FYS3400 - Vår 2024 (Kondenserte fasers fysikk) https://www.uio.no/studier/emner/matnat/fys/FYS3400/v24/index.html

> Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17 - 20)

David Rivas Gongora, Joakim Bergli, and Andrej Kuznetsov

delivery address: Department of Physics, PB 1048 Blindern, 0316 OSLO Tel: +4745502842 e-post: d.r.gongora@smn.uio.no visiting address: MiNaLab, Gaustadaleen 23a

2024 FYS3400 Lecture Plan (based on C.Kittel's Introduction to Solid State Physics, Chapters 1-9, 17-20)

Module I – Peri	odity and Disorder (Chapters 1-3, 19, 20)	calender week		
Mo 15/1 10-12	Introduction. Crystal bonding. Periodicity and lattices. Lattice planes and Miller indices. Recipi	rocal space. 3		
Th 18/1 10-11	Bragg diffraction and Laue condition	•		
Mo 22/1 10-12	Ewald construction, interpretation of a diffraction experiment, Bragg planes and Brillouin zone	es 4		
Th 25/1 10-11	Surfaces and interfaces. Disorder. Defects crystals. Equilibrium concentration of vacancies			
Mo 29/1 10-12	Mechanical properties of solids. Diffusion phenomena in solids	5		
Th 1/2 10-11	Summary of Module I			
Module II – Pho	onons (Chapters 4, 5, and 18 pp.557-561)			
Mo 5/2 10-12	Vibrations in monoatomic and diatomic chains of atoms: examples of dispersion relations in 3	D 6		
Th 8/2 10-11	Periodic boundary conditions (Born – von Karman): phonons and its density of states (DOS)			
Mo 12/2 10-12	Effect of temperature - Planck distribution: Lattice heat capacity: Dulong-Petit, Einstein, and D	ebve models 7		
Th 15/2 10-11	Comparison of different lattice heat capacity models			
Mo 19/2 10-12	Thermal conductivity and thermal expansion	8		
Th 22/2 12-13	Summary of Module II	-		
Module III – Electrons (Chapters 6, 7, 11 - pp 315-317, 18 - pp.528-530, 19, and Appendix D)				
Mo 26/2 10-12	Free electron gas (FEG) versus free electron Fermi gas (FEFG); DOS of FEFG in 3D	9		
Th 29/2 10-11	Effect of temperature – Fermi-Dirac distribution; Heat capacity of FEFG in 3D			
Mo 4/3 10-12	DOS of FEFG in 2D - quantum wells, DOS in 1D – quantum wires, and in 0D – quantum dots	10		
Th 7/3 10-11	Transport properties of electrons			
Module IV – Dis	sordered systems (quest lecture slides - Joakim Bergli)			
Mo 11/3 10-12	Thermal properties of glasses: Model of two level systems	11		
Th 14/3 10-11	Electron transport in disordered solids: wave localization and hopping			
Mo 18/3 10-12	Advanced theory of disordered systems	12		
Th 21/3 10-11	Summary of Module IV			
Easter	•			
Module V – Ser	niconductors (Chapters 8, 9 pp 223-231, and 17, 19)			
Th 4/4 10-11	Recap of Module III	14		
Mo 8/4 10-12	Origin of the band gap; Nearly free electron model; Kronig-Penney model	15		
Th 11/4 10-11	Effective mass method for calculating localized energy levels for defects in crystals			
Mo 15/4 10-12	Intrinsic and extrinsic electrons and holes in semiconductors	16		
Th 18/4 10-11	Carrier statistics in semiconductors			
Mo 22/4 10-12	p-n junctions	17		
Th 25/5 10-11	Optical properties of semiconductors			
Mo 29/4 10-12	Advanced photonic devices including quantum tech	18		
Th 2/5 10-11	Summary of Module V			
Summary and repetition				
Mo 6/5 10-12	Repetition - course in a nutshell	19		
Exam: oral exa	mination ter	ntatively during week 20 or 21		

Condensed Matter Physics Solid State Physics of Crystals Properties of Waves in Periodic Lattices

Elastic waves in lattices Vibrations Phonon DOS Planck distribution Thermal properties: heat capacity and conductance, thermal expansion Electron waves in lattices Free electrons Electron DOS Fermi-Dirac distribution Electronic properties: Electron concentration and transport, contribution to the heat capacity

Advanced theory and novel materials properties

Lecture 4: Surfaces and interfaces. Point defects and diffusion in crystals

- Surfaces and interfaces
- Structural defects in crystals
- Change in the configurational entropy due to vacancies
- Equilibrium concentration of vacancies temperature and pressure dependences
- Watching empty lattice sites i.e. vacancies with positrons

Lecture 3: Surfaces and interfaces. Point defects and diffusion in crystals

- Surfaces and interfaces
- Structural defects in crystals
- Change in the configurational entropy due to vacancies
- Equilibrium concentration of vacancies temperature and pressure dependences
- Watching empty lattice sites i.e. vacancies with positrons

Surface structure: some initial ideas

- surface is where the crystal periodicity is interrupted and chemical bonds are broken
- surface affects a few outermost atomic layers of the crystal surface region
- properties of the surface differ significantly from the bulk
- energy needed to break the bonds, so energy is needed to create a surface – surface energy
- Broken covalent bonds are called dangling bonds

Surface structure: surface energy

- Surface energy is always positive, since energy is needed to break bonds
 - Surface always tries to minimize its energy, i.e. reduce the number of dangling bonds
 - Surface chemically and electrically more active due to dangling bonds
- Two mechanisms for minimizing surface energy when in ultrahigh vacuum
 - Surface relaxation
 - Surface reconstruction

Surface structure: surface relaxation

- Interlayer distance is changed between the 1st and 2nd layers of atoms at the surface
 - To minimize surface energy
 - The interlayer distance is often reduced
 - In a few cases the distance increases
 - Advanced theory needed to understand
 - Many metals experience surface relaxation

Surface structure: surface reconstruction

- Surface atoms form a different structure than the bulk atoms
 - The new structure is constrained by the bulk structure
 - The unit cell in the new structure is different from the bulk unit cell
 - Si(001) as an example
 - Diamond structure
 - Two dangling bonds per surface atom
 - 2-D unit cell with lattice constant (2)^{1/2}a/2

Surface structure: surface crystallography

Surface structure: surface crystallography

$$\vec{H} = h\vec{x} + k\vec{y} + l\vec{z}$$
Surface density:
fcc, (111)>100>110
fcc, (110)>100>111
fcc
 $\vec{L} = 2^{0.5}a$
 $\vec{L} = 2^{0.$

d=a (110)

d=2+0.5a

(111)

d=a

(100)

d=a

(110)

Surface states: origin

- There exist electronic states on a semiconductor surface surface states
 - The electronic states are bound to the surface
 - Their energy levels are within the band gap of the bulk semiconductor
- Dangling bonds are the origin of surface states
 - A dangling bond can donate its lone electron or accept another electron
 - It is both a donor and an acceptor
- Doping the surface region difficult due to compensation
 - Surface Fermi level doesn't move when doped Fermi-level pinning
 - surface Fermi level is pinned
 - Since the Fermi level is horizontal, the energy bands are bent

Lecture 4: Surfaces and interfaces. Point defects and diffusion in crystals

- Surfaces and interfaces
- Structural defects in crystals
- Change in the configurational entropy due to vacancies
- Equilibrium concentration of vacancies temperature and pressure dependences
- Watching empty lattice sites i.e. vacancies with positrons

Defects Dimensionality Examples

- Point0Vacancy
- Line 1 Dislocation
- Surface2Free surface,
 - Grain boundary

Fact

There *may* be vacant sites in a crystal

Surprising Fact

There *must* be a certain fraction of vacant sites in a crystal in *equilibrium*.

- Crystal in equilibrium
- Minimum Gibbs free energy G at constant T and P
- A certain concentration of vacancy lowers the free energy of a crystal

Gibbs free energy G involves two terms:

1. Enthalpy H = E + PV

2. Entropy $S = k \ln W$

- *E* internal energy
- P pressure
- V volume
- *k* Boltzmann constant *W* number of microstates

G = H - T S

T Absolute temperature

$\Delta H = n \Delta H_f$

Vacancy increases *H* of the crystal due to energy required to break bonds

Lecture 4: Surfaces and interfaces. Point defects and diffusion in crystals

- Surfaces and interfaces
- Structural defects in crystals
- Change in the configurational entropy due to vacancies
- Equilibrium concentration of vacancies temperature and presure dependences
- Watching empty lattice sites i.e. vacancies with positrons

Configurational entropy due to vacancy

$\bullet \bullet \bullet \bullet \bullet$ $\bullet \bullet \bullet \bullet$ \bullet \bullet \bullet \bullet

Configurational entropy due to vacancy

Number of atoms: N
Number of vacacies: n
Total number of sites: N+n
How many distinguished configurations, so called microstates?

We calculate this explicitly

Configurational entropy due to vacancy

Lecture 4: Surfaces and interfaces. Point defects and diffusion in crystals

- Surfaces and interfaces
- Structural defects in crystals
- Change in the configurational entropy due to vacancies
- Equilibrium concentration of vacancies temperature and pressure dependences
- Watching empty lattice sites i.e. vacancies with positrons

$$\frac{\partial \Delta G}{\partial n}\Big|_{n=n_{eq}} = 0$$

 $- \text{ Copper at 1000 °C} \\ H_{\rm f} = 0.9 \text{ eV/at} \qquad A_{\rm Cu} = 63.5 \text{ g/mol} \qquad \rho = 8400 \text{ kg/m}^{-3} \\ \end{array}$

First find N in atoms/m⁻³

$$N = \frac{N_A \rho}{A_{Cu}} = \frac{(6.023 \times 10^{23})(8400)}{0.0635}$$
$$N =$$
units Check
$$\bigvee_{N \to \frac{(at/mol)(kg/m^3)}{kg/mol} = \frac{at}{m^3}}$$

$$N = 7.97 \times 10^{28}$$
 at - sites / m^{3}

Now apply the Arrhenius relation @1000 °C

$$N_{v} = N \exp\left(-\frac{H_{f}}{kT}\right)$$

= 7.97 × 10²⁸ exp $\left[\frac{-0.9eV/at}{(8.62 \times 10^{-5} eV/at - K) 1273K}\right]$
 $N_{v} = 2.18 \times 10^{25} vac/m^{3}$

$$\frac{n_{eq}}{N} = \exp\left(-\frac{\Delta H_f}{kT}\right)$$

AI: $\Delta H_f = 0.70 \text{ ev/vacancy}$ Ni: $\Delta H_f = 1.74 \text{ ev/vacancy}$

n/N	0 K	300 K	900 K
AI	0	1.45x10 ⁻¹²	1.12x10 ⁻⁴
Ni	0	5.59x10 ⁻³⁰	1.78x10 ⁻¹⁰

Equilibrium concentration of vacancy – pressure dependence

$$H_f = E_f + PV_f \qquad \Longrightarrow \qquad \varDelta G_f = E_f + PV_f - TS_f$$

Neighboring atoms tend to move into the vacancy, which creates a tensile stress field
The stress/strain field is nearly spherical and short-range.

$$C_{V}^{eq} = e^{-\Delta G_{f}/kT} = e^{S_{f}/k} e^{-E_{f}/kT} e^{\sigma V_{f}/kT}$$

Equilibrium concentration of vacancy – pressure dependence

 $V_f = \Omega + relaxation \ volume$

How big the pressure should be to make a measurable effect on vacancy concentration?

Compare

 σV_{f} ΔH_{f}

Equilibrium concentration of vacancy – pressure dependence

101.325 kPa is "one standard atmosphere" and $1 Pa = 1 N/m^2$

$$1 J = 1 N \cdot m = \left(\frac{kg \cdot m}{s^2}\right) \cdot m = \frac{kg \cdot m^2}{s^2} = Pa \cdot m^3 = 1 W \cdot s$$

1 eV = 1.602176487×10-19 Joule

As we calculate the effect of pressure/stress on vacancy concentration starts to be significant at quite high values – in the range of 100 MPa.

Are these conditions available in real "life" or happens only in a laboratory experiment?

Lecture 4: Surfaces and interfaces. Point defects and diffusion in crystals

- Surfaces and interfaces
- Structural defects in crystals
- Change in the configurational entropy due to vacancies
- Equilibrium concentration of vacancies temperature and pressure dependences
- Watching empty lattice sites i.e. vacancies with positrons

Positron probing of vacancies in semiconductors

S-parameter characterizes annihilation with low momentum valence electrons. Increase in S-parameter is naturaly interpreted as an increase in vacancy concentration

W-paprameter characterizes annihilation with high momentum core electrons and increase in vacancy concentration results in decrease of W-parameter

Clustering of ion implantation induced vacancies in ZnO

Experimental points group around a line in the W-S plane if there are only two annihilation states vailable in the sample

Clustering of ion implantation induced vacancies in ZnO

Clustering of ion implantation induced vacancies in ZnO

