2024 FYS3400 Lecture Plan (based on C.Kittel's Introduction to Solid State Physics, Chapters 1-9, 17-20)

Module I – Periodity and Disorder (Chapters 1-3, 19, 20)	calender week
Mo 15/1 10-12 Introduction. Crystal bonding. Periodicity and lattices. Lattice planes and Miller indices. Rec	ciprocal space. 3
Th 18/1 10-11 Bragg diffraction and Laue condition	
Mo 22/1 10-12 Ewald construction, interpretation of a diffraction experiment, Bragg planes and Brillouin zo	ones 4
Th 25/1 10-11 Surfaces and interfaces. Disorder. Defects crystals. Equilibrium concentration of vacancies	
Mo 29/1 10-12 Mechanical properties of solids. Diffusion phenomena in solids	5
Th 1/2 10-11 Summary of Module I	
Module II – Phonons (Chapters 4, 5, and 18 pp.557-561)	
Mo 5/2 10-12 Vibrations in monoatomic and diatomic chains of atoms; examples of dispersion relations in	n 3D 6
Th 8/2 10-11 Periodic boundary conditions (Born - von Karman); phonons and its density of states (DOS	
Mo 12/2 10-12 Effect of temperature - Planck distribution; Lattice heat capacity: Dulong-Petit, Einstein, and	d Debye models 7
Th 15/2 10-11 Comparison of different lattice heat capacity models	-
Mo 19/2 10-12 Thermal conductivity and thermal expansion	8
Th 22/2 12-13 Summary of Module II	
Module III – Electrons (Chapters 6, 7, 11 - pp 315-317, 18 - pp.528-530, 19, and Appendix D)	
Mo 26/2 10-12 Free electron gas (FEG) versus free electron Fermi gas (FEFG); DOS of FEFG in 3D	9
Th 29/2 10-11 Effect of temperature – Fermi-Dirac distribution; Heat capacity of FEFG in 3D	
Mo 4/3 10-12 DOS of FEFG in 2D - quantum wells, DOS in 1D – quantum wires, and in 0D – quantum dots	10
Th 7/3 10-11 Transport properties of electrons	
Module IV – Disordered systems (guest lecture slides - Joakim Bergli)	
Mo 11/3 10-12 Thermal properties of glasses: Model of two level systems	11
Th 14/3 10-11 Electron transport in disordered solids: wave localization and hopping	
Mo 18/3 10-12 Advanced theory of disordered systems	12
Th 21/3 10-11 Summary of Module IV	
Easter	
Module V – Semiconductors (Chapters 8, 9 pp 223-231, and 17, 19)	
Th 4/4 10-11 Recap of Module III	14
Mo 8/4 10-12 Origin of the band gap; Nearly free electron model; Kronig-Penney model	15
Th 11/4 10-11 Effective mass method for calculating localized energy levels for defects in crystals	
Mo 15/4 10-12 Intrinsic and extrinsic electrons and holes in semiconductors	16
Th 18/4 10-11 Carrier statistics in semiconductors	
Mo 22/4 10-12 p-n junctions	17
Th 25/5 10-11 Optical properties of semiconductors	
Mo 29/4 10-12 Advanced photonic devices including quantum tech	18
Th 2/5 10-11 Summary of Module V	
Summary and repetition	
Mo 6/5 10-12 Repetition - course in a nutshell	19
Exam: oral examination	tentatively during week 20 or 21