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• Note:  Some examples (Figures) from the book Real World 

Instrumentation with Python: Automated Data Acquisition and 

Control Systems

– Ch. 9, page 303 – 339



Topics

• Linear vs. nonlinear control examples

• Open loop vs. closed loop control

• Discrete-time closed loop system

• PID control

• Control system examples

– Motor control

– Water tank

– Satellite control

– Missile guidance and control



PC-based automated lab test setup

Figure from Real World Instrumentation with Python (oreilly.com)

For instance make a frequency sweep 

(sinusoidal signal with changing frequency) to 

determine the frequency response of a circuit 

or Oscilloscope

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Linear control systems

Figure from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Nonlinear control systems

Figures from Real World Instrumentation with Python (oreilly.com)

Example 1 (on/off controller)

Example 2 (Pulse Width Modulation, 

PWM, controller)

Threshold

values

on

off

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Nonlinear bang-bang (on/off) controllers

• On/off controller that switches between two states; either 

completely on or completely off.

– Often used for temperature control.

– Also used in old missiles for fin control (+/- full deflection)

• Often hysteresis is used

– To avoid to frequent on/off switching.

Figures from Real World Instrumentation with Python (oreilly.com)

Hysteresis

(low/high threshold)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Sequential control systems

Sequential power control

Figures from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Open-loop control



Open-loop control

Figure from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Open-loop light control system

Figure from Real World Instrumentation with Python (oreilly.com)

• Turn on a lamp on for a given time if a motion is detected.

• On/off control

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Simple open-loop motor control

• Motor rotation rate will vary with load!

– Not a good controller! 

Figure from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Closed-loop control



Closed-loop control

Figures from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


PWM motor speed control with feedback

Figure from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Commercial DC motor controller with

RPM feedback

Figure from Real World Instrumentation with Python (oreilly.com)

RPM = rotations per minute

ASCII commands

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Closed-loop water tank control system

Figure from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Closed-loop water tank control system

Figures from Real World Instrumentation with Python (oreilly.com)

Proportional control

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Discrete-time closed loop system

• ADC

• DAC

• Clock

– For synchronization

Figure from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


Control software flow

Figures from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


PID control



Temperature controller example

• We need to build a temperature controller that can control the 

temperature of an aluminum block to be close to a given set 

point Tset point which is higher then the surrounding temperature.

• We will read the temperature of the block, Tblock, using a 

temperature sensor.

• Assume a Thermoelectric (TE) heater/cooler attached to the 

block, such that we can heat or cool the block by changing the 

current (I) direction.

• A voltage Vin is used to control the current flow

– Using a voltage to current converter (driver) circuit.

Aluminum block

TE heater/

cooler
I

Heat flow

Aluminum block

TE heater/

cooler I

Heat flow

cool heat

Vin

e

Vmax

- Vmax



Proportional control of temperature

• The error e is defined to be:  𝑒 = 𝑇𝑠𝑒𝑡 𝑝𝑜𝑖𝑛𝑡 − 𝑇𝑏𝑙𝑜𝑐𝑘

• The control voltage is set to 𝑉𝑖𝑛 = 𝐾𝑝𝑒, where 𝐾𝑝 is a 

constant called the proportional gain.

• Problem:

– When e = 0  the power to the heater is turned of.

–  The block will stabilize at a temperature below the set point, 

since the sample will lose heat to the surroundings.

• Solution:

– Include a constant V0 that can counteract the heat loss to the 

surroundings

𝑉𝑖𝑛 = 𝐾𝑝𝑒 + 𝑉0



PI control of temperature

• Instead of trying to find the correct constant value for 𝑉0 we 

want to build some intelligence into the control system.

• We want to find the proper value of 𝑉0, given the chosen set 

point, automatically.

– We use an integral to construct the correct constant during 

runtime.

• The integral keeps a running sum of all the error values (up to 

time t).

• 𝐾𝑖 is a constant that need to be selected.

𝑉𝑖𝑛 = 𝐾𝑝𝑒 + 𝐾𝑖න
0

𝑡

𝑒 𝑑𝑡



PID control of temperature

• A derivative term can be added to damp out oscillations

𝑉𝑖𝑛 = 𝐾𝑝𝑒 + 𝐾𝑖න
0

𝑡

𝑒 𝑑𝑡 + 𝐾𝑑
𝑑𝑒

𝑑𝑡

constants



Discrete-sampling PID control of 

temperature

• Sample interval of 𝛥t

• After n samples the continuous time equation can be 

approximated with:

Sum over all error values 

since the control algorithm 

was turned on 

𝑉𝑖𝑛 = 𝐾𝑝𝑒𝑛 + 𝐾𝑖∆𝑡 

𝑚=0

𝑛

𝑒𝑚 +
𝐾𝑑
∆𝑡

𝑒𝑛 − 𝑒𝑛−1



PID controller summary

• Proportional-Integral-Derivative (PID) algorithm is the most 

common control algorithm

– Used for heating and cooling systems, fluid level control, pressure 

control, …

• Calculates a term proportional to the error - the P term.

• Calculates a term proportional to the integral of the error -

the I term.

• Calculates a term proportional to the derivative of the error -

the D term.

• The three terms - the P, I and D terms, are added together to 

produce a control signal that is applied to the system being 

controlled.

• Sometimes a PI-controller is used.



PID controller – general terms  

• A PID controller continuously calculates an error value as the difference 

between a measured process variable and a desired set point.

• The controller attempts to minimize the error e over time, by adjustment of a 

control variable u(t) , such as the position of a control valve.

• P accounts for present values of the error.

• I accounts for past values of the error, accumulates over time.

• D accounts for possible future values of the 

error, based on its current rate of change.

• Must tune the coefficients Kp, Ki and Kd.

In general PID does not provide optimal control,

since no modelling of the Plant/process is used. 



Figure from Real World Instrumentation with Python (oreilly.com)

https://www.oreilly.com/library/view/real-world-instrumentation/9780596809591/


PID controller tuning examples

undershoot

overshoot

= set point



Satellite control



Active attitude control

• With active attitude control, we estimate the spacecraft attitude 

and control actuators to actively change it to a desired attitude.

Sensors

Kalman filter

PID, B-dot

Thrusters

Reaction wheels

Magnetorquers

control 

torque

disturbance 

torque

𝐴𝑅𝐵



Magnetic Torque Attitude control

• The attitude control is performed using actuator coils. 

• Three coils (magnetorquers) are used to control the attitude, 

one for each axis. 

• The coils generates a magnetic field that interacts with the 

Earths magnetic field and creates a moment.

Figure from Hindawi

One possible control method – usually combined with another method



Magnetic Torque Attitude control

• The moment 𝝉 is given by 𝝉 = 𝒎 𝑥 𝑩

• Where m = nIA

• Decomposed in the spacecraft body frame {b} we get:

m

B

𝝉commanded magnetic 

dipole moment

Number of turns

(constant)
Current through 

the loop 

(direction and 

magnitude)

Coil/loop area

(constant)

Earth’s magnetic field vector 

(proportional to 1/r3 with r the 

distance of the center of Earth to 

the spacecraft
m

I

A

𝝉𝑏 = 𝒎𝑏 × 𝑅𝑏𝑒𝑩𝑒

magnetic field vector in frame {e} 

given from a model
Required dipole moment 

must be calculated!





Satellite control – detumbling

• The first task a spacecraft attitude control system must perform 

after separation from the launcher is to detumble the 

spacecraft, i.e., to bring it to a final condition with a sufficiently 

small angular velocity in all three axis.

• Will present a common control algorithm that is used to 

detumble (null the angular velocity) of a spacecraft.

– Magnetic control has been used for decades to fulfill this task.

• Detumbling is necessary for satellites after orbital insertion

– Also used on CubeSats.

CubeSTAR - Department of Physics (uio.no)

Figure from (mdpi.com)

https://www.mn.uio.no/fysikk/english/research/projects/cubestar/index.html
https://www.mdpi.com/2226-4310/6/12/130/htm


Detumbling using B-dot algorithm 

• The principle of the B-dot algorithm relies on the usage of 

magnetorquers to generate a torque which is opposed to the “natural” 

rotation of the satellite, in order to reduce the angular rate.

• The control law creates a magnetic dipole in the opposite direction to 

the change in the magnetic field.

• The B-dot controller uses a magnetometer to derive the angular 

rates  No IMU / rate gyroscope is required!

• B-dot control law (represented in body frame):

required magnetic 

dipole moment

a constant

(to be tuned)

The time derivative of the 

B-field vector measured by 

the magnetometer 

b bk m B



Why the B-dot controller works

• The relation between the B-field vector in body frame {b} and 

an inertial frame {i}:

• Time derivation of the B vector gives:

bi bi  ω

i ib bRB B

 i ib b bi bR  B B ω B

ሶ𝐁𝑏 = −𝛚𝑏𝑖 × 𝐁𝑏

 i ib b bi bR  B B B

Remember:

NB: see inertial navigation lecture

~ 0 during the short 

sampling interval

Measured by an IMU/rate 

gyroscope. So, it is possible 

to avoid derivation of the B-

field …

m

B

 τ

B-dot method 

generate a torque  

which is opposed 

to the rotation of 

the satellite



Derivation of signals

• B-dot can be calculate from

• Note that a derivation  (finite difference) amplify the noise in the 

measurements

– A filter should be used to lower the noise level.

1n n
n

B B
B

t








A practical implementation of the       

B-dot algorithm

• B-dot control is often implemented as a bang-bang control 

law (to avoid the difficulty of tuning the constant k).

• Assume that each magnetorquers can produce a maximum 

dipole moment of ±𝑚𝑖
𝑚𝑎𝑥 in each axis, where i = 1,2,3.

• Then the bang-bang B-dot detumbling control commands in 

each axis is given by

( )max

i i im m sign B 

0iB 

0iB 

1 if

-1 if



Missile Guidance & Control



Missile guidance

• A missiles is guided towards a target by generating an 

acceleration Az normal to the missile longitudinal axis

– This force gives a change in the velocity vector V.

• (The required force is created by a lift force, by controlling 

aerodynamic surfaces / fins)

z
z

F
A

m




Estimator

Control

IMU data used in  

feedback loops

Figure from Johns Hopkins - HOMING MISSILE GUIDANCE AND CONTROL

Missile Guidance, navigation & control 

(GNC)

Azc
𝛿𝑐

https://www.jhuapl.edu/TechDigest/Detail?Journal=J&VolumeID=29&IssueID=1


Missile acceleration control autopilot

• Used in all missiles.

• Classical approach to the design of an acceleration control 

autopilot:

– The difference between the scaled input acceleration command 

Azc and the measured acceleration Az is multiplied by a gain Ka to 

effectively form a pitch rate command. The difference between the 

effective pitch rate command and the measured pitch rate q is 

multiplied by a gain Ki and integrated with respect to time. The 

resulting integral is differenced with the measured pitch rate q and 

multiplied by a third gain Kr to form the control command 𝛿𝑐 such 

as desired fin-deflection angle

Figure from Johns Hopkins - HOMING MISSILE GUIDANCE AND CONTROL

fins

c for control

https://www.jhuapl.edu/TechDigest/Detail?Journal=J&VolumeID=29&IssueID=1


But how do we calculate the required 

acceleration Az ?

• Lets have a look in 2D (for simplification).

• Homing missiles (with a missile seeker in the nose) use a 

guidance method called proportional navigation (PN), given 

by

• The missile is guided towards an intercept point.

zA NV

LOS-

vector

B = missile

T = targetNavigation 

constant

(3 – 5)

Line-of-sight (LOS) 

rate towards the 

target, calculated 

by the seeker

Missile velocity 

magnitude  |𝑣𝐸|
calculated from an 

IMU
E-frame


