

UiO: University of Oslo

FYS3240- 4240 Data acquisition & control

Signal sampling

Spring 2019 – Lecture #5

Bekkeng, 28.12.2018

Content

- Aliasing
- Sampling
- Analog to Digital Conversion (ADC)
- Filtering
- Oversampling
- Triggering

Analog Signal Information

Sampling Considerations

- An analog signal is continuous
- A sampled signal is a series of discrete samples acquired at a specified sampling rate
- The faster we sample the more our sampled signal will look like our actual signal
- If not sampled fast enough a problem known as aliasing will occur

Aliasing

Aliasing refers to a misrepresentation of the signal frequency due to **undersampling** of the signal.

Sampling & Nyquist's Theorem

- **Nyquist's sampling theorem:**
	- **The sample frequency should be at least twice the highest frequency contained in the signal**
- Or, more correctly: The sample frequency f_s should be at least twice the bandwidth Δf of your signal
	- In mathematical terms: $f_s \geq 2$ * Δf , where $\Delta f = f_{\text{high}} - f_{\text{low}}$
- However, to accurately represent the shape of the signal, or to determine peak maximum and peak locations, a higher sampling rate is required
	- Typically a sample rate of 10 times the bandwidth of the signal is required.

UiO: University of Oslo

Sampling Examples

Aliasing shown in the frequency domain

A system that has a sampling frequency f_s (a) will digitize signals with frequencies below f ${}_{\rm s}$ /2 as well as above. Input signals below f ${}_{\rm s}$ /2 will be reliably digitized while signals above fs/2 will be folded back (b) and appear as lower frequencies in the digital output according to $f_{\text{aligned}} = |f_{\text{in}} - N^*fs|$

Need to remove all signal frequencies above fs/2 using an analog low-pass filter before the sampling in the ADC

Example of DAQ with anti-aliasing filter

Idealized Filter Responses

Filter parameters

A filter will affect the phase of a signal, as well as the amplitude!

Filtering example

In post-processing (non-real time) a **zero-phase digital filter** can be used, by processing the input data in both the forward and reverse directions

Analog filters

- Some common filter characteristics
	- **Butterworth** (no rippel)
	- **Chebyshev**
	- **Bessel** (constant group delay = linear phase in pass band)
	- **Elliptic**
- Select filter characteristics according to DAQ system specification /requirements
- Analog filters can be made using a Sallen-Key architecture (see next slide)
	- Multiple 2. order elements can be connected together to create a n. order filter.

2. order Sallen-Key - Active analog filter

Structure

Switched-Capacitor Filter

- Can be suitable as an ADC anti-aliasing filter if you build your own electronics
- Be aware of possible clock noise (add RC-filters before and after)
- The corner frequency (cut-off) fc is "programmable" using an external clock
- Example:
	- MAX7400 8th-order,lowpass, elliptic filter
	- MAX7400 has a transition ratio (fs/fc) of 1.5 and a typical stop band rejection of 82dB

ADC architectures

- **Multiplexed** sampling
	- Gives a time delay between channel sampling

- **Simultaneous** sampling
	- One ADC, multiple Sample-and-Hold registers
	- Multiple ADCs
	- Important for phase measurements

UiO: University of Oslo

ADC resolution

- The number of bits used to represent an analog signal determines the resolution of the ADC
- Larger resolution = more precise representation of your signal
- The resolution determine the smallest detectable change in the input signal, referred to as code width or LSB (least significant bit)

ADC accuracy

- Common ADC errors:
	- Noise
	- Linearity error
	- Gain error
	- Offset error
	- Quantization (resolution error)
		- Less than LSB/2

HANDBOOK

Digital signals: Bits, dynamic range, and SNR

- $SNR =$ signal to noise ratio
- The number of bits used determines the maximum possible signal-to-noise ratio
- Using the entire ADC range (using an amplifier) increases the SNR
- The minimum possible noise level is the error caused by the quantization of the signal, referred to as **quantization noise.**

ADC oversampling

• Oversampling means to sample faster than the Nyquist rate $f_{nyquist}$, which is given by $f_{nyquist} = 2 \times \Delta f$, where $\Delta f = f_{max} - f_{min}$

• The SNR of an ideal N-bit ADC (due to quantization effects) is:

 $SNR(dB) = 6.02*N + 1.76$

ADC oversampling II

- If the sampling rate f_s is increased above f_{nyquist} , we get the following SNR: $SNR(dB) = 6.02*N + 1.76 + 10* log₁₀(OSR),$ where $OSR = f_s/f_{nyquist}$
- Oversampling makes it possible to use a simple RC anti-aliasing filter before the ADC
- After A/D conversion, perform digital low-pass filtering and then down sampling to f_n _{ryquist}
- Effective resolution with oversampling $N_{\text{eff}} = N + 1/2$ *log₂ (f_s/f_{nyquist}), where N is the resolution of an ideal N-bit ADC at the Nyquist rate
	- $-$ If OSR = $f_s/f_{n\times n}$ = 1024, an 8-bit ADC gets and effective resolution equal to that of a 13-bit ACD at the Nyquist rate

Trigger (from hardware or software)

- A trigger is a signal that causes a device to perform an action, such as starting a data acquisition. You can program your DAQ device to react on triggers such as:
	- a software command (software trigger)
	- a condition on an external digital signal
	- a condition on an external analog signal
		- E.g. level triggering

Figure 13-1. Falling-Edge Trigger

Figure 13-4. Above-Level Analog Triggering Mode

Important trigger types

• **Start trigger**

– start data acquisition when an external digital signal have e.g. a rising edge.

• **Pre-trigger**

- Uses a data buffer (circular buffer)
	- Can include a specified number of samples before the trigger event.
	- Useful for e.g. high speed imaging.

