
FYS3240-4240

Data acquisition & control

Essential Electronics &

Microcontrollers

Spring 2019 – Lecture #4

Bekkeng, 28.12.2018

Reading: RWI Chapter 2 page 39-57 (and Ch 4 for C-programming)

Essential Electronics

Topics you should know

• Duty-cycle

• Port

• High-impedance state (outputs)

• Pull-up and pull-down

• Relay driver

• Counters and Timers

Pulse-width modulation (PWM)

Serial I/O

• SynchronousTransfer

– Data sent at constant rate using a

shared periodic clock

• AsynchronousTransfer (i.e.,

Handshaking)

– Data sent upon request using

handshake signals

– Tx and Rx still have internal clocks,

they just don’t share them

Asynchronous transfer means that the information is not sent in predefined time

slots. Data transfer can start at any given time and it is the task of the receiver to

detect when a message starts and ends.

Synchronous serial data communication

Figure 2-37 RWI

SPI

• SPI = Serial Peripheral Interface

• Serial data link (bus) standard that operates in full duplex mode

• Devices communicate in master/slave mode where the master

(only one master) device initiates the data frame. Multiple slave

devices are allowed with individual slave select (chip select)

lines.

• Sometimes SPI is called a "four-wire" serial bus, contrasting

with three-, two-, and one-wire serial buses.

– Serial Clock (output from master)

– Serial Data In

– Serial Data Out

– nCS

• Bit rate usually in the MHz range

• Short distance communication

– Longer cables means lower speed (because of cable capacitance etc.)

Full duplex

Notes:

• CS = Chip Select (an enable signal)

• An n before a signal name, such as

nCS, means that the signal is active

low

• A bar over a signal name, such as 𝐶𝑆,

means that the signal is active low

ADCs with SPI interface

• Many ADCs have an SPI interface

• Example: MCP3204

– 4-Channel,12-Bit A/D Converters with SPI Interface

Asynchronous serial interface

UART

• UART = Universal Asynchronous Receiver/Transmitter.

• A UART is usually an individual integrated circuit used for serial

communications over a computer or peripheral device serial port.

• UARTs are now commonly included in microcontrollers.

• A dual UART, or DUART, combines two UARTs into a single chip.

• Many modern ICs now come with a UART that can also communicate

synchronously; these devices are called USARTs (universal

synchronous/asynchronous receiver/transmitter).

Reset a 16 bit counter

All bits are read close to the middle of a bit value

A clock 16 times faster than the bit clock is

used as input to the counter

0-7 0-15 0-15

Parallell I/O

Microcontrollers

Lab: AVR Studio

• Microcontrollers can be programmed using Assembly or C

language

– In FYS3240/4240 you have to program in C

• AVR studio 5

– Works as editor for Assembly and C

– Integrated C-compiler (AVR-GCC)

http://www.avrfreaks.net/

http://www.avrfreaks.net/

Some common uC resources

• Counters

• UART (Universal Asynchronous Receiver/Transmitter)

• A/D Converters (ADC)

– Time-multiplexing of channels is common

– Usually 12 or less bits per sample (8, 10, 12 bits common)

• SPI (Serial Peripheral Interface)

• I2C (at least slave function)

I2C

• I²C = Inter-Integrated Circuit

• Is a multi-master serial computer bus (but only one master at a

time)

• Uses only two bidirectional lines

– Data (SDA)

– Clock (SCL)

• Speed up to 3.4 Mbit/s (high speed mode)

– 100 kbit/s or 400 kbit/s more common?

• Practical communication distances are limited to a few meters

– The longer the cable, the lower the speed

Example: AVR XMEGA B

• A family of low-power, high-performance, and peripheral rich CMOS

8/16-bit microcontrollers based on the AVR enhanced RISC (reduced

instruction set) architecture

• Two-channel DMA controller

• Multilevel interrupt controller

• Up to 53 general purpose I/O lines

• 16-bit real-time counter (RTC)

• Up to three flexible 16-bit timer/counters

• Up to two USARTs

• I2C and SMBUS compatible two wire serial interface (TWI)

• One full-speed USB 2.0 interface

• One serial peripheral interface (SPI)

• Up to two 8-channel, 12-bit ADCs

• Up to four analog comparators

• Watchdog timer

• LCD controller

• Internal oscillators with PLL

XMEGA

PORTB.DIR = 0xFF; /* All pins in PORTB configured as output*/

Note: 0x specifies a HEX number, 0b specifies a binary number

uC I/O direction Output Input

XMEGA PORTn.DIR PORTn.OUT PORTn.IN

Example code for XMEGA

Interrupt-Driven Programming

• In interrupt-driven systems software is designed such that when

a registered event, such as a timer, is received, a response is

fired to respond to this event.

• There are two components of any interrupt-driven system: the

interrupt and the interrupt handler.

• An interrupt is a signal that is generated by hardware, which

indicates an event has occurred that should halt the currently

executing program.

• Interrupt handlers (also referred to as interrupt service

routines - ISRs) are portions of code that are registered with

the processor to execute once a particular interrupt has

occurred. Once the processor is aware of an interrupt, it halts

the currently executing process, performs a context switch to

save the state of the system, and executes the interrupt

handler. Once the interrupt handler code has executed, the

processor returns control to the previously running program.

Interrupts

• Interrupts halt normal code execution in order to go do

something more important or time sensitive

• Used Instead of polling

• Can be generated internally or externally

• Interrupts are used e.g. for:

– RESET

– Timers

– Time-Critical Code

– Hardware signaling

• such as a switch pressed by the user

C programming Note: in C you can only call

functions that have been

defined/decleared earlier

Increment Operators

i+= // in order to specify how much to increment

C programming – Pointers I

&i get the address of the

variable i

*p get the content of the

address location that the

pointer points to

A pointer is an address in RAM

C programming – Pointers II

C programming - Memory Management

• Allocate memory : malloc()

• Free used memory : free()

Look out for memory leakage!

