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2024 FYS3400 Lecture Plan (based on C.Kittel’s Introduction to Solid State Physics, Chapters 1-9, 17-20)

Module I – Periodity and Disorder (Chapters 1-3, 19, 20) calender week

Mo 15/1  10-12 Introduction. Crystal bonding. Periodicity and lattices. Lattice planes and Miller indices. Reciprocal space. 3

Th  18/1  10-11   Bragg diffraction and Laue condition 

Mo  22/1 10-12 Ewald construction, interpretation of a diffraction experiment, Bragg planes and Brillouin zones 4

Th   25/1 10-11  Surfaces and interfaces. Disorder. Defects crystals. Equilibrium concentration of vacancies 

Mo  29/1 10-12 Mechanical properties of solids. Diffusion phenomena in solids 5

Th    1/2 10-11   Summary of Module I 

Module II – Phonons  (Chapters 4, 5, and 18 pp.557-561)

Mo   5/2 10-12   Vibrations in monoatomic and diatomic chains of atoms; examples of dispersion relations in 3D 6

Th    8/2 10-11 Periodic boundary conditions (Born – von Karman); phonons and its density of states (DOS) 

Mo  12/2 10-12   Effect of temperature - Planck distribution; Lattice heat capacity: Dulong-Petit, Einstein, and Debye models 7

Th   15/2 10-11 Comparison of different lattice heat capacity models 

Mo  19/2 10-12 Thermal conductivity and thermal expansion 8

Th   22/2 12-13 Summary of Module II

Module III – Electrons (Chapters 6, 7, 11 - pp 315-317, 18 - pp.528-530, 19, and Appendix D)

Mo 26/2  10-12 Free electron gas (FEG) versus free electron Fermi gas (FEFG); DOS of FEFG in 3D 9                            

Th 29/2  10-11 Effect of temperature – Fermi-Dirac distribution; Heat capacity of FEFG in 3D 

Mo  4/3  10-12   DOS of FEFG in 2D - quantum wells, DOS in 1D – quantum wires, and in 0D – quantum dots 10

Th   7/3  10-11 Transport properties of electrons

Module IV – Disordered systems (guest lecture slides - Joakim Bergli)

Mo 11/3 10-12 Thermal properties of glasses: Model of two level systems 11      

Th  14/3  10-11 Electron transport in disordered solids: wave localization and hopping 

Mo 18/3  10-12 Advanced theory of disordered systems 12

Th 21/3  10-11 Summary of Module IV 

Easter

Module V – Semiconductors (Chapters 8, 9 pp 223-231, and 17, 19)

Th   4/4  10-11 Recap of Module III 14

Mo  8/4  10-12 Origin of the band gap; Nearly free electron model; Kronig-Penney model 15

Th 11/4  10-11 Effective mass method for calculating localized energy levels for defects in crystals

Mo 15/4 10-12 Intrinsic and extrinsic electrons and holes in semiconductors 16

Th  18/4 10-11 Carrier statistics in semiconductors

Mo 22/4 10-12 p-n junctions 17

Th  25/5 10-11 Optical properties of semiconductors 

Mo 29/4 10-12 Advanced photonic devices including quantum tech 18

Th 2/5  10-11 Summary of Module V 

Summary and repetition 

Mo  6/5  10-12 Repetition - course in a nutshell 19

Exam: oral examination tentatively during week 20 or 21



FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices. 

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400; 

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.
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Why «physics of solid state» may be understood

by studing waves in periodic lattices

Two questions: (i) why in periodic lattices?

(ii) why waves?

Firstly, let’s discuss (i):

- What is know from previous courses how atoms form solids? 

- Do atoms form a periodic lattice or distributed chaotically?  

- What are the criteria for solids being amorphous or crystalline? 

- What does the intuition tell? What are the scientific insights?

Use NaCl as an example to explain the atoming ordering. 
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Why «physics of solid state» may be understood

by studing waves in periodic lattices

Two questions: (i) why in periodic lattices?

(ii) why waves?

Secondly, let’s discuss (ii):

- Why talking about waves, are there waves inside the crystals? 

- Or we are after waves exposed on crystals to be used as probes?  

- The principles for waves - lattice interactions are common; x-rays, 

vibrations, electrons, all obey Bragg’s diffraction!

Wave vector k = 2π/λ, given in units of the reciprocal length; How to 

plot k at lattice points, than?  

Use the reciprocal space to visualize the wave-lattice interactions !!
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Any energy state is 
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i.e. no distribution 
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Semiconductor physics at UiO

NEC ion implantor

HRXRD

SIMS

ZnO MOCVD

UiO clean room area

Labs

temperature/time

resolved PL

DLTS

6   Professors

4   Adm/technical staff

~ 10 Post docs

~ 15 PhD students and ~ 10   Msc students

Micro- and Nanotechnology Laboratory (MiNaLab)  

Halvlederfysikk ved UiO / MiNa-Lab



SiCZnO

GaN Si

Cu2O

Solar cells

High temperature sensors

Transparent electronics

Multi-junction solar cells

Thermoelectrics
Ga2O3

Semiconductor Physics at UiO

…application-motivated basic research…

LED’s

Displays

Quantum technology

Power electronics

Ionizing radiation detectors



Research highlights: Radiation tolerance 

before irradiation
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1.1 MeV 2x1015 H/cm2
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Research highlights: Quantum defects in silicon 

Silicon wafer

carbon implants

This observation constitutes the first demonstration of single-photon 

emission from an isolated defect embedded in the silicon lattice. 

Nature Electronics volume 3, pages738–743 (2020)

https://www.nature.com/natelectron
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Ionic bonding



It costs 5.1 eV for Na to ionize 

and 3.6 eV for Cl to 

accomodate an extra electron 

so that the ”balance”  is: 

5.1 - 3.6 = 1.5 eV.

Ionic bonding

What is the driving force for the bonding than?!

Coulomb attraction, of course! 

𝑬 = −𝒆𝟐/𝟒𝝅𝜺𝟎𝒂



Ionic bonding



Metallic bonding





FYS3400: Lectures 1-2

Introduction. Crystal bonding. Periodicity and lattices. 

Brag diffraction and Laue condition. Reciprocal space.

• Condenced Matter Physcis à la FYS3400; 

• Relevance of condenced matter physics fundamentals to modern technologies;

• Why elements bond together? Why in crystals? Survey of crystal bonding;

• Lattice planes and Miller indices;

• Use of waves to study crystals explaining the idea of using the reciprocal space;

• Introduction of the reciprocal space;

• Formal description of crystal structures.



Miller indices of lattice planes

• The indices of a crystal plane (h,k,l) are defined to be a set of integers with no common 

factors, inversely proportional to the intercepts of the crystal plane along the crystal 

axes:



Indices of Planes: Cubic Crystal
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Bragg diffraction – constructive interference for the wave 

interacting with crystal planes

The conditions leading to diffraction are given by the Bragg's law, relating the

angle of incidence of the radiation (θ) to the wavelength (λ) of the incident

radiation and the spacing between the crystal lattice planes (d):

2 d sin (θ) = n λ

http://en.wikipedia.org/wiki/File:Braggs_Law.svg
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Reciprocal lattice

Crystal planes (hkl) in the real-space or direct lattice are characterized 

by the normal vector          and the interplanar spacing          :

Defining a different lattice in reciprocal space whose points lie at positions 

given by the vectors

hkln̂ hkld

x

y

z

hkld

hkln̂

hkl

hkl
hkl

d

n
G

ˆ2


 These vectors are parallel 

to the [hkl] direction but 

has magnitude 2/dhkl, 

which is a reciprocal 

distance



The reciprocal lattice is composed of all points lying at positions         

from the origin, so that there is one point in the reciprocal lattice for 

each set of planes (hkl) in the real-space lattice.

This seems like an unnecessary abstraction.  Is there a benefit for defining such 

a reciprocal lattice? 

YES, the reciprocal lattice simplifies the interpretation of x-ray diffraction 

from crystals because:

hklG


• Diffraction pattern is not a direct 

representation of the crystal 

lattice

• Diffraction pattern is a 

representation of the reciprocal 

lattice

Reciprocal lattice



Vc = a1•(a2 x a3) – volume of a unit cell 

Definition of reciprocal translation vectors 

b3 = (a1 x a2) 2π/Vc

G = v1b1 + v2b2 + v3b3

Reciprocal lattice

Generallizing,we introduce a set of new unit 

vectors so that they are normal to the plains 

determined by the previously introduced 

translation vectors

b1 = (a2 x a3) 2π/Vc

a3

a2

b1

b2 = (a3 x a1) 2π/Vc



Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is 

determined by a set of vectors with specific magnitudes just having a bit unusual 

dimentions – 1/length. It is actually relatively straightforward – as long as we 

understood the definitions – to schetch the reciprocal lattice.

d100

a2

a1

γ

d010

Reciprocal lattice
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The important part is that b1 should be normal to a plain 

determined by [a2 x a3] and having a magnitude of 1/a1 –

just by definition - or 1/d100, where d100 is the interplain 

distance between (100) family of plains. NB, for any plain 

from (100) familly the point in the reciprocal space is 

exactly the same meaning that any reciprocal lattice point 

represents its own family of plains in the real space. 

Similar excercise can be done with vector b2 which points 

out to a reciprocal lattice point representing (010) family of 

plains. 

In adition (110) family of plaines in the real space would 

naturally result in to (110)-points in the reciprocal space.

The procedure can be repeated any type of plain cuts in the 

real space                                                                                     

1/d100

1/d010

b1a2

a1

Reciprocal lattice

b2

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is 

determined by a set of vectors with specific magnitudes just having a bit unusual 

dimentions – 1/length. It is actually relatively straightforward – as long as we 

understood the definitions – to schetch the reciprocal lattice.
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determined by a set of vectors with specific magnitudes just having a bit unusual 
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understood the definitions – to schetch the reciprocal lattice.
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Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do – it is 

determined by a set of vectors with specific magnitudes just having a bit unusual 

dimentions – 1/length. It is actually relatively straightforward – as long as we 

understood the definitions – to schetch the reciprocal lattice.
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Ideal Crystal

• An ideal crystal is a periodic array of  structural units, such as atoms or molecules.  

• It can be constructed by the infinite repetition of these identical structural units in space.

• Structure can be described in terms of a lattice, with a group of atoms attached to each 

lattice point.  The group of atoms is the basis.

Bravais Lattice

• An infinite array of discrete points with an arrangement and orientation that 

appears exactly the same, from any of the points the array is viewed from.

• A three dimensional Bravais lattice consists of all points with position vectors R that 

can be written as a linear combination of primitive vectors.  The expansion 

coefficients must be integers.

Primitive Unit Cell
• A primitive cell or primitive unit cell is a volume of space that when translated 

through all the vectors in a Bravais lattice just fills all of space without either 

overlapping itself or leaving voids.  

• A primitive cell must contain precisely one lattice point.



Primitive (a1,a2) and not primitive (a1’’’,a2’’’) translation vectors

Crystal structure II



Wigner-Seitz Primitive Cell: Full symmetry of 

Bravais Lattice



2-D lattices



3-D lattices
Cubic

a=b=c

a=b=g=90°

Hexagonal

a=b≠c

a=b= 90° ; g=120°

Tetragonal

a=b≠c

a=b=g=90°

Rhombohedral

a=b=c=

a=b=g≠90°

Orthorhombic

a≠b≠c

a=b=g=90°

Monoclinic

a≠b≠c

a=g=90°≠b

Triclinic

a≠b≠c

a≠b≠g≠90



Primitive Cell: 

FCC Lattice


	Bild 1
	Bild 2
	Bild 3
	Bild 4
	Bild 5
	Bild 6
	Bild 7
	Bild 8
	Bild 9
	Bild 10
	Bild 11
	Bild 12
	Bild 13
	Bild 14
	Bild 15
	Bild 16
	Bild 17
	Bild 18
	Bild 19
	Bild 20
	Bild 21
	Bild 22
	Bild 23
	Bild 24
	Bild 25
	Bild 26
	Bild 27
	Bild 28
	Bild 29
	Bild 30
	Bild 31
	Bild 32
	Bild 33: Miller indices of lattice planes
	Bild 34: Indices of Planes: Cubic Crystal
	Bild 35
	Bild 36
	Bild 37
	Bild 38
	Bild 39
	Bild 40
	Bild 41
	Bild 42
	Bild 43
	Bild 44
	Bild 45
	Bild 46
	Bild 47
	Bild 48
	Bild 49
	Bild 50
	Bild 51
	Bild 52
	Bild 53
	Bild 54
	Bild 55
	Bild 56
	Bild 57
	Bild 58
	Bild 59
	Bild 60
	Bild 61
	Bild 62: Ideal Crystal
	Bild 63
	Bild 64
	Bild 65
	Bild 66: 3-D lattices
	Bild 67

