

UiO : University of Oslo

FYS3240- 4240 Data acquisition & control

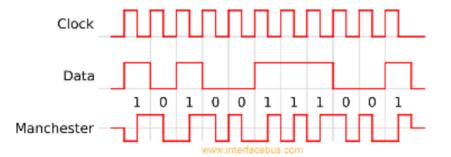
Computer buses and interfaces

Spring 2019 – Lecture #7

Reading: RWI Ch7 and page 559

Bekkeng 28.12.2018

Abbreviations

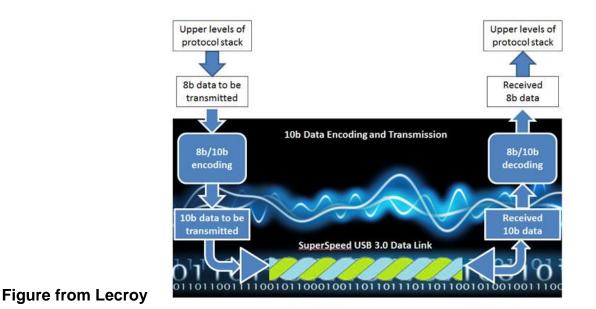

- B = byte
- b = bit
- M = mega
- $G = giga = 10^9$
- k = kilo = 1000
- K = 1024 (= 2¹⁰)

PCM : Manchester encoding

- A serial digital signal (a sequence of data bits of level '0' or '1' along a single path) is often referred to as a pulse code modulation (PCM).
- The data and clock are combined into one signal, so that the receiver can recover the transmitter clock (self-clocking).
 - XOR of data and clock (in principle)
 - Gives at least one transition for each clock period

'1' is a low to high transition'0' is a high to low transition

Why use Manchester type encoding?


- Even if the transmitter and receiver are almost perfectly synchronized, the infinitesimal delay of the transmission medium would have to be accounted for.
- Adding a separate clock line when possible doubles the number of wires.
- For wireless transmission the data and clock has to be combined into one signal.
- A long string of nulls (zeroes) will look like a dead or disconnected line.
- A long sting of ones look like a stuck level.
- Need transitions between '0' and '1' to recover the clock.
- Voltage averaged over time should tend toward zero (no DC offset).

Different encoding techniques

- Problem:
 - Manchester encoding doubles the bandwidth requirement of the telemetry.
- Solution:
 - Use another "similar" but more effective code, such as 8b/10b

8b/10b encoding

- In telecommunications, 8b/10b is a line code that maps 8-bit symbols to 10-bit symbols to achieve DC-balance and provide enough state changes to allow reasonable clock recovery.
 - DC-balance: equal number of '0' and '1' transmitted.
- 8b/10b used in USB 3.0, SATA, PCI express, some Ethernet standards etc.

The most common data acquisition & control buses available today

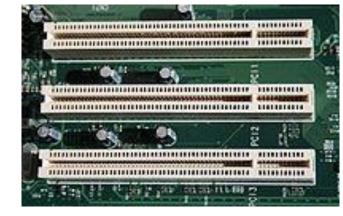
• PCI

- PCI Express
- USB
- Ethernet
- PXI
- PXI Express
- RS-232
- RS-485/422

Internal PC bus

Some important bus parameters:

- Bandwidth (MB/s)
- Serial / Parallel
- Shared / dedicated resource
- Maximum bus length
- Latency (delay)

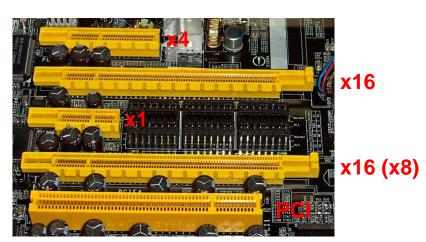

No bus is perfect for all needs and applications!

PCI

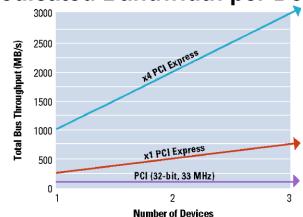
- PCI = (Peripheral Component Interconnect)
- Supports 32 and 64 bits
- <u>Shared</u> parallel bus!
- Maximum bandwidth (peak) of 132 MB/s (32-bits at 33 MHz)
- 33 MHz and 66 MHz versions
- Theoretical maximum of 532 MB/s (64 bits at 66 MHz)
- However, anything above 32 bits and 33 MHz is only seen in high-end systems)

PCI Interface cards

 PCI cards always requires additional driver software to interface between the operating system, the application and the PCI hardware card.


Figure 7-42. PCI interface card (ADDI-DATA APCI-3001)

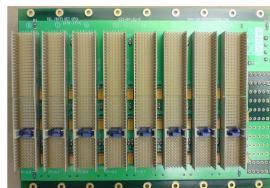
PCI Express (PCIe)


- A point-to-point serial bus, rather than a shared parallel bus architecture
- PCIe slots may contain from one to thirty-two lanes, in powers • of two (1, 2, 4, 8, 16 and 32) 16 Jane slot:
- Dedicated bandwith for each device/slot •
 - v1: 250 MB/s (duplex) per lane
 - v2: 500 MB/s (duplex) per lane
 - v3: 985 MB/s (duplex) per lane
 - v4: 1969 MB/s (duplex) per lane

- v1.x: 4 GB/s (32 Gb/s)
- v2.x: 8 GB/s (64 Gb/s)
- v3.0: 16 GB/s (128 Gb/s)

V4: 2014 - 2015

Dedicated Bandwidth per Device

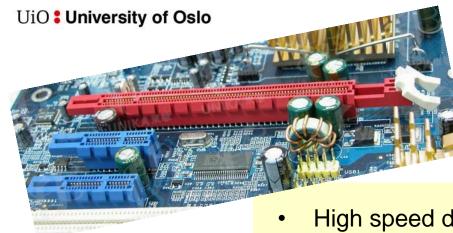


CompactPCI

- It is electrically a superset of PCI with a different (smaller) physical form factor
- CompactPCI supports twice as many PCI slots
- Compact PCI cards are designed for front loading and removal from a card cage. The cards are firmly held in position by <u>card guides</u> on both sides, and <u>a face plate which solidly screws</u> into the card cage.
- Cards are <u>mounted vertically</u> allowing for natural or forced air convection for cooling
- Better shock and vibration characteristics than the card edge connector of the standard PCI cards
- Allows <u>hot swapping</u>, a feature that is very important for fault tolerant systems and which is not possible with standard PCI.

PXI and PXI-Express

- **PXI = PCI eXtensions for Instrumentation (PXI)** ٠
- National Instruments developed and announced the ٠ PXI specification in 1997
- Based on and compatible with **CompactPCI**
- PXI defines a rugged PC-based platform for ٠ measurement and automation systems
- Gives the ability to expand your system far beyond • the capacity of a desktop computer with a PCI/PCIe bus.
- One of the most important benefits PXI offers is its ٠ integrated timing and triggering features. Without any external connections, multiple devices can be synchronized by using the internal buses resident on the backplane of a PXI chassis
- By taking advantage of <u>PCI Express technology</u> in the backplane, PXI Express increases the available PXI bandwidth from 132 MB/s to 8 GB/s

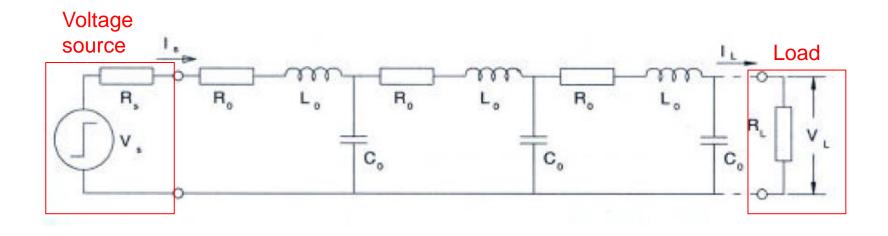


Chassis

ExpressCard

- Successor technology to PCMCIA and PC Card standards.
- Form factor of a peripheral interface designed for laptop computers
- Commonly used for DAQ cards, network cards and modems for laptops
- Serial bus
- 480 Mb/s (USB 2.0 mode) or 2.6 Gb/s (PCIe mode)

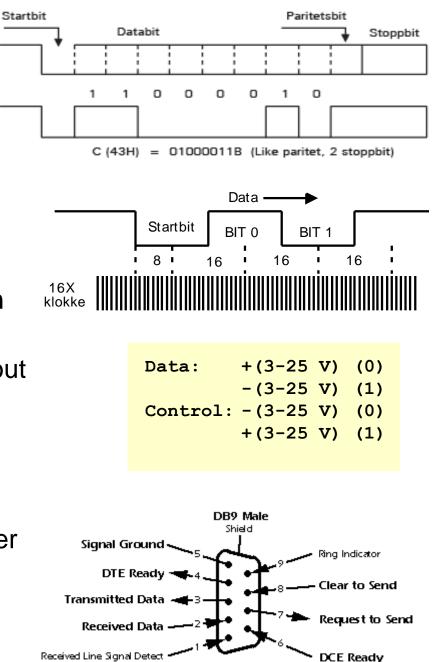
Towards serial buses - PCI Express, USB, SATA ...

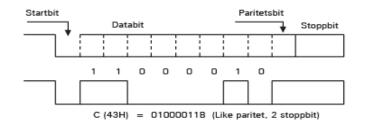

- High speed data transfer on long cables: the bits on different wires may not reach the receiver circuit exactly at the same time. Not the case on serial lines → may increase speed without problems
- Crosstalk between lines at high frequency is avoided by using one or two data lines only
- Hence, parallel cables are more expensive in production
- Serial internal buses give less motherboard routing, simpler layout and smaller dimensions
- PCIe is just one example of a general trend away from parallel buses to serial interconnects.
- Other examples include Serial ATA (SATA, eSATA) and USB

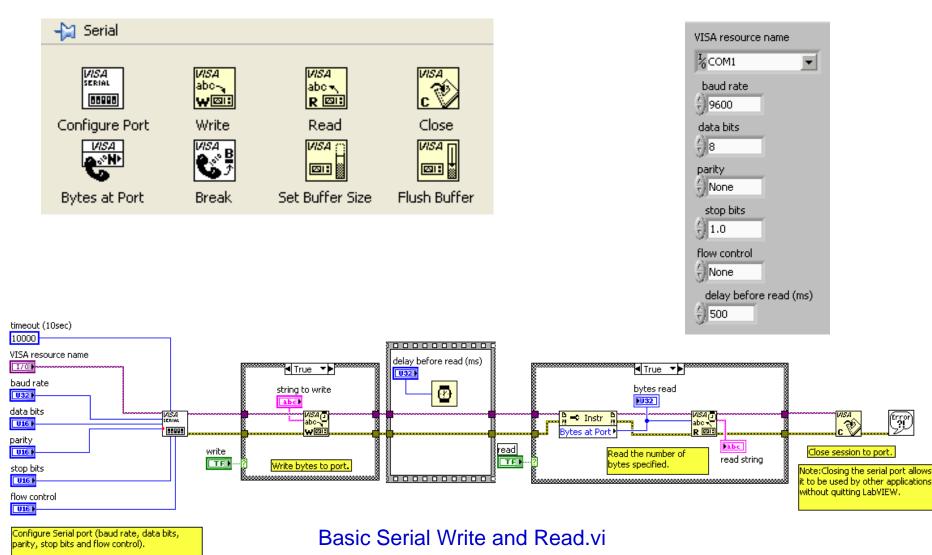
External computer interfaces

- RS-232
- RS-422
- RS-485
- USB

- Not directly available on the computer, but a converter attached to USB or RS-232 can be used. Or get a PCI/PXI card
- Thunderbolt
 - Not common in instrumentation (so far)!
- Ethernet


Transmission line equivalent circuit


The source (sensor) resistance R_s and the total cable capacitance C (n*C₀) creates a low pass filter with cut off frequency f = 1/(2 π R_sC)


Serial port: RS-232

- Point-to-point interface
- Single-ended data transmission
- Common bit frequencies are from 9.6 kHz up to 115.2 kHz (or higher)
- Maximum cable length is about 15 m
 - depends on cable capacitance (2500 pF)
- Maximum data rate (standard) is about
 20 kbit/s at 12 meter
 - 1 Mbit/s exist
- Minimal 3-wire connection is:
 - Rx, Tx and GND (two way data flow)
- Common ground (between transmitter and receiver)
 - Can create noise problems
- Suitable for many control and DAQ applications! (See RWI p.559)

LabVIEW Serial: RS-232

RS-422

- Multi-drop interface with a <u>single transmitter</u> but <u>multiple</u> receivers
- Differential data transmission (balanced transmission)
 - The two wires have opposite polarity.
 - Cancel out the effects of ground shifts and induced noise signals that can appear as common mode voltages on a network
- Maximum cable length is about **1200 meters.**
- Maximum data rate is 35 Mbit/s
 - Depends on cable length
 - Max speed at 1200 meter is 100 kbit/s

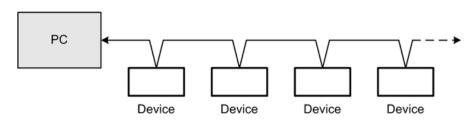


Figure 7-26. RS-485 multidrop

RS-485

- Upgraded version of RS-422
- Multi-point network consists of <u>multiple drivers and multiple</u> receivers

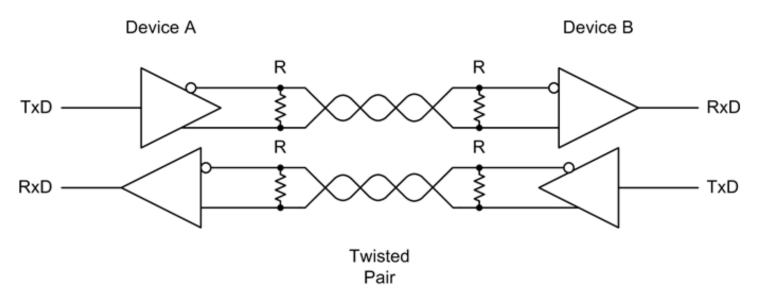


Figure 7-25. RS-485 interface drivers in four-wire mode

Why use RS-232 / 422 / 485 when possible?

- Can just pass ASCII strings to control the external device, such as motors.
- Only need the device manual to look up the ASCII commands.

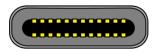
USB (Universal Serial Bus)

- Theoretical maximum data rates:
 - USB 1.0 1996 : 12 Mbit/s
 - USB 1.1 1998 : 12 Mbit/s
 - USB 2.0 2000 : 480 Mbit/s

 - USB 3.0 2008 : 5.0 Gbit/s (SuperSpeed)
 - commercially available in 2010
- Maximum cable length of 5 meters
 - 26 ns * 3*10⁸ m/s * 0.65 = 5.07 m (USB 2.0)
- •Differential signaling (twisted pairs)
 - +5V GND D+ D-

•Power: 500 mA or 2.5 W (USB 2.0), 900 mA or 4.5 W (USB 3.0) •Increase the cable length up to 30 m by using:

- USB repeaters (up to five repeaters)
- Active Cables (bus-powered)



USB 3.0 Connector Pinouts ^[45]				
Pin	Color	Signal name ("A" Connector)	Signal name ("B" Connector)	Description
Shell	N/A	Shield		Metal housing
1	Red	VBUS		Power
2	White	D-		- USB 2.0 differential pair
3	Green	D+		
4	Black	GND		Ground for power return
5	Blue	StdA_SSRX-	StdB_SSTX-	SuperSpeed transmitter differential pair
6	Yellow	StdA_SSRX+	StdB_SSTX+	
7	N/A	GND_DRAIN		Ground for signal return
8	Purple	StdA_SSTX-	StdB_SSRX-	- SuperSpeed receiver differential pair
9	Orange	StdA_SSTX+	StdB_SSRX+	

New USB standards in 2015

- USB 3.1 preserves the existing SuperSpeed USB transfer rate, now called USB 3.1 Gen 1 (= old USB 3.0)
- USB 3.1 Gen2: 10 Gbit/s
- USB Type C
 - a new small reversible-plug connector for USB devices
 - up to 100 W power supported
 - 5 A and 20 V

Windows Virtual Serial Ports (VSP)

- Virtual COM port (VCP).
- Can buy hardware boxes to convert between different interfaces.

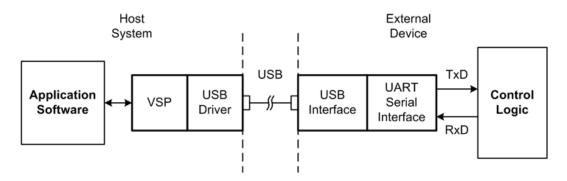


Figure 7-34. USB-to-serial interface

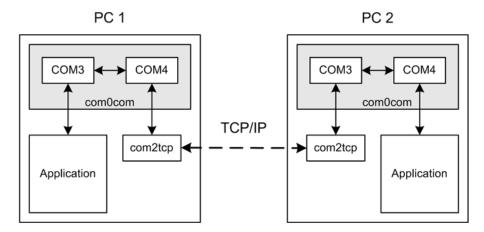
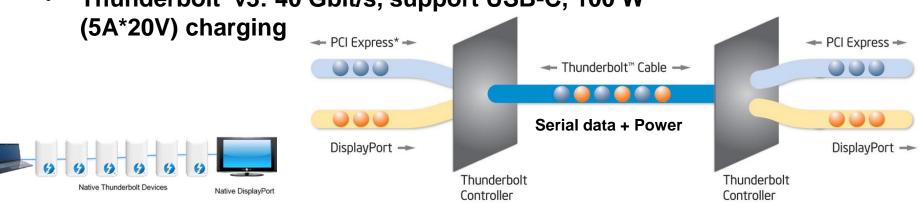
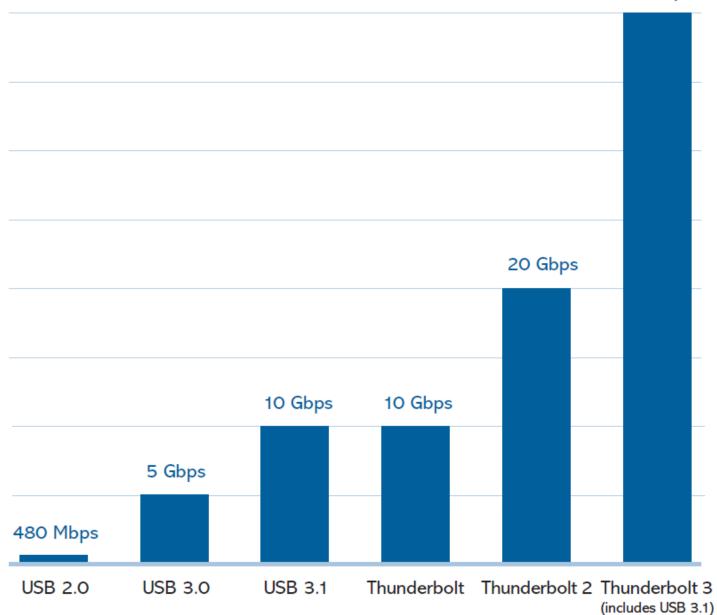



Figure 7-36. com0com over TCP/IP

Thunderbolt

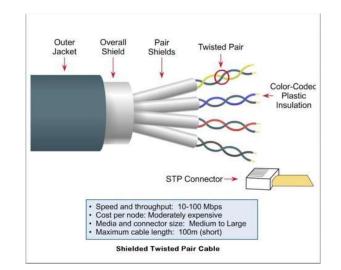
- Developed by Intel.
- Commercially introduced by Apple
 - Introduced on Apple MacBook Pro in 2011
- The connector is Mini DisplayPort (electrically identical to DisplayPort)
- **Bi-directional 20 Gbit/s** ٠
 - Thunderbolt v1: 10 Gbit/s on two channels in each direction
 - Thunderbolt v2: 20 Gbit/s on one channels in each direction
 - Power: 550 mA, 18 V (9.9 W) for v1 and v2
- Combines PCI Express and Display Port ٠
- **Maximum cable length of 3 meters** (100 m with optical) ٠
- Can daisy chain up to 6 devices ۲
- Thunderbolt v3: 40 Gbit/s, support USB-C, 100 W • (5A*20V) charging



Mini DisplayPort

UiO **Conversity of Oslo**

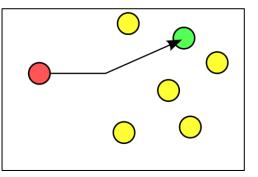
40 Gbps

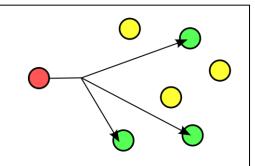

Ethernet network

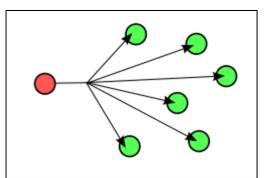
RJ45

- LAN (local area network)
 - a computer network that connects computers and devices in a limited geographical area
- 1000BASE-T (IEEE 802.3ab) is a standard for <u>gigabit Ethernet</u> over copper wiring
 - Theoretical maximum data rate of <u>125 MB/s</u>
 - Each network segment can have a maximum length of 100 meters
 - If longer cables are required, the use of active hardware such as repeaters, or <u>switches</u>, is necessary
 - Can also use converters and fiber optic cables to extend to many kilometers
 - Must use Category 5 cable or better (4 twisted, usually unshielded) pairs)
- Must configure an IP-address and a subnet

Ethernet network II

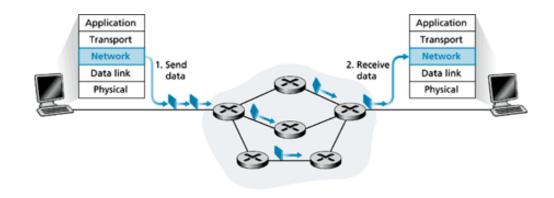

- Category 6 cable (Cat 6)
 - today standard for Gigabit Ethernet
 - backward compatible with the Category 5/5e
 - suitable for 10-Gigabit Ethernet (10GBASE-T)
- PC connection to an Ethernet network
 - NIC (Network Interface Controller/Card) for PCI or PCIe
 - Every NIC has a unique 48-bit serial number (MAC address) stored in a ROM





Unicast, multicast and broadcast

- Unicast
 - Sending of messages (packages) to a single network destination identified by unique address.
- Multicast
 - A transmission to a group on the network
 - To receive data a client must join the multicast group
 - Multicasting uses the IGMP (Internet Group Management Protocol) and requires an IGMPcompliant switch
- Broadcast
 - Transmitting the same data to all possible destinations (every device on the network)



LAN

- A local area network (LAN) is a computer network that connects computers and devices in a limited geographical area
 usually high data-transfer rates
- <u>Ethernet</u> is the most commonly used LAN technology

IP and TCP

- TCP and IP are two of the most important communication protocols used for the Internet
- TCP = Transmission Control Protocol, IP = Internet Protocol
- TCP complements the Internet Protocol (IP), which is unreliable
- TCP/IP: IP handles addressing and routing of message, <u>while TCP</u> provides a reliable and in sequence data delivery without errors, loss (no packets are lost) or duplication

• TCP:

- Flow control (does not send data faster than the receiver can read)
- Saturation control (slower transmission when network problems)
- Retransmission of data when needed (data lost or not acknowledged in time)
- Example of use of TCP/IP: File transfer (FTP), HTTP

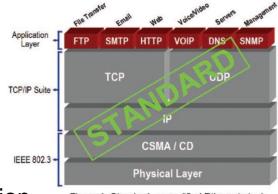


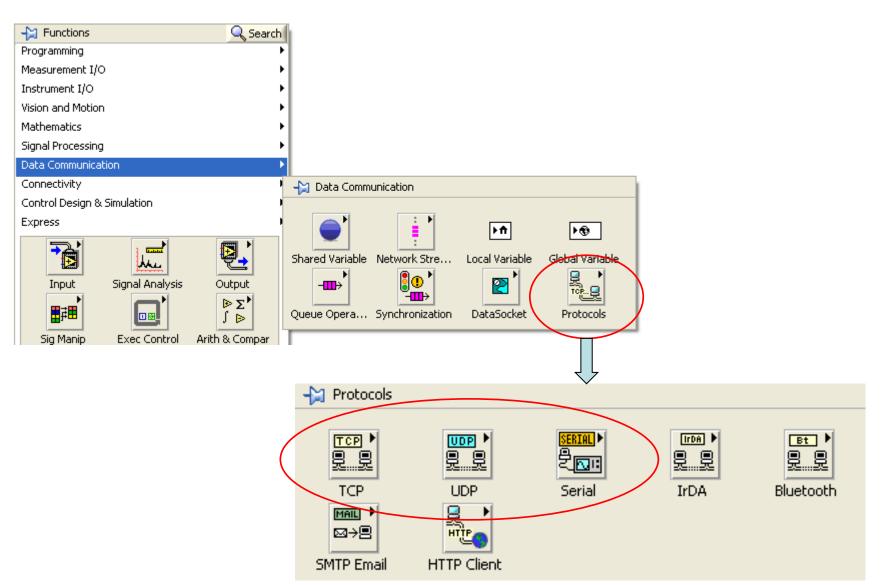
Figure 1- Standard, unmodified Ethernet stack

tids-

frist

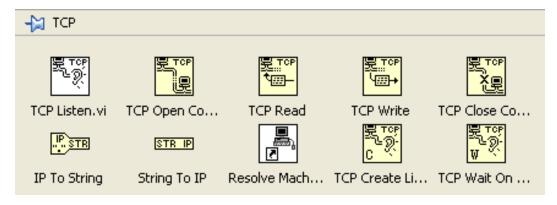
tids-

frist

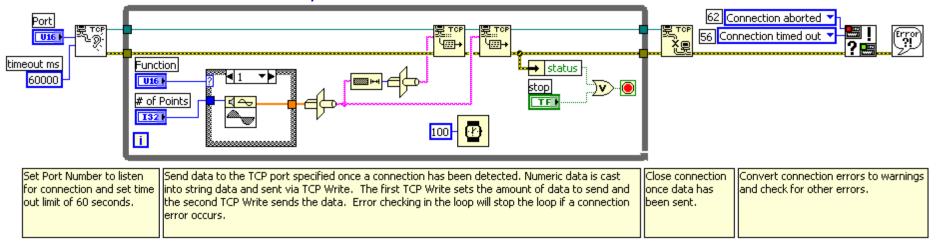

ramme

ramme

TCP


- TCP is a connection-based protocol, which means that a connection must be established before transferring data
 - Data transmission occurs between a client and a server
 - TCP permits multiple, simultaneous connections
- In order to establish a TCP connection you have to specify an address and a port at that address
 - The port numbers allow different applications on the same computer to share network resources simultaneously
 - In TCP (and UDP) port numbers start at 0 and go up to 65535.
 Numbers in the lower ranges are dedicated to common Internet protocols (like 21 for FTP and 80 for HTTP).

LabVIEW Data Communication



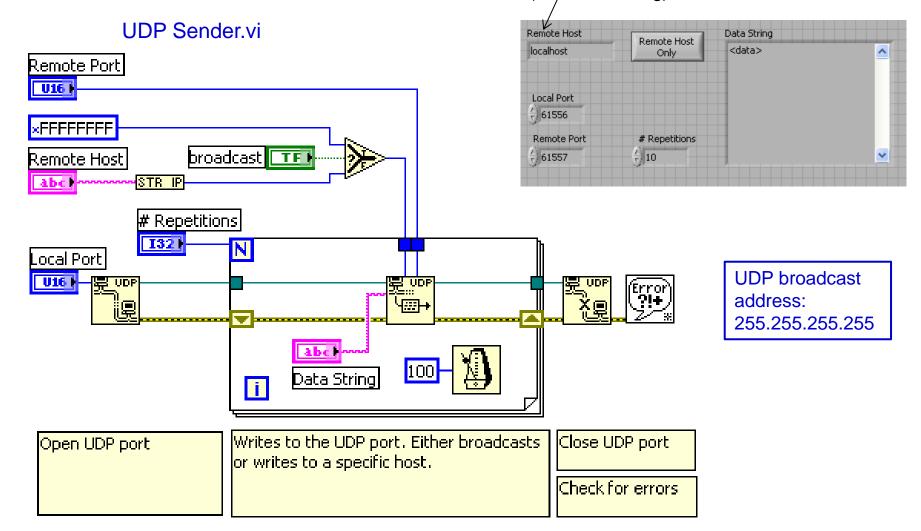
LabVIEW TCP Example

Demonstrates how to set up a TCP connection, and send data to a specified port once a connection (from a client) has been established

Simple Data Server.vi

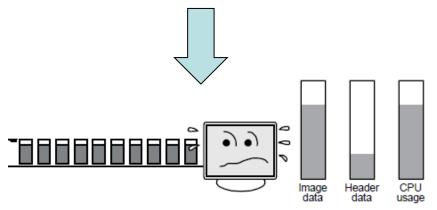
UDP

- Used for broadcast and multicast of data
- Not reliable (packets can be lost)
- UDP:
 - No flow control
 - No saturation control
 - No retransmission of data
- UDP share the same delivery problems as IP
- However,
 - UDP does not wait to confirm a connection before data transmission, and therefore <u>no delay is introduced</u>
 - Small overhead (compared to TCP)
 - UDP send rate only limited by the rate of data generation, CPU, clock rate and access to Internet bandwidth
- Example of use of UDP:
 - Video-conference (video distribution)
 - Sensor data distribution
 - NTP (network time protocol)



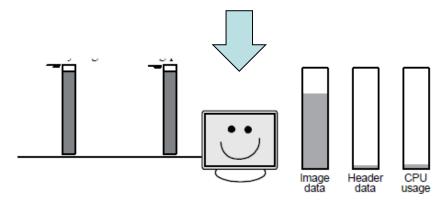
UiO : University of Oslo

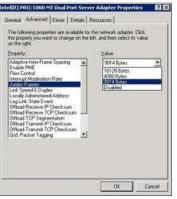
LabVIEW Example: UDP Send



localhost = this machine; IP = 127.0.0.1 (used for testing)

Jumbo frames


- In the early days of networking the maximum packet (frame) size was 1518 bytes.
- With today's high transmission rates, the task of analyzing each packet can overwhelm the CPU.



A common jumbo frame size is 9 kB (8192 bytes is often used), though IPv4 supports jumbo packets up to 64 kB. Make sure that your NIC supports jumbo frames

• By using jumbo packets, you can transmit the same amount of data with fewer packets.

• Though you save a small amount of bandwidth (by using fewer headers), you dramatically reduce CPU usage because your PC spends less time analyzing packets.

LAC - Configure