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Analog Signal Information

4. 71 Volts
Three types of information: A
* Level
« Shape

* Frequency

Amplitude
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Sampling Considerations

— An analog signal is continuous

— A sampled signal is a series of
discrete samples acquired at a
specified sampling rate

— The faster we sample the more
our sampled signal will look like
our actual signal

Actual Signal
— If not sampled fast enough a

problem known as aliasing will
occur

Sampled Signal
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Adequalaly Samplad Signal

Alissed Signal Dus to Undarsampling

Aliasing

Aliased
Signal

Aliasing refers to a misrepresentation of the signal frequency due
to undersampling of the signal.
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Sampling & Nyquist’s Theorem

« Nyquist’s sampling theorem:

— The sample frequency should be at least
twice the highest frequency contained in the
signal

 Or, more correctly: The sample frequency f, should Af
be at least twice the bandwidth Af of your signal 0

* In mathematical terms: f; 2 2 *Af where

_ flow

* However, to accurately represent the shape of the ECG signal ®
signal, or to determine peak maximum and peak
locations, a higher sampling rate is required

— Typically a sample rate of 10 times the bandwidth of
the signal is required.

lllustration from wikipedia
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Sampling Examples

-

Aliased Signal
100Hz Sine Wave Sampled at 100Hz
Adequately Sampled
> for Frequency Only
(Same # of cycles)
100Hz Sine Wave Sampled at 200Hz

ATAAYRYAY,

100Hz Sine Wave Sampled at 1kHz

Adequately Sampled
for Frequency and
Shape
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Aliasing shown In the frequency domain
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A system that has a sampling frequency f, (a) will digitize signals with
frequencies below f./2 as well as above. Input signals below f /2 will be
reliably digitized while signals above fs/2 will be folded back (b) and appear
as lower frequencies in the digital output according to f,;,ceq = [fi, — N*fs |

j> Need to remove all signal frequencies above fs/2 using an
analog low-pass filter before the sampling in the ADC
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Example of DAQ with anti-aliasing filter
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anti-aliasing filter

Analog to Digital
Digital Processor
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The required filter order is
determined by the number of bits
in the ADC and the DAQ system
specification
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Idealized Filter Responses
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Filter parameters
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A filter will affect the phase of a signal, as well as the amplitude!
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Filtering example

Filtered Waveforms

1.5
Criginal Signal
I‘ Mon-linear phase IR output
| Zero-phase IR output
1F |I
Ii“
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Time (s)

Example from MathWorks

0.55

In post-processing (non-real
time) a zero-phase digital
filter can be used, by
processing the input data in
both the forward and reverse
directions
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Analog filters S

= i1

g LU HT

« Some common filter characteristics
— Butterworth (no rippel)

— Chebyshev -

— Bessel (constant group delay = linear op—
phase in pass band) 2o =

— Elliptic

. Magnitude (dB)
5 |
o

— Select filter characteristics according to DAQ
system specification /requirements

— Analog filters can be made using a Sallen-Key
architecture (see next slide)

— Multiple 2. order elements can be W =

Rl
connected together to create a R HE sz
¢ c

n. order filter. T T
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2. order Sallen-Key - Active analog filter

Structure
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http://www.ti.com/lsds/ti/analog/webench/overview.page?DCMP=analog_power_mr&HQS=webench-pr
http://www.ti.com/lsds/ti/analog/webench/overview.page?DCMP=analog_power_mr&HQS=webench-pr
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« Can be suitable as an ADC anti-aliasing filter if you build your

Switched-Capacitor Filter

own electronics

« Be aware of possible clock noise (add RC-filters before and after)

« The corner frequency (cut-off) fc is “programmable” using an
external clock

 Example:
— MAX7400 8th-order,lowpass, elliptic filter

— MAX7400 has a transition ratio (fs/fc) of 1.5 and a typical stop band

rejection of 82dB
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ADC architectures

« Multiplexed sampling

— Gives a time delay
between channel sampling

 Simultaneous
sampling
— One ADC, multiple
Sample-and-Hold registers
— Multiple ADCs

— Important for phase
measurements

Multiplexed
ch 0

ch x ————

S5H w/ multiplexing — simultaneous sampling

Gh 0 —Amp

SSH

SSH

Mux Amp ADC

gmx-—EE@h

ch 0

Multi-ADC — simultaneous sampling
|
|
|

Gh

Amp ADC
Amp ADC
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ADC resolution

« The number of bits used to represent an analog signal determines the
resolution of the ADC

« Larger resolution = more precise representation of your signal

« The resolution determine the smallest detectable change in the input
signal, referred to as code width or LSB (least significant bit)

16-Bit Versus 3-Bit Resolution

16-bit resolution

3-bit resolution

(5kHz Sine Wave)
. ; 10.0
code width = device range g 75|
qr'esafu!mn .
= 7 SO e e
625 ...........................................................
Amplitude5 00
Example: (volts) = 011
3.75
e 3 s 010
device range _ 10 _ 15 mV 2.5
Zr'esofurmn 9 1.25 001
0 0|00
0 50 100

200
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ADC accuracy

e Common ADC errors:

ADC Qutput

Noise
Linearity error
Gain error
Offset error

Quantization (resolution error)

 Less than LSB/2

Gain error

ADC Output

4 6

Input volts

S = M W B o o~
|

8 10 0 2 L

6

Input volts

ADC Output

Linearity error

ADC Output

Offset error

0 2 ! 6

Input volts

Input volts

DATA
ACQUISITION

HANDBOOK
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Digital signals: Bits, dynamic range,

and SNR

 SNR = signal to noise ratio

 The number of bits used
determines the maximum
possible signal-to-noise ratio

« Using the entire ADC range
(using an amplifier) increases
the SNR

* The minimum possible noise
level is the error caused by
the quantization of the signal,
referred to as quantization
noise.

M AD —

AGC
Automatic Gain Control may be
part of a digital feedback loop

— Analog waveform

[._—— Quantized waveform

Same noise but less signal;
lower S/N figure

Compare

\

o

Higher S/N figure

Risk of
“clipping’.
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ADC oversampling

« Oversampling means to sample faster than the Nyquist rate f
which is given by f = 2 *Af, where Af =f f

nyquists

nyquist max ~ 'min

« The SNR of an ideal N-bit ADC (due to quantization effects) is:

SNR(dB) = 6.02*N + 1.76
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ADC oversampling Il

If the sampling rate f, is increased above f i

SNR: SNR(dB) = 6.02*N + 1.76 + 10* log,,(OSR),
where OSR = f /f

we get the following

nyquist

« Oversampling makes it possible to use a simple RC anti-aliasing
filter before the ADC

« After A/D conversion, perform digital low-pass filtering and then
down sampling to f,qist

* Effective resolution with oversampling N4 = N + 1/2 *log, (fs/f,yquist);
where N is the resolution of an ideal N-bit ADC at the Nyquist rate

— If OSR = {/f,quist = 1024, an 8-bit ADC gets and effective resolution
equal to that of a 13-bit ACD at the Nyquist rate
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Trigger (from hardware or software)

A trigger is a signal that causes a device to perform an action,
such as starting a data acquisition. You can program your DAQ

device to react on triggers such as:

— a software command (software trigger)
— a condition on an external digital signal
— a condition on an external analog signal

« E.g. level triggering

5V
Digital Trigger
T ov

Falling edge initiates acquisition

Figure 13-1. Falling-Edge Trigger

Analog Comparison Event

Figure 13-4. Above-Level Analog Triggering Mode
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Important trigger types

« Start trigger

— start data acquisition when an external digital signal have e.g. a
rising edge.

* Pre-trigger
— Uses a data buffer (circular buffer)

« Can include a specified number of samples before the trigger
event.

 Useful for e.g. high speed imaging. RPN



