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2024 FYS3400 Lecture Plan (based on C.Kittel’s Introduction to Solid State Physics, Chapters 1-9, 17-20)

Module I – Periodity and Disorder (Chapters 1-3, 19, 20) calender week

Mo 15/1  10-12 Introduction. Crystal bonding. Periodicity and lattices. Lattice planes and Miller indices. Reciprocal space. 3

Th  18/1  10-11   Bragg diffraction and Laue condition 

Mo  22/1 10-12 Ewald construction, interpretation of a diffraction experiment, Bragg planes and Brillouin zones 4

Th   25/1 10-11  Surfaces and interfaces. Disorder. Defects crystals. Equilibrium concentration of vacancies 

Mo  29/1 10-12 Mechanical properties of solids. Diffusion phenomena in solids 5

Th    1/2 10-11   Summary of Module I 

Module II – Phonons  (Chapters 4, 5, and 18 pp.557-561)

Mo   5/2 10-12   Vibrations in monoatomic and diatomic chains of atoms; examples of dispersion relations in 3D 6

Th    8/2 10-11 Periodic boundary conditions (Born – von Karman); phonons and its density of states (DOS) 

Mo  12/2 10-12   Effect of temperature - Planck distribution; Lattice heat capacity: Dulong-Petit, Einstein, and Debye models 7

Th   15/2 10-11 Comparison of different lattice heat capacity models 

Mo  19/2 10-12 Thermal conductivity and thermal expansion 8

Th   22/2 12-13 Summary of Module II

Module III – Electrons (Chapters 6, 7, 11 - pp 315-317, 18 - pp.528-530, 19, and Appendix D)

Mo 26/2  10-12 Free electron gas (FEG) versus free electron Fermi gas (FEFG); DOS of FEFG in 3D 9                            

Th 29/2  10-11 Effect of temperature – Fermi-Dirac distribution; Heat capacity of FEFG in 3D 

Mo  4/3  10-12   DOS of FEFG in 2D - quantum wells, DOS in 1D – quantum wires, and in 0D – quantum dots 10

Th   7/3  10-11 Transport properties of electrons

Module IV – Disordered systems (guest lecture slides - Joakim Bergli)

Mo 11/3 10-12 Thermal properties of glasses: Model of two level systems 11      

Th  14/3  10-11 Electron transport in disordered solids: wave localization and hopping 

Mo 18/3  10-12 Advanced theory of disordered systems 12

Th 21/3  10-11 Summary of Module IV 

Easter

Module V – Semiconductors (Chapters 8, 9 pp 223-231, and 17, 19)

Th   4/4  10-11 Recap of Module III 14

Mo  8/4  10-12 Origin of the band gap; Nearly free electron model; Kronig-Penney model 15

Th 11/4  10-11 Effective mass method for calculating localized energy levels for defects in crystals

Mo 15/4 10-12 Intrinsic and extrinsic electrons and holes in semiconductors 16

Th  18/4 10-11 Carrier statistics in semiconductors

Mo 22/4 10-12 p-n junctions 17

Th  25/5 10-11 Optical properties of semiconductors 

Mo 29/4 10-12 Advanced photonic devices including quantum tech 18

Th 2/5  10-11 Summary of Module V 

Summary and repetition 

Mo  6/5  10-12 Repetition - course in a nutshell 19

Exam: oral examination tentatively during week 20 or 21



Condensed Matter Physics

Solid State Physics of Crystals

Properties of Waves in Periodic Lattices

Electron waves in lattices

Free electrons
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Elastic waves in lattices

Vibrations

Phonon DOS

Planck distribution

Elecronic properties:
Electron concentration and transport, 

contribution to the heat capacity

Thermal properties:
heat capacity and conductance, 

thermal expansion

Advanced theory and novel materials properties
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Lecture 4: Surfaces and interfaces. Point defects and diffusion in crystals

• Surfaces and interfaces

• Structural defects in crystals

• Change in the configurational entropy due to vacancies

• Equilibrium concentration of vacancies – temperature and pressure dependences

• Watching empty lattice sites – i.e. vacancies – with positrons
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Vacancy: A point defect



Defects Dimensionality Examples

Point 0 Vacancy

Line 1 Dislocation

Surface 2 Free surface,

Grain boundary



There may be vacant sites in a crystal

Surprising Fact

There must be a certain fraction of vacant 

sites in a crystal in equilibrium.

Fact

Vacancies



• Crystal in equilibrium

• Minimum Gibbs free energy G at constant 

T and P

• A certain concentration of vacancy lowers 

the free energy of a crystal

Vacancies



Gibbs free energy G involves two terms:

1. Enthalpy H

2. Entropy S

G = H – T S

=E+PV

=k ln W

T Absolute temperature

E internal energy

P pressure

V volume

k Boltzmann constant

W number of microstates

Vacancies



D H = n D Hf

Vacancy increases H of the crystal due to energy required to break bonds

Vacancies
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Configurational entropy due to vacancy



Number of atoms: N

Number of vacacies: n

Total number of sites: N+n

How many distinguished configurations, 

so called microstates? 

We calculate this explicitly

Configurational entropy due to vacancy



Configurational entropy due to vacancy
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Equilibrium concentration of vacancies – temperature dependence
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Measure a material property 

which is dependent on neq/N vs 

T

Find the activation

energy from the 

slope
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– Copper at 1000 ºC

Hf = 0.9 eV/at        ACu = 63.5 g/mol         = 8400 kg/m-3

First find N in atoms/m-3
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Equilibrium concentration of vacancies – temperature dependence
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Al: DHf= 0.70 ev/vacancy

Ni: DHf=1.74 ev/vacancy

n/N 0 K 300 K 900 K

Al 0 1.45x10-12 1.12x10-4

Ni 0   5.59x10-30 1.78x10-10

Equilibrium concentration of vacancies – temperature dependence



• Neighboring atoms tend to move into the 

vacancy, which creates a tensile stress field 

• The stress/strain field is nearly spherical

and short-range.
ao

Equilibrium concentration of vacancy – pressure dependence

ΔGf=Ef+PVf - TSf
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Vf = Ω + relaxation volume

f
HD

Equilibrium concentration of vacancy – pressure dependence

How big the pressure should be to make 

a measurable effect on vacancy concentration?
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101.325 kPa is “one standard atmosphere” and 1 Pa = 1 N/m2

1 eV = 1.602176487×10−19 Joule 

As we calculate the effect of pressure/stress on vacancy concentration 

starts to be significant at quite high values – in the range of 100 MPa. 

Are these conditions available in real ”life” or happens only in a 

laboratory experiment? 

Equilibrium concentration of vacancy – pressure dependence
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S-parameter characterizes annihilation with low momentum valence 

electrons. Increase in S-parameter is naturaly interpreted as an 

increase in vacancy concentration  

W-paprameter characterizes annihilation with high momentum core 

electrons and increase in vacancy concentration results in decrease 

of W-parameter

Positron probing of vacancies in semiconductors
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Experimental points group around a line in the W-S plane if 

there are only two annihilation states vailable in the sample

Clustering of ion implantation induced vacancies in ZnO
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