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2024 FYS3400 Lecture Plan (based on C.Kittel’s Introduction to Solid State Physics, Chapters 1-9, 17-20)

Module | — Periodity and Disorder (Chapters 1-3, 19, 20) calender week
Mo 15/1 10-12 Introduction. Crystal bonding. Periodicity and lattices. Lattice planes and Miller indices. Reciprocal space. 3

Th 18/1 10-11 Bragg diffraction and Laue condition

Mo 22/110-12 Ewald construction, interpretation of a diffraction experiment, Bragg planes and Brillouin zones 4

Th 25/1 10-11 Surfaces and interfaces. Disorder. Defects crystals. Equilibrium concentration of vacancies

Mo 29/110-12 Mechanical properties of solids. Diffusion phenomena in solids 5

Th 1/2 10-11 Summary of Module |
Module Il = Phonons (Chapters 4,5, and 18 pp.557-561)

Mo 5/210-12 Vibrations in monoatomic and diatomic chains of atoms; examples of dispersion relations in 3D 6
Th 8/210-11 Periodic boundary conditions (Born —von Karman); phonons and its density of states (DOS)

Mo 12/2 10-12 Effect of temperature - Planck distribution; Lattice heat capacity: Dulong-Petit, Einstein, and Debye models 7
Th 15/2 10-11 Comparison of different lattice heat capacity models

Mo 19/2 10-12 Thermal conductivity and thermal expansion 8

Th 22/212-13 Summary of Module Il
Module Ill — Electrons (Chapters 6, 7, 11 - pp 315-317, 18 - pp.528-530, 19, and Appendix D)

Mo 26/2 10-12 Free electron gas (FEG) versus free electron Fermi gas (FEFG); DOS of FEFG in 3D 9
Th 29/2 10-11 Effect of temperature — Fermi-Dirac distribution; Heat capacity of FEFG in 3D
Mo 4/3 10-12 DOS of FEFG in 2D - quantum wells, DOS in 1D — quantum wires, and in OD — quantum dots 10

Th 7/3 10-11 Transport properties of electrons
Module IV — Disordered systems (guest lecture slides - Joakim Bergli)

Mo 11/310-12 Thermal properties of glasses: Model of two level systems 11
Th 14/3 10-11 Electron transport in disordered solids: wave localization and hopping

Mo 18/3 10-12 Advanced theory of disordered systems 12
Th 21/3 10-11 Summary of Module IV

Easter

Module V — Semiconductors (Chapters 8, 9 pp 223-231, and 17, 19)

Th 4/4 10-11 Recap of Module lll 14
Mo 8/4 10-12 Origin of the band gap; Nearly free electron model; Kronig-Penney model 15
Th 11/4 10-11 Effective mass method for calculating localized energy levels for defects in crystals

Mo 15/4 10-12 Intrinsic and extrinsic electrons and holes in semiconductors 16
Th 18/4 10-11 Carrier statistics in semiconductors

Mo 22/4 10-12 p-n junctions 17
Th 25/510-11 Optical properties of semiconductors

Mo 29/4 10-12 Advanced photonic devices including quantum tech 18

Th 2/5 10-11 Summary of Module V

Summary and repetition

Mo 6/5 10-12 Repetition - course in a nutshell 19
Exam: oral examination tentatively during week 20 or 21




FYS3400: Lectures 1-2
Introduction. Crystal bonding. Periodicity and lattices.
Brag diffraction and Laue condition. Reciprocal space.

« Condenced Matter Physcis a la FYS3400;

 Relevance of condenced matter physics fundamentals to modern technologies;
* Why elements bond together? Why in crystals? Survey of crystal bonding;

« Lattice planes and Miller indices;

 Use of waves to study crystals explaining the idea of using the reciprocal space;
* Introduction of the reciprocal space;

« Formal description of crystal structures.



FYS3400: Lectures 1-2
Introduction. Crystal bonding. Periodicity and lattices.
Brag diffraction and Laue condition. Reciprocal space.

« Condenced Matter Physcis a la FYS3400;
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Elastic waves in lattices
Vibrations

Phonon DOS

Planck distribution
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Thermal properties:
heat capacity and conductance,
thermal expansion
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Condensed Matter Physics

Disordered

Solid State Physics of Crystals|  systems

Properties of Waves in/Periodic Lattices

Elastic waves in lattices Electron waves in lattices
Vibrations Disordered Free electrons Disorde
Phonon DOS systems Electron DOS systen
Planck distributior: Fermi-Dirac distribution

Thermal properties: Elecronic properties:

heat capacity and conductance, Electron concentration and transport,
thermal expansion contribution to the heat capacity
Disordered
systems

Advanced theory and novel materials properties



Why «physics of solid state» may be understood
by studing waves in periodic lattices

Two questions: (1) why In periodic lattices?
(1) why waves?

Firstly, let’s discuss (i):

- What is know from previous courses how atoms form solids?

- Do atoms form a periodic lattice or distributed chaotically?

- What are the criteria for solids being amorphous or crystalline?

- What does the intuition tell? What are the scientific insights?

Use NaCl as an example to explain the atoming ordering.



NaCl as an example og atomic ordering

I
 Pauli repulsioin

Enargy (2V)




NaCl as an example og atomic ordering

- Energy balance
Nas *Cls 5.14 eV lonization energy
Forming fonic e -3.62 eV Electron affinity
band r=0.093nm  _g1p eV Coulomb attraction
= .1
r=0.186nm 3626V 4saev
5.14 eV Electron
lonization + e affinity But the dissociation energy
energy Na 4 Fl. of NaCl is measured to be
-4.26 eV. The difference is
_ r=0.181 nm
F=10.085 nm +0.32 eV attributed to
- Pauli repulsion.
236 nm

Electric potential energy

-I{EE_ -1.44 eV nm _
r = 0236nm eV




Why «physics of solid state» may be understood
by studing waves in periodic lattices

Two questions: (1) why In periodic lattices?
(1) why waves?

Secondly, let’s discuss (ii):
- Why talking about waves, are there waves inside the crystals?
- Or we are after waves exposed on crystals to be used as probes?

- The principles for waves - lattice interactions are common; X-rays,
vibrations, electrons, all obey Bragg’s diffraction!

Wave vector k = 2a/A, given in units of the reciprocal length; How to
plot k at lattice points, than?

Use the reciprocal space to visualize the wave-lattice interactions !!




Example on how the structure determines thermal properties
— to be followed within Module 11

A

Classical
oscillators
Any energy state is accessible for

any oscillator in form of kgT, i.e. no
distribution function is applied and

the total energy is .
E = NE, = 3Nk, T

gy

_Ener

temperature



Example on how the structure determines thermal properties
— to be followed within Module 11

> Classical

2 oscillators

L Any energy state is accessible for

temperature any oscillator in form of kT, i.e. no
A distribution function is applied and
the total energy is .
E = NE, =3Nk,T

>

2.4 I

0 tho

w|— Quantum

—I=2oscillators
| —_— =0
0 temperature Not all energies are accessible, but only those
in quants of 4Awn, and Planck distribution is
employed to calculate the occupancy at
temperature T, so that
E=3N <n> 3/10)
0]
Z E e—En/kBT
0 n 1
E=3N) f(E,)E, =3N 2 =3N———ho
0 holkgT 1
n=0 -



Example on how the structure determines thermal properties
— to be followed within Module 11

L=Na
® © © © © © © © & Classical
I ! E -
| o = oscillators Any energy state is accessible for any
X x=(s+N)a | temperature oscillator in form of E“EL i.e. no
distribution function is applied and
. the total energy is F = NE, =3Nk,T
g — }hw
H— 1o Quantum
— =1 oscillators
. temperature Not all energies are accessible, but only those
in quants of fiwn, and Planck distribution is
employed to calculate the occunancv at
temperature T, so that £ =3V - {n> ho
ﬁ
s+N-1
3| Phonons -
(
c —_— And so on
I —
_— [=2 up to S
Fiud 2n
¥ Na
—_— /=O
0- —_— 5 — S+l
21 221‘:_ 3-2-7£- 4—-l k
1'Na Na Na Na s+2

25. januar 2021



Example on how the structure determines thermal properties
— to be followed within Module 11

Energy level Energy level diagram for a
diagram for chain of atoms with one atom
one harmonic per unit cell and a lengt of N
oscillator 4 unit cells
> 3
(o)) = T
¢ }Yho 2 L And s0 on
w| - — ., Wb
— =2 i i N 21
it =——"1 "
—— =0 = _—— . —>
" F 21
2 2n g2n
NTt 2Na SNa “Na §

E=3N -<n>-ha) E=3 da)D(a))<n>ha)
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FYS3400: Lectures 1-2
Introduction. Crystal bonding. Periodicity and lattices.
Brag diffraction and Laue condition. Reciprocal space.

 Relevance of condenced matter physics fundamentals to modern technologies;



Semiconductor physics at UiO

Micro- and Nanotechnology Laboratory (MiNalLab)

Halvlederfysikk ved UiO / MiNa-Lab

7 6 Professors
— 4 Adm/technical staff

NEC ion‘wlahtor ' ~ 10 Post docs
L ZnO MOCVD ~ 15 PhD students and ~ 10 Msc students



Semiconductor Physics at UiO

...application-motivated basic research...

Transparent electronics
Quantum technology

Displays SiC Power electronics

LED’s
Solar cells

Thermoelectrics

Cu,0

High temperature sensors

Multi-junction solar cells lonizing radiation detectors



Research highlights: Radiation tolerance

nature communications Nat Commun 14, 4855 (2023)
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Research highlights: Quantum defects in silicon

ARTICLES

nature
ele ctronics https://doi.org/10.1038/541928-020-00499-0

Single artificial atoms in silicon emittingat **""
tE|eC0m Wavelengths Nature Electronics volume 3, pages738-743 (2020)
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This observation constitutes the first demonstration of single-photon
emission from an isolated defect embedded in the silicon lattice.


https://www.nature.com/natelectron

FYS3400: Lectures 1-2
Introduction. Crystal bonding. Periodicity and lattices.
Brag diffraction and Laue condition. Reciprocal space.

* Why elements bond together? Why in crystals? Survey of crystal bonding;



lonic bonding
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lonic bonding
It costs 5.1 eV for Na to 1onize

.(., / e ci- and36eViorClto

.).’ .)./. ././‘ 4 accomodate an extra electron
@ Na so that the ’balance” 1is:

./., ./.X' 51-3.6=15¢eV.

What is the driving force for the bonding than?!

)

X

Coulomb attraction, of course!
E = —e?/4meya



lonic bonding

Pauli repulsioin

Energy (V)




Metallic bonding

Jdelocalised elechans



o2 g}
SR

SR

o
T
B

.\.I .41‘14‘0.
_.m%mw..?
AT

3




FYS3400: Lectures 1-2
Introduction. Crystal bonding. Periodicity and lattices.
Brag diffraction and Laue condition. Reciprocal space.

« Lattice planes and Miller indices;



Miller indices of lattice planes

« The indices of a crystal plane (h,k,l) are defined to be a set of integers with no common

factors, inversely proportional to the intercepts of the crystal plane along the crystal
axes:

Figure 15 This plane intercepts the a,, a,, ay axes at 3a;, 2a,, 2a5. The
reciprocals of these numbers are 4, 4, 4. The smallest three integers having
the same ratio are 2, 3, 3, and thus the indices of the plane are (233).



Indices of Planes: Cubic Crystal

(100) (110;

(111)

— —

200)

(100)

Figure 16 Indices of important

F planes in a cubic crystal. The plane (200) is parallel to (100) and to
(100).



Miller indices of lattice planes

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and
consider some lattice planes

bl
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Miller indices of lattice planes

We will use a monoclinic unit cell to avoid orthogonal axes; define a plan and
consider some lattice planes
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FYS3400: Lectures 1-2
Introduction. Crystal bonding. Periodicity and lattices.
Brag diffraction and Laue condition. Reciprocal space.

» Use of waves to study crystals explaining the idea of using the reciprocal space;



Bragg diffraction — constructive interference for the wave
Interacting with crystal planes

Q \\X
1

The conditions leading to diffraction are given by the Bragg's law, relating the
angle of incidence of the radiation (0) to the wavelength () of the incident
radiation and the spacing between the crystal lattice planes (d):

2dsin(0)=nA


http://en.wikipedia.org/wiki/File:Braggs_Law.svg

Laue condition

2sIn0,

Nk k' 29 Kl =2k|sing,, =

A

K K is perpendicular to the (hkl)
_ plane, so can be defined as:

K — {ZSin O }ﬁ
A

(hKI)




Laue condition

2sIn0,

Nk k' 20" K| =2K|sin6,, =

A

K K is perpendicular to the (hkl)
_ plane, so can be defined as:

r {ZSin 0, }ﬁ

(hKI)

A

G is also perpendicular to (hkl) so N =



Laue condition

\ k k, ‘ O::

(hkI)
OJ
G is also perpendicular to (hkl) so N = ghk'
hkl

2 .
= K= siNB, Gy and ‘thl‘ =

}\“‘thl‘

K| = 2|K|sin®,,, =

2sIn0,,

A

K is perpendicular to the (hkl)
plane, so can be defined as:

—

K =

1

hkl

|

2sin6, }ﬁ
A

from previous



Laue condition

2sIn0,

Nk k' 29 Kl =2k|sing,, =

A

K K is perpendicular to the (hkl)
_ plane, so can be defined as:

(hKkl)
K 2sinB,,, A
- N
G is also perpendicular to (hkl) so  n= ghk'
2 1 .
= K= sin®,,,G and |G, =-— fromprevious
G hkI™~ hk hk|
‘ hkl‘ hK
2d,,,sin6 . 0 —
— K = ==K - G But Bragg: 2dsind = A

K =Gy the Laue condition



FYS3400: Lectures 1-2
Introduction. Crystal bonding. Periodicity and lattices.
Brag diffraction and Laue condition. Reciprocal space.

* Introduction of the reciprocal space;



Reciprocal lattice

Crystal planes (hkl) in the real-space or direct lattice are characterized
by the normal vector A,,, and the interplanar spacing d,,, :

Z

1 5 y

nth

+——>

X
Ay

Defining a different lattice in reciprocal space whose points lie at positions
given by the vectors

These vectors are parallel
to the [hkl] direction but
has magnitude 2rt/d,
which is a reciprocal
distance

~ 2ﬂnhkl

hkl =
dth



Reciprocal lattice

The reciprocal lattice is composed of all points lying at positions G,
from the origin, so that there is one point in the reciprocal lattice for
each set of planes (hkl) in the real-space lattice.

This seems like an unnecessary abstraction. Is there a benefit for defining such
a reciprocal lattice?

YES, the reciprocal lattice simplifies the interpretation of x-ray diffraction
from crystals because:

« Diffraction pattern is not a direct
representation of the crystal
lattice

« Diffraction pattern is a
representation of the reciprocal
lattice




Reciprocal lattice

b,

. Generallizing,we introduce a set of new unit
as vectors so that they are normal to the plains

' apha determined by the previously introduced

a translation vectors

2
Definition of reciprocal translation vectors
b, = (a, X a3) 2m/V, b, = (2, X a,) 2m/V, b, = (a, X a,) 2m/V,

> > > ;
V. = a,;*(a, x a;) — volume of a unit cell

- - - -

G =v;b; +v,b, +v3b,




Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do — it is
determined by a set of vectors with specific magnitudes just having a bit unusual
dimentions — 1/length. It is actually relatively straightforward — as long as we
understood the definitions — to schetch the reciprocal lattice.

d010




Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do — it is
determined by a set of vectors with specific magnitudes just having a bit unusual
dimentions — 1/length. It is actually relatively straightforward — as long as we
understood the definitions — to schetch the reciprocal lattice.

—

a, The important part is that b, should be normal to a plain
~ (100) determined by [a, x a,;] and having a magnitude of 1/a, —

. just by definition - or 1/d,,,, where d,y, is the interplain
a, distance between (100) family of plains. NB, for any plain

from (100) familly the point in the reciprocal space is
exactly the same meaning that any reciprocal lattice point
represents its own family of plains in the real space.

\

2n/a, = 2n/d,



Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do — it is
determined by a set of vectors with specific magnitudes just having a bit unusual
dimentions — 1/length. It is actually relatively straightforward — as long as we
understood the definitions — to schetch the reciprocal lattice.

The important part is that b, should be normal to a plain
determined by [a, X a;] and having a magnitude of 1/a; —
just by definition - or 1/d,,,, where d,y, is the interplain
distance between (100) family of plains. NB, for any plain
from (100) familly the point in the reciprocal space is
exactly the same meaning that any reciprocal lattice point
represents its own family of plains in the real space.

Similar excercise can be done with vector b, which points
1/d 100 out to a reciprocal lattice point representing (010) family of
plains.

In adition (110) family of plaines in the real space would
naturally result in to (110)-points in the reciprocal space.

The procedure can be repeated any type of plain cuts in the
real space



Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do — it is
determined by a set of vectors with specific magnitudes just having a bit unusual
dimentions — 1/length. It is actually relatively straightforward — as long as we
understood the definitions — to schetch the reciprocal lattice.
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Reciprocal lattice

Reciprocal lattice is nothing with ”anti-matter” or ”black holes” to do — it is
determined by a set of vectors with specific magnitudes just having a bit unusual
dimentions — 1/length. It is actually relatively straightforward — as long as we
understood the definitions — to schetch the reciprocal lattice.
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FYS3400: Lectures 1-2
Introduction. Crystal bonding. Periodicity and lattices.
Brag diffraction and Laue condition. Reciprocal space.

« Formal description of crystal structures.



Crystal structure |

* In bulk. many solids are crystalline.,

Hawve discrete translational and rotational svimmetries.

Real-space structure is periodic - repetitions of a single unit cell.

smallest unit cell that gives full structure:  primitive unit cell

Can describe structure by a laitice and a basis.

S,

lattice hasis




Ideal Crystal

« Anideal crystal is a periodic array of structural units, such as atoms or molecules.
« It can be constructed by the infinite repetition of these identical structural units in space.

« Structure can be described in terms of a lattice, with a group of atoms attached to each
lattice point. The group of atoms is the basis.

Bravais Lattice

« An infinite array of discrete points with an arrangement and orientation that
appears exactly the same, from any of the points the array is viewed from.

« Athree dimensional Bravais lattice consists of all points with position vectors R that
can be written as a linear combination of primitive vectors. The expansion
coefficients must be integers.

Primitive Unit Cell

« A primitive cell or primitive unit cell is a volume of space that when translated
through all the vectors in a Bravais lattice just fills all of space without either
overlapping itself or leaving voids.

« A primitive cell must contain precisely one lattice point.



Crystal structure 11

Primitive (a;,a,) and not primitive ( ,>”,a,””) translation vectors



Wigner-Seitz Primitive Cell: Full symmetry of
Bravais Lattice

® Figure 4.14

The Wigner-Seitz cell for a two-dimensional
Bravais lattice. The six sides of the cell bisect
the lines joining the central points to its six
nearest neighboring points (shown as dashed
lines). In two dimensions the Wigner-Seitz
cell is always a hexagon unless the lattice is
rectangular (see Problem 4a).

Figure 4.15

The Wigner-Seitz cell for the body-centered cubic Bravais
lattice (a “‘truncated octahedron’). The surrounding cube is a
conventional body-centered cubic cell with a lattice point at
its center and on each vertex. The hexagonal faces bisect the
lines joining the central point to the points on the vertices
(drawn as solid lines). The square faces bisect the lines joining
the central point to the central points in each of the six neigh-

boring cubic cells (not drawn). The hexagons are regular (see
Problem 4d).
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2-D lattices
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Cubic _
a=b=c 3-D lattices
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Triclinic
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Primitive Cell:
FCC Lattice

Figure 13 The rhombohedral primitive cell of the face-cen-
tered cubic crystal. The primitive translation vectors a,, a,, ag
connect the lattice point at the origin with lattice points at the
face centers. As drawn, the primitive vectors are:

a, =%a(x+9) ; a, = $aly + %) ; ay=4%a(z + %) .

The angles between the axes are 60°. Here %, ¥, Z are the Carte-
sian unit vectors.
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