

UiO : University of Oslo

FYS3240- 4240 Data acquisition & control

Signal sampling

Spring 2019 – Lecture #5

Bekkeng, 28.12.2018

Content

- Aliasing
- Sampling
- Analog to Digital Conversion (ADC)
- Filtering
- Oversampling
- Triggering

Analog Signal Information

Sampling Considerations

- An analog signal is continuous
- A sampled signal is a series of discrete samples acquired at a specified sampling rate
- The faster we sample the more our sampled signal will look like our actual signal
- If not sampled fast enough a problem known as aliasing will occur

Aliasing

Aliasing refers to a misrepresentation of the signal frequency due to **undersampling** of the signal.

Sampling & Nyquist's Theorem

- Nyquist's sampling theorem:
 - The sample frequency should be at least twice the highest frequency contained in the signal
- Or, more correctly: The sample frequency f_s should be at least twice the bandwidth Δf of your signal
 - In mathematical terms: $f_{s} \geq 2 \ ^{*}\Delta f_{,}$ where $\Delta f_{}=f_{high}-f_{low}$
- However, to accurately represent the shape of the signal, or to determine peak maximum and peak locations, a higher sampling rate is required
 - Typically a sample rate of 10 times the bandwidth of the signal is required.

UiO : University of Oslo

Sampling Examples

Aliasing shown in the frequency domain

A system that has a sampling frequency f_s (a) will digitize signals with frequencies below $f_s/2$ as well as above. Input signals below $f_s/2$ will be reliably digitized while signals above fs/2 will be folded back (b) and appear as lower frequencies in the digital output according to $f_{aliased} = |f_{in} - N^*fs|$

Need to remove all signal frequencies above fs/2 using an analog low-pass filter before the sampling in the ADC

Example of DAQ with anti-aliasing filter

Idealized Filter Responses

Filter parameters

A filter will affect the phase of a signal, as well as the amplitude!

Filtering example

In post-processing (non-real time) a **zero-phase digital filter** can be used, by processing the input data in both the forward and reverse directions

Analog filters

- Some common filter characteristics
 - Butterworth (no rippel)
 - Chebyshev
 - Bessel (constant group delay = linear phase in pass band)
 - Elliptic
- Select filter characteristics according to DAQ system specification /requirements
- Analog filters can be made using a Sallen-Key architecture (see next slide)
 - Multiple 2. order elements can be connected together to create a n. order filter.

2. order Sallen-Key - Active analog filter

Structure

Switched-Capacitor Filter

- Can be suitable as an ADC anti-aliasing filter if you build your own electronics
- Be aware of possible clock noise (add RC-filters before and after)
- The corner frequency (cut-off) fc is "programmable" using an external clock
- Example:
 - MAX7400 8th-order, lowpass, elliptic filter
 - MAX7400 has a transition ratio (fs/fc) of 1.5 and a typical stop band rejection of 82dB

ADC architectures

- Multiplexed sampling
 - Gives a time delay between channel sampling

- Simultaneous sampling
 - One ADC, multiple
 Sample-and-Hold registers
 - Multiple ADCs
 - Important for phase measurements

$\rm UiO$: University of Oslo

ADC resolution

- The number of bits used to represent an analog signal determines the <u>resolution</u> of the ADC
- Larger resolution = more precise representation of your signal
- The resolution determine the smallest detectable change in the input signal, referred to as <u>code width</u> or LSB (least significant bit)

ADC accuracy

- Common ADC errors:
 - Noise
 - Linearity error
 - Gain error
 - Offset error
 - Quantization (resolution error)
 - Less than LSB/2

ACQUISITION

HANDBOOK

Digital signals: Bits, dynamic range, and SNR

- SNR = signal to noise ratio
- The number of bits used determines the maximum possible signal-to-noise ratio
- Using the entire ADC range (using an amplifier) increases the SNR
- The minimum possible noise level is the error caused by the quantization of the signal, referred to as quantization noise.

ADC oversampling

• Oversampling means to sample faster than the Nyquist rate $f_{nyquist}$, which is given by $f_{nyquist} = 2 \ ^{*}\Delta f$, where $\Delta f = f_{max} - f_{min}$

• The SNR of an ideal N-bit ADC (due to quantization effects) is:

SNR(dB) = 6.02*N + 1.76

ADC oversampling II

- If the sampling rate f_s is increased above $f_{nyquist}$, we get the following SNR: SNR(dB) = $6.02*N + 1.76 + 10* \log_{10}(OSR)$, where OSR = $f_s/f_{nyquist}$
- Oversampling makes it possible to use <u>a simple RC anti-aliasing</u> <u>filter</u> before the ADC
- After A/D conversion, perform digital low-pass filtering and then down sampling to f_{nyquist}
- Effective resolution with oversampling $N_{eff} = N + 1/2 * \log_2 (f_s/f_{nyquist})$, where N is the resolution of an ideal N-bit ADC at the Nyquist rate
 - If $OSR = f_s/f_{nyquist} = 1024$, an 8-bit ADC gets and effective resolution equal to that of a 13-bit ACD at the Nyquist rate

Trigger (from hardware or software)

- A trigger is a signal that causes a device to perform an action, such as starting a data acquisition. You can program your DAQ device to react on triggers such as:
 - a software command (software trigger)
 - a condition on an external digital signal
 - a condition on an external analog signal
 - E.g. level triggering

Figure 13-1. Falling-Edge Trigger

Figure 13-4. Above-Level Analog Triggering Mode

Important trigger types

Start trigger

start data acquisition when an external digital signal have e.g. a rising edge.

Pre-trigger

- Uses a data buffer (circular buffer)
 - Can include a specified number of samples before the trigger event.
 - Useful for e.g. high speed imaging.

