Relativistic Kinematics*

Alex Read
University of Oslo Department of Physics

*Martin\&Shaw, Particle Physics, 4th Ed., Appendix A.1,A. 2 (Last update 18.02.2019 16:40)

Lorentz Transformations

Lorentz Transformations

$$
\begin{aligned}
& \beta=\frac{v}{c} \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned}
$$

Lorentz Transformations

$$
\begin{aligned}
& \beta=\frac{v}{c} \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y \\
z \\
c t
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
c t
\end{array}\right]
$$

$$
\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right]
$$

Lorentz Transformations

$$
\begin{array}{rlrl}
\beta=\frac{v}{c} \\
\gamma=\frac{1}{\sqrt{1-\beta^{2}}} & {\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]} & =\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right] \\
{\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right]} & =\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right]
\end{array}
$$

* Since these are linear transformations they apply equally well to sums of these " 4 vectors".

Lorentz Transformations

$$
\begin{array}{ll}
\beta=\frac{v}{c} \\
\gamma=\frac{1}{\sqrt{1-\beta^{2}}} & {\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]} \\
{\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right]=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right]}
\end{array}
$$

* Since these are linear transformations they apply equally well to sums of these " 4 vectors".
* Check energy and momentum in S^{\prime} when a particle with mass m is at rest in S (energy=mc^{2}):

Lorentz Transformations

$$
\begin{array}{ll}
\beta=\frac{v}{c} \\
\gamma=\frac{1}{\sqrt{1-\beta^{2}}} & {\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]^{\prime}=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]} \\
{\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right]=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
p_{z} \\
E / c
\end{array}\right]}
\end{array}
$$

* Since these are linear transformations they apply equally well to sums of these " 4 vectors".
* Check energy and momentum in S^{\prime} when a particle with mass m is at rest in S (energy=mc²):

$$
\begin{aligned}
p_{x}^{\prime} & =-\gamma \beta E / c=-m \gamma v \\
E^{\prime} / c & =\gamma m c^{2} / c \\
E^{\prime} & =m \gamma c^{2}
\end{aligned}
$$

Lorentz Transformations

$$
\begin{aligned}
& \beta=\frac{v}{c} \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}} {\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]^{\prime} }
\end{aligned}=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]
$$

* Since these are linear transformations they apply equally well to sums of these " 4 vectors".
* Check energy and momentum in S^{\prime} when a particle with mass m is at rest in S (energy=mc^{2}):

$$
\begin{aligned}
p_{x}^{\prime} & \left.=-\gamma \beta E / c=-m \gamma v \quad \text { (particle moves backward in } \mathrm{S}^{\prime}\right) \\
E^{\prime} / c & =\gamma m c^{2} / c \\
E^{\prime} & =m \gamma c^{2}
\end{aligned}
$$

Lorentz Transformations

$$
\begin{aligned}
& \beta=\frac{v}{c} \\
& \gamma=\frac{1}{\sqrt{1-\beta^{2}}} {\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]^{\prime} }
\end{aligned}=\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
c t
\end{array}\right]
$$

* Since these are linear transformations they apply equally well to sums of these " 4 vectors".
* Check energy and momentum in S^{\prime} when a particle with mass m is at rest in S (energy=mc2):

$$
p_{x}^{\prime}=-\gamma \beta E / c=-m \gamma \nu
$$

$$
\begin{aligned}
E^{\prime} / c & =\gamma m c^{2} / c \\
E^{\prime} & =m \gamma c^{2}
\end{aligned}
$$

\square (particle moves backward in S^{\prime})

4-vector dot product

* Let's define two 4-vectors and a 4-vector dot product.

4-vector dot product

* Let's define two 4-vectors and a 4-vector dot product.

$$
\mathbf{A}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z} \\
A_{0}
\end{array}\right], \mathbf{B}=\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]
$$

4-vector dot product

* Let's define two 4-vectors and a 4-vector dot product.

$$
\mathbf{A}=\left[\begin{array}{l}
a_{x} \\
a_{y} \\
a_{z} \\
A_{0}
\end{array}\right], \mathbf{B}=\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right] \quad \equiv \overrightarrow{\mathbf{B}} \cdot \vec{b}-A_{0} B_{0} .
$$

Dot product of 4-vectors

* What if we take the dot product in S^{\prime} ?

Dot product of 4-vectors

* What if we take the dot product in S^{\prime} ?

$$
\mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{lll}
a_{x}, & a_{y}, & a_{z},
\end{array} A_{0}\left[\begin{array}{ccccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]\right.
$$

Dot product of 4-vectors

* What if we take the dot product in S^{\prime} ?

$$
\begin{aligned}
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{lll}
a_{x}, & a_{y}, & a_{z}, \\
A_{0}
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{ccc}
\gamma & 0 & 0 \\
0 & 1 & 0
\end{array}\right) 0 \\
& 0
\end{aligned} 0
$$

Dot product of 4-vectors

* What if we take the dot product in S^{\prime} ?

$$
\begin{aligned}
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{lll}
a_{x} & a_{y}, & a_{z},
\end{array} A_{0}\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]\right. \\
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{llll}
a_{x} & a_{y}, & a_{z} & A_{0}
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & -\gamma
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right] \\
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{lll}
a_{x} & a_{y}, & a_{z}, \\
A_{0}
\end{array}\right]\left[\begin{array}{cccc}
\gamma^{2}\left(1-\beta^{2}\right) & 0 & 0 & -\gamma^{2} \beta(1-1) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma^{2} \beta(1-1) & 0 & 0 & -\gamma^{2}\left(1-\beta^{2}\right)
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]=\left[\begin{array}{lll}
a_{x}, & a_{y}, & a_{z}, \\
A_{0}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]
\end{aligned}
$$

Dot product of 4-vectors

* What if we take the dot product in S^{\prime} ?

$$
\begin{aligned}
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{lll}
a_{x} & a_{y}, & a_{z},
\end{array} A_{0}\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]\right. \\
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{llll}
a_{x} & a_{y}, & a_{z} & A_{0}
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & -\gamma
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right] \\
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{lll}
a_{x} & a_{y}, & a_{z},
\end{array} A_{0}\right]\left[\begin{array}{cccc}
\gamma^{2}\left(1-\beta^{2}\right) & 0 & 0 & -\gamma^{2} \beta(1-1) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma^{2} \beta(1-1) & 0 & 0 & -\gamma^{2}\left(1-\beta^{2}\right)
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]=\left[\begin{array}{llll}
a_{x}, & a_{y}, & a_{z}, & A_{0}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]
\end{aligned}
$$

$\mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\mathbf{A} \cdot \mathbf{B}$

Dot product of 4-vectors

* What if we take the dot product in S^{\prime} ?

$$
\begin{aligned}
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{lll}
a_{x} & a_{y}, & a_{z},
\end{array} A_{0}\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]\right. \\
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{llll}
a_{x} & a_{y}, & a_{z} & A_{0}
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma \beta & 0 & 0 & \gamma
\end{array}\right]\left[\begin{array}{cccc}
\gamma & 0 & 0 & -\gamma \beta \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
\gamma \beta & 0 & 0 & -\gamma
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right] \\
& \mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\left[\begin{array}{lll}
a_{x} & a_{y}, & a_{z},
\end{array} A_{0}\left[\begin{array}{cccc}
\gamma^{2}\left(1-\beta^{2}\right) & 0 & 0 & -\gamma^{2} \beta(1-1) \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\gamma^{2} \beta(1-1) & 0 & 0 & -\gamma^{2}\left(1-\beta^{2}\right)
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]=\left[\begin{array}{llll}
a_{x}, & a_{y}, & a_{z}, & A_{0}
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z} \\
B_{0}
\end{array}\right]\right.
\end{aligned}
$$

$\mathbf{A}^{\prime} \cdot \mathbf{B}^{\prime}=\mathbf{A} \cdot \mathbf{B} \quad$ Powerful result!

Various dot-products

$$
\text { Let } \mathbf{X}^{T}=[\vec{x}, c t], \mathbf{P}^{T}=[\vec{p}, E / c]
$$

Various dot-products

$$
\begin{gathered}
\text { Let } \mathbf{X}^{T}=[\vec{x}, c t], \mathbf{P}^{T}=[\vec{p}, E / c] \\
\qquad \mathbf{X} \cdot \mathbf{P}=\vec{p} \cdot \vec{x}-E t
\end{gathered}
$$

Various dot-products

$$
\begin{aligned}
& \text { Let } \mathbf{X}^{T}=[\vec{x}, c t], \mathbf{P}^{T}=[\vec{p}, E / c] \\
& \qquad \mathbf{X} \cdot \mathbf{P}=\vec{p} \cdot \vec{x}-E t \quad \begin{array}{l}
\text { (The factor in the exponential of the } \\
\text { free-particle wavefunction is Lorentz-invariant) }
\end{array}
\end{aligned}
$$

Various dot-products

$$
\begin{aligned}
& \text { Let } \mathbf{X}^{T}=[\vec{x}, c t], \mathbf{P}^{T}=[\vec{p}, E / c] \\
& \qquad \mathbf{X} \cdot \mathbf{P}=\vec{p} \cdot \vec{x}-E t \quad \begin{array}{l}
\text { (The factor in the exponential of the } \\
\text { free-particle wavefunction is Lorentz-invariant) }
\end{array} \\
& \mathbf{P}^{2}=|\vec{p}|^{2}-E^{2} / c^{2}
\end{aligned}
$$

Various dot-products

$$
\begin{aligned}
& \text { Let } \mathbf{X}^{T}=[\vec{x}, c t], \mathbf{P}^{T}=[\vec{p}, E / c] \\
& \qquad \mathbf{X} \cdot \mathbf{P}=\vec{p} \cdot \vec{x}-E t \quad \begin{array}{l}
\text { (The factor in the exponential of the } \\
\text { free-particle wavefunction is Lorentz-invariant) }
\end{array} \\
& \mathbf{P}^{2}=|\vec{p}|^{2}-E^{2} / c^{2} \quad \text { (Is this a useful Lorentz invariant? Yes!) }
\end{aligned}
$$

Various dot-products

$$
\text { Let } \mathbf{X}^{T}=[\vec{x}, c t], \mathbf{P}^{T}=[\vec{p}, E / c]
$$

$$
\mathbf{X} \cdot \mathbf{P}=\vec{p} \cdot \vec{x}-E t \quad \begin{aligned}
& \text { (The factor in the exponential of the } \\
& \text { free-narticle }
\end{aligned}
$$

free-particle wavefunction is Lorentz-invariant)

$$
\mathbf{P}^{2}=|\vec{p}|^{2}-E^{2} / c^{2} \quad \text { (Is this a useful Lorentz invariant? Yes!) }
$$

* \mathbf{P}^{2} is Lorentz-invariant for a single particle, and also for a system of particles. What is it in the rest frame of a single particle, i.e. when $\vec{p}=0$?

Various dot-products

$$
\text { Let } \mathbf{X}^{T}=[\vec{x}, c t], \mathbf{P}^{T}=[\vec{p}, E / c]
$$

$$
\mathbf{X} \cdot \mathbf{P}=\vec{p} \cdot \vec{x}-E t \quad \begin{aligned}
& \text { (The factor in the exponential of the } \\
& \text { free-narticle wavefunction is }
\end{aligned}
$$

free-particle wavefunction is Lorentz-invariant)

$$
\mathbf{P}^{2}=|\vec{p}|^{2}-E^{2} / c^{2} \quad \text { (Is this a useful Lorentz invariant? Yes!) }
$$

* \mathbf{P}^{2} is Lorentz-invariant for a single particle, and also for a system of particles. What is it in the rest frame of a single particle, i.e. when $\vec{p}=0$?

$$
\mathbf{P}^{2}=-m^{2}
$$

Various dot-products

* Let $\mathbf{X}^{T}=[\vec{x}, c t], \mathbf{P}^{T}=[\vec{p}, E / c]$

$$
\begin{array}{ll}
\mathbf{X} \cdot \mathbf{P}=\vec{p} \cdot \vec{x}-E t \quad \begin{array}{l}
\text { (The factor in the exponential of the } \\
\text { free-particle wavefunction is Lorentz-invariant) }
\end{array} \\
\mathbf{P}^{2}=|\vec{p}|^{2}-E^{2} / c^{2} & \text { (Is this a useful Lorentz invariant? Yes!) }
\end{array}
$$

* \mathbf{P}^{2} is Lorentz-invariant for a single particle, and also for a system of particles. What is it in the rest frame of a single particle, i.e. when $\vec{p}=0$?

$$
\mathbf{P}^{2}=-m^{2}
$$

- We identify $W^{2}=-\mathbf{P}^{2}$ as the invariant mass of a single particle, but also the invariant mass of a system of particles that we can calculate in the Lorentz frame with $\sum \vec{p}_{i}=0$, i.e. the rest frame of the system of particles.

Symmetric collider kinematics

$$
E_{\text {bean }} \overrightarrow{i j} \overbrace{}^{\prime} E_{\text {bean }}
$$

Symmetric collider kinematics

$$
\begin{gathered}
E_{\text {beam }} \xrightarrow[\bar{f}^{\prime}]{ } \overbrace{}^{f} E_{\text {beam }} \\
e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow f \bar{f}\left(\text { e.g. } \mu^{+} \mu^{-}\right)
\end{gathered}
$$

Symmetric collider kinematics

$$
\begin{gathered}
E_{\text {beam }} \xrightarrow[\bar{f}^{\prime}]{ } \overbrace{}^{f} E_{\text {beam }} \\
e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow f \bar{f}\left(\text { e.g. } \mu^{+} \mu^{-}\right)
\end{gathered}
$$

* What is the invariant mass, or to say it another way, the center of mass energy of the virtual photon?

Symmetric collider kinematics

$$
\begin{gathered}
E_{\text {beam }} \xrightarrow[\bar{f}^{\prime}]{ } \overbrace{}^{f} E_{\text {beam }} \\
e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow f \bar{f}\left(\text { e.g. } \mu^{+} \mu^{-}\right)
\end{gathered}
$$

* What is the invariant mass, or to say it another way, the center of mass energy of the virtual photon?
*This laboratory frame is also the center of mass frame $\left(\sum_{i} \vec{p}_{i}=0\right)$

Symmetric collider kinematics

$$
\begin{gathered}
E_{\text {beam }} \xrightarrow[\bar{f}^{\prime}]{ } \overbrace{}^{f} E_{\text {beam }} \\
e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow f \bar{f}\left(\text { e.g. } \mu^{+} \mu^{-}\right)
\end{gathered}
$$

* What is the invariant mass, or to say it another way, the center of mass energy of the virtual photon?
*This laboratory frame is also the center of mass frame $\left(\sum_{i} \vec{p}_{i}=0\right)$

$$
" m " \equiv \sqrt{s}=2 E_{\text {beam }}, \text { or } s=4 E_{\text {beam }}^{2}
$$

Symmetric collider kinematics

$$
\begin{gathered}
E_{\text {beam }} \xrightarrow[\bar{f}^{\prime}]{ } \overbrace{}^{f} E_{\text {beam }} \\
e^{+} e^{-} \rightarrow \gamma^{*} \rightarrow f \bar{f}\left(\text { e.g. } \mu^{+} \mu^{-}\right)
\end{gathered}
$$

* What is the invariant mass, or to say it another way, the center of mass energy of the virtual photon?
*This laboratory frame is also the center of mass frame $\left(\sum_{i} \vec{p}_{i}=0\right)$

$$
" m " \equiv \sqrt{s}=2 E_{\text {beam }}, \text { or } s=4 E_{\text {beam }}^{2}
$$

* With enough beam energy and the right couplings we can make a heavy particle at rest and observe its decays (e.g. the Z^{0} boson)

Fixed-target kinematics

Fixed-target kinematics

*What is the energy in the center of mass?

Hixectratoretrinematics

$m_{\text {beam }}, \vec{p}_{\text {beam }} \quad m_{\text {target }} \neq 0, \vec{p}_{\text {target }}=0$
*What is the energy in the center of mass?

$$
\begin{aligned}
W^{2} & =\left(\sum_{i} E_{i}\right)^{2}-\left(\sum_{i} \vec{p}_{i}\right)^{2}=\left(E_{\text {beam }}+m_{\text {target }}\right)^{2}-\vec{p}_{\text {beam }}^{2} \\
& =E_{\text {beam }}^{2}+m_{\text {target }}^{2}+2 E_{\text {beam }} m_{\text {target }}-p_{\text {beam }}^{2} \\
& =m_{\text {beam }}^{2}+p_{\text {beam }}^{22}+m_{\text {target }}^{2}+2 E_{\text {beam }} m_{\text {target }}-\not p_{\text {beam }}^{2} \\
& =m_{\text {beam }}^{2}+m_{\text {target }}^{2}+2 E_{\text {beam }} m_{\text {target }}
\end{aligned}
$$

Fixed-target kinematics

$m_{\text {beam }}, \vec{p}_{\text {beam }} \quad m_{\text {target }} \neq 0, \vec{p}_{\text {target }}=0$
*What is the energy in the center of mass?

$$
\begin{aligned}
W^{2} & =\left(\sum_{i} E_{i}\right)^{2}-\left(\sum_{i} \vec{p}_{i}\right)^{2}=\left(E_{\text {beam }}+m_{\text {target }}\right)^{2}-\vec{p}_{\text {beam }}^{2} \\
& =E_{\text {beam }}^{2}+m_{\text {target }}^{2}+2 E_{\text {beam }} m_{\text {target }}-p_{\text {beam }}^{2} \\
& =m_{\text {beam }}^{2}+\not p_{\text {beam }}^{22}+m_{\text {target }}^{2}+2 E_{\text {beam }} m_{\text {target }}-\not p_{\text {beam }}^{22} \\
& =m_{\text {beam }}^{2}+m_{\text {target }}^{2}+2 E_{\text {beam }} m_{\text {target }}
\end{aligned}
$$

$$
E_{C M}=W=\sqrt{m_{\text {beam }}^{2}+m_{\text {target }}^{2}+2 m_{\text {target }} E_{\text {beam }}}
$$

Antiprotons from proton beam and target

Antiprotons from proton beam and target

$$
\begin{aligned}
& m_{\text {bean }} \vec{p}_{\text {beam }} \quad m_{\text {target }} \neq 0, \vec{p}_{\text {target }}=0 \\
& p p \rightarrow p \bar{p} p p
\end{aligned}
$$

* Must have minimum energy of 4 proton masses in the center of mass: $E_{C M} \geq 4 m_{p}$

Antiprotons from proton beam and target

$$
\stackrel{m_{\text {bean }} \vec{p}_{\text {beam }}}{p p \rightarrow p \bar{p} p p} \stackrel{m_{\text {target }} \neq 0, \vec{p}_{\text {tareet }}=0}{\longrightarrow}
$$

* Must have minimum energy of 4 proton masses in the center of mass: $E_{C M} \geq 4 m_{p}$

$$
\begin{aligned}
E_{C M} & =\sqrt{m_{\text {beam }}^{2}+m_{\text {target }}^{2}+2 m_{\text {target }} E_{\text {beam }}} \\
16 m_{p}^{2} & =m_{p}^{2}+m_{p}^{2}+2 m_{p} E_{\text {beam }} \\
7 m_{p} & =E_{\text {beam }}
\end{aligned}
$$

Antiprotons from proton beam and target

$$
\stackrel{\overbrace{\text { beam }} \vec{p}_{\text {beam }}}{p p \rightarrow p \bar{p} p p}
$$

* Must have minimum energy of 4 proton masses in the center of mass: $E_{C M} \geq 4 m_{p}$

$$
\begin{aligned}
E_{C M} & =\sqrt{m_{\text {beam }}^{2}+m_{\text {target }}^{2}+2 m_{\text {target }} E_{\text {beam }}} \\
16 m_{p}^{2} & =m_{p}^{2}+m_{p}^{2}+2 m_{p} E_{\text {beam }} \\
7 m_{p} & =E_{\text {beam }}
\end{aligned}
$$

* Need a linear accelerator with proton beam energy above $\sim 7 \mathrm{GeV}$

Invariant masses of unstable particles

$$
W^{2}=\left(\sum_{i} E_{i}\right)^{2}-\left(\sum_{i} \vec{p}_{i}\right)^{2}
$$

Invariant masses of unstable particles

$$
W^{2}=\left(\sum_{i} E_{i}\right)^{2}-\left(\sum_{i} \vec{p}_{i}\right)^{2}
$$

FIG. 1. Mass distribution of the selected $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$candidates (black dots) with BDT $\quad 0.5$. The result of the fit is overlaid, and the different components are detailed.

Invariant masses of unstable particles

$$
W^{2}=\left(\sum_{i} E_{i}\right)^{2}-\left(\sum_{i} \vec{p}_{i}\right)^{2}
$$

FIG. 1. Mass distribution of the selected $B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$candidates (black dots) with BDT $\quad 0.5$. The result of the fit is overlaid, and the different components are detailed.

