop communications in multi-loop programs,

to execute code in parallel and at different rates

• The queues buffer data in a FIFO structure in PC RAM
Software timing - the

producer loop will run every

125 ms (8 Hz)

State machines - background

Static Sequence

Known order of execution

Dynamic Sequence

Distinct states can operate

in a programmatically

determined sequence

State machine design

1. Draw the state diagram

2. Translate the state diagram into LabVIEW code

1 2

Standard State machines in LabVIEW

• Case structure inside of a While loop

• Each case is a state

• Current state has decision-making code that determines next state

• Use enumerated constants (called typedefs) to pass value of next state to

shift registers

Edit/add/Remove states:

MathScript

• Adds math-oriented, textual

programming to the LabVIEW

graphical development

environment

• General compatibility with

widely used .m file script

syntax (not all Matlab functions

are supported)

• Reuse Matlab .m files

• Very useful for algorithm

development

– compact code for matrix

operations etc

• Available also for RT-targets

Connectivity – Using DLLs in LabVIEW

• Call Library Function

– To use DLLs in LabVIEW

– Almost any compiler can generate a DLL

Extra

Visualization

• Displaying data can require

considerable computer

resources

• Improving display performance:

– using smaller graphs and

images

– display fewer data points (down

sampling)

– less frequent display updates

Building an application …

• Chose a design architecture

(design pattern)

• Start with a paper design ….

– draw block diagrams

– draw flow charts/state

diagrams

• Prototype the user interface

– helps defining necessary

controls and indicators

• Divide-and-conqure

– break the problem(s) into

manageable blocks

– make SubVIs for each

function

– put the entire design

together

