FYS3500 - spring 2019

Alex Read University Of Oslo Department of Physics

*Martin and Shaw, Particle Physics, 4th Ed., Chapter 5

Symmetries and Conserved Quantities

 Emmy Noether's theorem "... states that every differentiable symmetry of the action of a physical system has a corresponding conservation law." (wikipedia)

Symmetries and Conserved Quantities

 Emmy Noether's theorem "... states that every differentiable symmetry of the action of a physical system has a corresponding conservation law." (wikipedia)

Symmetry	Conserved	Interactions
Space	Linear momentum	All
Space	Angular	All
Time	Energy	All
Space	Parity	Not weak!
Charge	C-Parity	Not weak!

Symmetries and Conserved Quantities

 Emmy Noether's theorem "... states that every differentiable symmetry of the action of a physical system has a corresponding conservation law." (wikipedia)

Symmetry	Conserved	Interactions
Space	Linear momentum	All
Space	Angular	All
Time	Energy	All
Space	Parity	Not weak!
Charge	C-Parity	Not weak!

 Identify symmetries and conservation laws to characterize particles (starting with hadrons)

Conservation laws in QM

* Identify a transformation that leaves the Hamiltonian unchanged $\hat{T}H = H$

Conservation laws in QM

- * Identify a transformation that leaves the Hamiltonian unchanged $\hat{T}H = H$
- * Study the effect of the transformation on the wavefunction $\hat{T}\Psi$ to identify the associated observable

Conservation laws in QM

- * Identify a transformation that leaves the Hamiltonian unchanged $\hat{T}H = H$
- * Study the effect of the transformation on the wavefunction $\hat{T}\Psi$ to identify the associated observable
- * Apply the transformation to $\Psi' = H\Psi$

$$\hat{D}:\vec{r}\rightarrow\vec{r}+\delta\vec{r}$$

 $\hat{D}: \vec{r} \to \vec{r} + \delta \vec{r}$ $f(x + \delta x) \approx f(x) + \frac{df(x)}{dx}\delta x + \dots$

 $\hat{D}: \vec{r} \to \vec{r} + \delta \vec{r} \qquad f(x + \delta x) \approx f(x) + \frac{df(x)}{dx} \delta x + \dots$ $\hat{D}\Psi(\vec{r}) \equiv \Psi(\vec{r} + \delta \vec{r}) \approx \left(1 + \delta \vec{r} \cdot \vec{\nabla}\right) \Psi(\vec{r})$

 $\hat{D}: \vec{r} \to \vec{r} + \delta \vec{r} \qquad f(x + \delta x) \approx f(x) + \frac{df(x)}{dx} \delta x + \dots$ $\hat{D}\Psi(\vec{r}) \equiv \Psi(\vec{r} + \delta \vec{r}) \approx \left(1 + \delta \vec{r} \cdot \vec{\nabla}\right) \Psi(\vec{r})$ $\hat{\vec{p}} = -i \vec{\nabla} \to \hat{D} = 1 + i\delta \vec{r} \cdot \hat{\vec{p}}$

 $\hat{D}: \vec{r} \to \vec{r} + \delta \vec{r} \qquad f(x + \delta x) \approx f(x) + \frac{df(x)}{dx} \delta x + \dots$ $\hat{D}\Psi(\vec{r}) \equiv \Psi(\vec{r} + \delta \vec{r}) \approx \left(1 + \delta \vec{r} \cdot \vec{\nabla}\right) \Psi(\vec{r})$ $\hat{\vec{p}} = -i \vec{\nabla} \to \hat{D} = 1 + i \delta \vec{r} \cdot \hat{\vec{p}}$ $\Psi'(\vec{r}) = H(\vec{r})\Psi(\vec{r}) \to \hat{D}\Psi'(\vec{r}) = \hat{D}H(\vec{r})\Psi(\vec{r})$

 $\hat{D}: \vec{r} \to \vec{r} + \delta \vec{r} \qquad f(x + \delta x) \approx f(x) + \frac{df(x)}{dx} \delta x + \dots$ $\hat{D}\Psi(\vec{r}) \equiv \Psi(\vec{r} + \delta \vec{r}) \approx \left(1 + \delta \vec{r} \cdot \vec{\nabla}\right) \Psi(\vec{r})$ $\hat{\vec{p}} = -i \vec{\nabla} \to \hat{D} = 1 + i\delta \vec{r} \cdot \hat{\vec{p}}$ $\Psi'(\vec{r}) = H(\vec{r})\Psi(\vec{r}) \to \hat{D}\Psi'(\vec{r}) = \hat{D}H(\vec{r})\Psi(\vec{r})$

Space translation (1 particle) $\hat{D}: \vec{r} \to \vec{r} + \delta \vec{r}$ $f(x + \delta x) \approx f(x) + \frac{df(x)}{dx}\delta x + \dots$

- $\hat{D}\Psi(\vec{r}) \equiv \Psi(\vec{r} + \delta\vec{r}) \approx \left(1 + \delta\vec{r} \cdot \vec{\nabla}\right)\Psi(\vec{r})$
- $\hat{\overrightarrow{p}} = -i\overrightarrow{\nabla} \rightarrow \hat{D} = 1 + i\delta\overrightarrow{r}\cdot\widehat{\overrightarrow{p}}$
- $\Psi'(\vec{r}) = H(\vec{r})\Psi(\vec{r}) \rightarrow \hat{D}\Psi'(\vec{r}) = \hat{D}H(\vec{r})\Psi(\vec{r})$

 $\hat{D}\Psi'(\vec{r}) = \Psi'(\vec{r} + \delta\vec{r}) = H(\vec{r} + \delta\vec{r})\Psi(\vec{r} + \delta\vec{r})$ $= H(\vec{r})\Psi(\vec{r} + \delta\vec{r}) = H(\vec{r})\hat{D}\Psi(\vec{r})$

Space translation (1 particle) $\hat{D}: \vec{r} \to \vec{r} + \delta \vec{r}$ $f(x + \delta x) \approx f(x) + \frac{df(x)}{dx}\delta x + \dots$ $\hat{D}\Psi(\vec{r}) \equiv \Psi(\vec{r} + \delta\vec{r}) \approx \left(1 + \delta\vec{r} \cdot \vec{\nabla}\right) \Psi(\vec{r})$ $\hat{\vec{p}} = -i\vec{\nabla} \rightarrow \hat{D} = 1 + i\delta\vec{r}\cdot\hat{\vec{p}}$ $\Psi'(\vec{r}) = H(\vec{r})\Psi(\vec{r}) \rightarrow \hat{D}\Psi'(\vec{r}) = \hat{D}H(\vec{r})\Psi(\vec{r})$ $\hat{D}\Psi'(\vec{r}) = \Psi'(\vec{r} + \delta\vec{r}) = H(\vec{r} + \delta\vec{r})\Psi(\vec{r} + \delta\vec{r})$ $= H(\vec{r})\Psi(\vec{r} + \delta\vec{r}) = H(\vec{r})\hat{D}\Psi(\vec{r})$

Linear momentum conservation

 $\left(\hat{D}H(\vec{r}) - H(\vec{r})\hat{D}\right)\Psi(\vec{r}) = 0$

Linear momentum conservation

$$\begin{pmatrix} \hat{D}H(\vec{r}) - H(\vec{r})\hat{D} \end{pmatrix} \Psi(\vec{r}) = 0 [\hat{D}, H] = 0 \quad \rightarrow [1 + i\delta\vec{r} \cdot \hat{\vec{p}}, H] = 0 \quad \rightarrow [\hat{\vec{p}}, H] = 0$$

Linear momentum conservation

$$\begin{pmatrix} \hat{D}H(\vec{r}) - H(\vec{r})\hat{D} \end{pmatrix} \Psi(\vec{r}) = 0 [\hat{D}, H] = 0 \quad \rightarrow [1 + i\delta\vec{r} \cdot \hat{\vec{p}}, H] = 0 \quad \rightarrow [\hat{\vec{p}}, H] = 0$$

 Everything is linear, so also applies to system of particles

* If Hamiltonian is time-independent $H(t) = H(t + \delta t)$

* If Hamiltonian is time-independent $H(t) = H(t + \delta t)$ Time-displacement:

* If Hamiltonian is time-independent $H(t) = H(t + \delta t)$ Time-displacement: $\hat{T}\Psi(\vec{r}, t) = \Psi'(\vec{r}, t) = \Psi(\vec{r}, t + \delta t)$ $\approx \left(1 + \delta t \frac{\partial}{\partial t}\right)\Psi(\vec{r}, t)$ $= \left(1 - i\delta t\hat{E}\right)\Psi(\vec{r}, t)$

- * If Hamiltonian is time-independent $H(t) = H(t + \delta t)$ Time-displacement: $\hat{T}\Psi(\vec{r}, t) = \Psi'(\vec{r}, t) = \Psi(\vec{r}, t + \delta t)$ $\approx \left(1 + \delta t \frac{\partial}{\partial t}\right)\Psi(\vec{r}, t)$ $= \left(1 - i\delta t\hat{E}\right)\Psi(\vec{r}, t)$
- * Repeat similar steps on pages 4-5

- * If Hamiltonian is time-independent $H(t) = H(t + \delta t)$ Time-displacement: $\hat{T}\Psi(\vec{r}, t) = \Psi'(\vec{r}, t) = \Psi(\vec{r}, t + \delta t)$ $\approx \left(1 + \delta t \frac{\partial}{\partial t}\right)\Psi(\vec{r}, t)$ $= \left(1 - i\delta t\hat{E}\right)\Psi(\vec{r}, t)$
- Repeat similar steps on pages 4-5
- * Energy conserved: $[\hat{E}, H] = 0$

* Small rotations about the (arbitrary) *z*-axis

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} 1 & -\delta\theta & 0 \\ \delta\theta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

* Small rotations about the (arbitrary) *z*-axis

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} 1 & -\delta\theta & 0 \\ \delta\theta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

Ê,

Angular momentum operator

$$x = -i\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)$$

* Small rotations about the (arbitrary) *z*-axis

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} 1 & -\delta\theta & 0 \\ \delta\theta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- * Angular momentum operator $\hat{L}_z = -i\left(x\frac{\partial}{\partial y} y\frac{\partial}{\partial x}\right)$
- * Similar steps gives us for closed system and central potential with spinless particles $H = -\frac{1}{2m}\nabla^2 + V(r) \qquad [\hat{L}, H] = 0$

* Small rotations about the (arbitrary) *z*-axis

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}' = \begin{bmatrix} 1 & -\delta\theta & 0 \\ \delta\theta & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

- * Angular momentum operator $\hat{L}_z = -i\left(x\frac{\partial}{\partial y} y\frac{\partial}{\partial x}\right)$
- * Similar steps gives us for closed system and central potential with spinless particles 1

$$H = -\frac{1}{2m}\nabla^2 + V(r)$$
 [L, H] = 0

* Generalizes to conservation of $\overrightarrow{J} = \overrightarrow{L} + \overrightarrow{S}$

FYS3500 Spring 2019

Composite particle properties

 Bound states of hydrogen can be characterized by spin properties, in rest frame

Composite particle properties

- Bound states of hydrogen can be characterized by spin properties, in rest frame
- We use a similar approach for hadrons, trying to limit the number of different constituents while accounting for many mass states as different orbital and radial excitations of the bound quarks.

Composite particle properties

- Bound states of hydrogen can be characterized by spin properties, in rest frame
- We use a similar approach for hadrons, trying to limit the number of different constituents while accounting for many mass states as different orbital and radial excitations of the bound quarks.
- * \overrightarrow{J} , \overrightarrow{L} , \overrightarrow{S} are in general not such great quantum numbers but *J*, *L*², *S*² are often a good approximation, allowing for spin flips but conserved absolute values.

 $2S+1L_J$

FYS3500 Spring 2019

Alex Read, U. Oslo, Dept. Physics

	I. Orbital area maare	L	Symbol
$S+1L_J$	L: Orbital ang. mom. S: Total spin of constituents J: Total angular momentum	0	S
		1	Р
		2	D
		3	F

$2S+1L_J$	L: Orbital ang. mom. S: Total spin of constituents J: Total angular momentum	L	Symbol
		0	S
		1	Р
		2	D
		3	F

Examples:

	$T \cap 1 \leq 1$	L	Symbol
$2S+1L_J$	L: Orbital ang. mom.	0	S
	J: Total angular momentum	1	Р
		2	D
		3	F

Examples:
$${}^{1}S_{0}: J = 0$$

 $L = 0$
 $S = 0$
Spectroscopic notation

		L	Symbol
$2S+1L_J$	L'Orbital ang. mom.	0	S
	5: Total spin of constituents J: Total angular momentum	1	Р
		2	D
		3	F

Examples:
$${}^{1}S_{0}: J = 0 \quad {}^{3}P_{2}: J = 2$$

 $L = 0 \quad L = 1$
 $S = 0 \quad S = 1$

Spectroscopic notation

$2S+1L_J$	L: Orbital ang. mom. S: Total spin of constituents J: Total angular momentum	L	Symbol
		0	S
		1	Р
		2	D
		3	F

Examples:
$${}^{1}S_{0}: J = 0 {}^{3}P_{2}: J = 2$$

 $L = 0 {} L = 1$
 $S = 0 {} S = 1$
 $\vec{J} = \vec{L} + \vec{S} \rightarrow J = |L - S|, |L - S + 1|, ..., |L + S - 1|, |L + S|$

9

* Deuteron *d* (*pn* bound state) has spin 1, i,.e. *J*=1

- * Deuteron *d* (*pn* bound state) has spin 1, i,.e. *J*=1
- * *p* and *n* are spin-1/2 particles

- * Deuteron *d* (*pn* bound state) has spin 1, i,.e. *J*=1
- * *p* and *n* are spin-1/2 particles
- * Assume (as is often done) that ground state has *L*=0

- * Deuteron *d* (*pn* bound state) has spin 1, i,.e. *J*=1
- * *p* and *n* are spin-1/2 particles
- * Assume (as is often done) that ground state has *L*=0
- * This implies *pn* are in *S*=1 state and the total state is therefore: ${}^{3}S_{1}$

- * Deuteron *d* (*pn* bound state) has spin 1, i,.e. *J*=1
- * *p* and *n* are spin-1/2 particles
- * Assume (as is often done) that ground state has L=0
- * This implies *pn* are in *S*=1 state and the total state is therefore: ${}^{3}S_{1}$
- * Magnetic moment must come only from the spins of the *n* and *p*: $\mu_d = \mu_n + \mu_p = 2.793 - 1.913 = 0.880$ which is close to the experimental value $\mu_d = 0.857$

Small mixture of L=2 (allowed by J=|2-1| and no conservation law forbids it):

Small mixture of L=2 (allowed by J=|2-1| and no conservation law forbids it):

* Small mixture of *L*=2 (allowed by *J*=|2-1| and no conservation law forbids it): ${}^{3}D_{1}$

* Small mixture of *L*=2 (allowed by *J*=|2-1| and no conservation law forbids it): ${}^{3}D_{1}$

* Lesson is that *L* is only an *approximate* quantum number for bound states of particles with spin!

Assume:

- * Assume:
 - * *L* and *S* are good quantum numbers

- Assume:
 - * L and S are good quantum numbers
 - * Quarks have spin 1/2

- Assume:
 - * L and S are good quantum numbers
 - * Quarks have spin 1/2
 - * Mesons are $q\bar{q}$, baryons are qqq (q = u, d, s, c, b)

- Assume:
 - * L and S are good quantum numbers
 - * Quarks have spin 1/2
 - * Mesons are $q\bar{q}$, baryons are qqq (q = u, d, s, c, b)
 - * Lightest meson states have L=0 and lightest baryon states have $L_{12}=L_3=0$.

FYS3500 Spring 2019

Alex Read, U. Oslo, Dept. Physics

* Two possible spin states: *S*=0 or *S*=1

- * Two possible spin states: *S*=0 or *S*=1
- * For L=0, J=S we can have ${}^{2S+1}L_J = {}^{1}S_0$ and ${}^{3}S_1$

- * Two possible spin states: *S*=0 or *S*=1
- * For L=0, J=S we can have ${}^{2S+1}L_J = {}^{1}S_0$ and ${}^{3}S_1$
- * For L=1 or higher we can have

- * Two possible spin states: *S*=0 or *S*=1
- * For L=0, J=S we can have ${}^{2S+1}L_J = {}^{1}S_0$ and ${}^{3}S_1$
- * For L=1 or higher we can have
 - * S=0 so J=L

- * Two possible spin states: *S*=0 or *S*=1
- * For L=0, J=S we can have ${}^{2S+1}L_J = {}^{1}S_0$ and ${}^{3}S_1$
- * For L=1 or higher we can have
 - * S=0 so J=L
 - * S=1 so J=L-1,...,L+1

- * Two possible spin states: *S*=0 or *S*=1
- * For L=0, J=S we can have ${}^{2S+1}L_J = {}^{1}S_0$ and ${}^{3}S_1$
- * For L=1 or higher we can have
 - * S=0 so J=L
 - * S=1 so J=L-1,...,L+1
- For the lightest (L=0) states we expect two states with J=0 and J=1 and the J=0 to be the lightest.

- * Two possible spin states: *S*=0 or *S*=1
- * For L=0, J=S we can have ${}^{2S+1}L_J = {}^1S_0$ and 3S_1
- * For L=1 or higher we can have
 - * S=0 so J=L
 - * S=1 so J=L-1,...,L+1
- For the lightest (L=0) states we expect two states with J=0 and J=1 and the J=0 to be the lightest.
 - * π , *K*, and *D* mesons follow this trend (ρ , *K*^{*}, *D*^{*} are heavier and have short lifetimes)

Baryons $2S+1L_J$

Baryons
$$2S+1L_J$$

* 3 spin-1/2 particles so that S=1/2 or 3/2

Baryons
$$2S+1L_J$$

* 3 spin-1/2 particles so that S=1/2 or 3/2

Baryons
$$2S+1L_J$$

* 3 spin-1/2 particles so that S=1/2 or 3/2

Baryons
$$2S+1L_J$$

- * 3 spin-1/2 particles so that S=1/2 or 3/2
- * For *L*=0 we have 2 states ${}^{2}S_{1/2}$ and ${}^{4}S_{3/2}$

Baryons
$$2S+1L_J$$

- * 3 spin-1/2 particles so that S=1/2 or 3/2
- * For *L*=0 we have 2 states ${}^{2}S_{1/2}$ and ${}^{4}S_{3/2}$
- * For *L*=1 we have 5 *P*-states and for *L*=2 6 *D*-states

Baryons
$$2S+1L_J$$

- * 3 spin-1/2 particles so that S=1/2 or 3/2
- * For *L*=0 we have 2 states ${}^{2}S_{1/2}$ and ${}^{4}S_{3/2}$
- * For *L*=1 we have 5 *P*-states and for *L*=2 6 *D*-states
- * We're going to focus on the light *S*-states:

Baryons
$$2S+1L_J$$

- * 3 spin-1/2 particles so that S=1/2 or 3/2
- * For *L*=0 we have 2 states ${}^{2}S_{1/2}$ and ${}^{4}S_{3/2}$
- * For *L*=1 we have 5 *P*-states and for *L*=2 6 *D*-states
- * We're going to focus on the light *S*-states:
 - * So far we have come across ${}^{2}S_{1/2}$ states *p*, *n*, *A*, *A*_c, *A*_b

Baryons
$$2S+1L_J$$

- * 3 spin-1/2 particles so that S=1/2 or 3/2
- * For *L*=0 we have 2 states ${}^{2}S_{1/2}$ and ${}^{4}S_{3/2}$
- * For *L*=1 we have 5 *P*-states and for *L*=2 6 *D*-states
- * We're going to focus on the light *S*-states:
 - * So far we have come across ${}^{2}S_{1/2}$ states *p*, *n*, *A*, *A*_c, *A*_b
 - * We expect the ${}^{4}S_{3/2}$ states to be heavier and unstable

Parity (space-inversion)

* Space-inversion: $\vec{r}_i \rightarrow \vec{r}_i' = -\vec{r}_i$

Parity (space-inversion)

- * Space-inversion: $\vec{r}_i \rightarrow \vec{r}_i' = -\vec{r}_i$
- * Invariance under parity if $H(\vec{r}_1, \vec{r}_2, \dots) = H(-\vec{r}_1, -\vec{r}_2, \dots)$

Parity (space-inversion)

- * Space-inversion: $\vec{r}_i \rightarrow \vec{r}_i' = -\vec{r}_i$
- * Invariance under parity if $H(\vec{r}_1, \vec{r}_2, ...) = H(-\vec{r}_1, -\vec{r}_2, ...)$
- Turns out that weak interaction violates parity huge surprise in 1957!
Parity (space-inversion)

- * Space-inversion: $\vec{r}_i \rightarrow \vec{r}_i' = -\vec{r}_i$
- * Invariance under parity if $H(\vec{r}_1, \vec{r}_2, ...) = H(-\vec{r}_1, -\vec{r}_2, ...)$
- Turns out that weak interaction violates parity huge surprise in 1957!
- Parity operator on single particle:

Parity (space-inversion)

- * Space-inversion: $\vec{r}_i \rightarrow \vec{r}_i' = -\vec{r}_i$
- * Invariance under parity if $H(\vec{r}_1, \vec{r}_2, ...) = H(-\vec{r}_1, -\vec{r}_2, ...)$
- Turns out that weak interaction violates parity huge surprise in 1957!
- * Parity operator on single particle: $\hat{P}\Psi(\vec{r},t) \equiv P_a\Psi(-\vec{r},t), \ \hat{P}^2\Psi(\vec{r},t) = P_a^2\Psi(\vec{r},t)$

Parity (space-inversion)

- * Space-inversion: $\vec{r}_i \rightarrow \vec{r}_i' = -\vec{r}_i$
- * Invariance under parity if $H(\vec{r}_1, \vec{r}_2, ...) = H(-\vec{r}_1, -\vec{r}_2, ...)$
- Turns out that weak interaction violates parity huge surprise in 1957!
- * Parity operator on single particle: $\hat{P}\Psi(\vec{r},t) \equiv P_a\Psi(-\vec{r},t), \ \hat{P}^2\Psi(\vec{r},t) = P_a^2\Psi(\vec{r},t)$

$$\Rightarrow P_a = \pm 1$$

Free particle:
$$\Psi_p(\vec{r}, t) = \mathcal{N}e^{(i\vec{p}\cdot\vec{r}-Et)}$$

Free particle:
$$\Psi_p(\vec{r}, t) = \mathcal{N}e^{(i\vec{p}\cdot\vec{r}-Et)}$$

$$\hat{P}\Psi_p(\vec{r},t) = P_a \mathcal{N} e^{(-i\vec{p}\cdot\vec{r}-Et)} = P_a \Psi_{-p}(\vec{r},t)$$

Free particle:
$$\Psi_p(\vec{r}, t) = \mathcal{N}e^{(i\vec{p}\cdot\vec{r}-Et)}$$

$$\hat{P}\Psi_p(\vec{r},t) = P_a \mathcal{N} e^{(-i\vec{p}\cdot\vec{r}-Et)} = P_a \Psi_{-p}(\vec{r},t)$$

* A particle at rest ($\overrightarrow{p} = 0$) is an eigenstate of parity

Free particle:
$$\Psi_p(\vec{r}, t) = \mathcal{N}e^{(i\vec{p}\cdot\vec{r}-Et)}$$

$$\hat{P}\Psi_{p}(\vec{r},t) = P_{a}\mathcal{N}e^{(-i\vec{p}\cdot\vec{r}-Et)} = P_{a}\Psi_{-p}(\vec{r},t)$$

* A particle at rest ($\vec{p} = 0$) is an eigenstate of parity

$$\hat{P}\Psi_0(\vec{r},t) = P_a \Psi_0(\vec{r},t)$$

Free particle:
$$\Psi_p(\vec{r}, t) = \mathcal{N}e^{(i\vec{p}\cdot\vec{r}-Et)}$$

$$\hat{P}\Psi_{p}(\vec{r},t) = P_{a}\mathcal{N}e^{(-i\vec{p}\cdot\vec{r}-Et)} = P_{a}\Psi_{-p}(\vec{r},t)$$

* A particle at rest ($\vec{p} = 0$) is an eigenstate of parity

$$\hat{P}\Psi_0(\vec{r},t) = P_a \Psi_0(\vec{r},t)$$

* Will have to determine intrinsic *P*^{*a*} for each particle

* Parity inverts positions of all particles, <u>plus a factor *P_a* for each</u>

* Parity inverts positions of all particles, <u>plus a factor P_a for each</u> $r \rightarrow r, \theta \rightarrow \pi - \theta, \phi \rightarrow \pi + \phi$

- * Parity inverts positions of all particles, <u>plus a factor P_a for each</u> $r \rightarrow r, \ \theta \rightarrow \pi - \theta, \ \phi \rightarrow \pi + \phi$
- Particle in orbital angular momentum state is also an eigenstate of parity

Parity inverts positions of all particles, plus a factor *P_a* for each

$$r \to r, \ \theta \to \pi - \theta, \ \phi \to \pi + \phi$$

* Particle in orbital angular momentum state is also an eigenstate of parity $Y_1^m(\theta,\phi) \to Y_1^m(\pi-\theta,\pi+\phi) = (-1)^l Y_1^m(\theta,\phi)$

* Parity inverts positions of all particles, <u>plus a factor *P_a* for each</u>

$$r \to r, \ \theta \to \pi - \theta, \ \phi \to \pi + \phi$$

 Particle in orbital angular momentum state is also an eigenstate of parity

$$\hat{P}\Psi_{nlm}(\theta,\phi) \to Y_l^m(\pi-\theta,\pi+\phi) = (-1)^l Y_l^m(\theta,\phi)$$
$$\hat{P}\Psi_{nlm}(\vec{r}) = P_a \hat{P}\Psi_{nlm}(-\vec{r}) = P_a (-1)^l \Psi_{nlm}(\vec{r})$$

* Parity inverts positions of all particles, <u>plus a factor *P_a* for each</u>

$$r \to r, \ \theta \to \pi - \theta, \ \phi \to \pi + \phi$$

Particle in orbital angular momentum state is also an eigenstate of parity

$$Y_l^m(\theta,\phi) \to Y_l^m(\pi-\theta,\pi+\phi) = (-1)^l Y_l^m(\theta,\phi)$$
$$\hat{P}\Psi_{nlm}(\vec{r}) = P_a \hat{P}\Psi_{nlm}(-\vec{r}) = P_a (-1)^l \Psi_{nlm}(\vec{r})$$

* If parity is conserved:

* Parity inverts positions of all particles, <u>plus a factor *P_a* for each</u>

$$r \to r, \ \theta \to \pi - \theta, \ \phi \to \pi + \phi$$

Particle in orbital angular momentum state is also an eigenstate of parity

$$Y_l^m(\theta,\phi) \to Y_l^m(\pi-\theta,\pi+\phi) = (-1)^l Y_l^m(\theta,\phi)$$
$$\hat{P}\Psi_{nlm}(\vec{r}) = P_a \hat{P}\Psi_{nlm}(-\vec{r}) = P_a (-1)^l \Psi_{nlm}(\vec{r})$$

* If parity is conserved:

* Total parities of initial and final state must be equal

Parity inverts positions of all particles, <u>plus a factor *P_a* for each</u>

$$r \to r, \ \theta \to \pi - \theta, \ \phi \to \pi + \phi$$

Particle in orbital angular momentum state is also an eigenstate of parity

$$\hat{P} \Psi_{nlm}(\theta, \phi) \rightarrow Y_l^m(\pi - \theta, \pi + \phi) = (-1)^l Y_l^m(\theta, \phi)$$
$$\hat{P} \Psi_{nlm}(\vec{r}) = P_a \hat{P} \Psi_{nlm}(-\vec{r}) = P_a (-1)^l \Psi_{nlm}(\vec{r})$$

* If parity is conserved:

- * Total parities of initial and final state must be equal
- * Parity is a good quantum number for bound states

Intrinsic parity of fermions

* We will take for granted the analysis of relativistic quantum field theory that yields $P_f P_{\bar{f}} = -1$

Intrinsic parity of fermions

- * We will take for granted the analysis of relativistic quantum field theory that yields $P_f P_{\bar{f}} = -1$
- * Since fermions (leptons and quarks) are produced or destroyed in fermion-antifermion pairs, *by convention*:

$$P_f \equiv +1 \quad P_{\bar{f}} \equiv +1$$

L=0 bound state of electron-positron annihilates

- *L*=0 bound state of electron-positron annihilates
- * Initial and final states must have the same parity $P_i = P_{e^+}P_{e^-}(-1)^0 = -1$ $P_f = P_{\gamma}^2(-1)^{l_{\gamma}} = (-1)^{l_{\gamma}}$

 e^+

- *L*=0 bound state of electron-positron annihilates
- * Initial and final states must have the same parity $P_i = P_{e^+}P_{e^-}(-1)^0 = -1$ $P_f = P_{\gamma}^2(-1)^{l_{\gamma}} = (-1)^{l_{\gamma}}$

 e^+

- *L*=0 bound state of electron-positron annihilates
- * Initial and final states must have the same parity $P_i = P_{e^+} P_{e^-} (-1)^0 = -1$ $P_f = P_{\gamma}^2 (-1)^{l_{\gamma}} = (-1)^{l_{\gamma}}$
- *l_γ* can be determined by measuring the polarization of the two photons, and is consistent with the prediction of 1.

 e^+

$$P_{meson} = P_a P_{\bar{b}} (-1)^L = (-1)^{L+1}$$

$$P_B = P_a P_b P_c (-1)^{L_{12} + L_3} = (-1)^{L_{12} + L_3}$$

$$P_{meson} = P_a P_{\bar{b}} (-1)^L = (-1)^{L+1}$$

$$P_{B} = P_{a}P_{b}P_{c}(-1)^{L_{12}+L_{3}} = (-1)^{L_{12}+L_{3}}$$
$$P_{\bar{B}} = P_{\bar{a}}P_{\bar{b}}P_{\bar{c}}(-1)^{L_{12}+L_{3}} = (-1)^{L_{12}+L_{3}+1}$$

$$P_{meson} = P_a P_{\bar{b}} (-1)^L = (-1)^{L+1}$$

* Low-mass mesons with L=0 predicted to have P=-1, consistent with observations of π , K, and D

$$P_{B} = P_{a}P_{b}P_{c}(-1)^{L_{12}+L_{3}} = (-1)^{L_{12}+L_{3}}$$
$$P_{\bar{B}} = P_{\bar{a}}P_{\bar{b}}P_{\bar{c}}(-1)^{L_{12}+L_{3}} = (-1)^{L_{12}+L_{3}+1}$$

* Low-mass baryons with $L_{12}=L_3=0$ predicted to have P=+1 and corresponding antibaryons P=-1

* Changes particles to antiparticles, and back again $\hat{C}^2 = 1 \implies C_{\alpha} = \pm 1$

- * Changes particles to antiparticles, and back again $\hat{C}^2 = 1 \implies C_{\alpha} = \pm 1$
- * Some similarities to parity, although it concerns the charges of particle rather than (directly) their positions.

- * Changes particles to antiparticles, and back again $\hat{C}^2 = 1 \implies C_{\alpha} = \pm 1$
- * Some similarities to parity, although it concerns the charges of particle rather than (directly) their positions.
- * Some particles have distinct antiparticles (e.g. π^+ , π^-),

$$\hat{C} | \pi^+ \Psi \rangle = | \pi^- \Psi \rangle$$

- * Changes particles to antiparticles, and back again $\hat{C}^2 = 1 \implies C_{\alpha} = \pm 1$
- * Some similarities to parity, although it concerns the charges of particle rather than (directly) their positions.
- * Some particles have distinct antiparticles (e.g. π^+ , π^-),

$$\hat{C} \mid \pi^+ \Psi > = \mid \pi^- \Psi >$$

* while others do not (e.g. π^0 , γ)

$$\hat{C} | \gamma \Psi \rangle = C_{\gamma} | \gamma \Psi \rangle$$
C-parity eigenstates

* Eigenstates can also be constructed from particleantiparticle pairs that are symmetric or antisymmetric under $a \leftrightarrow \bar{a}$

C-parity eigenstates

* Eigenstates can also be constructed from particleantiparticle pairs that are symmetric or antisymmetric under $a \leftrightarrow \bar{a}$

$$\hat{C} | a\Psi_1, \bar{a}\Psi_2 \rangle = | \bar{a}\Psi_1, a\Psi_2 \rangle = \pm | a\Psi_1, \bar{a}\Psi_2 \rangle$$

* Eigenstates can also be constructed from particleantiparticle pairs that are symmetric or antisymmetric under $a \leftrightarrow \bar{a}$

$$\hat{C} | a\Psi_1, \bar{a}\Psi_2 \rangle = | \bar{a}\Psi_1, a\Psi_2 \rangle = \pm | a\Psi_1, \bar{a}\Psi_2 \rangle$$

* Example: $\hat{C} | \pi^+ \pi^-; L > = (-1)^l | \pi^+ \pi^-; L >$ (particle exchange has same effect as parity trans.)

C-parity for spin-1/2 fermions

$\hat{C} | f\bar{f}; J, L, S \rangle = (-1)(-1)^{S+1}(-1)^L | f\bar{f}; J, L, S \rangle$ $= (-1)^{L+S} | f\bar{f}; J, L, S \rangle$

C-parity for spin-1/2 fermions

$\hat{C} | f\bar{f}; J, L, S \rangle = (-1)(-1)^{S+1}(-1)^L | f\bar{f}; J, L, S \rangle$ $= (-1)^{L+S} | f\bar{f}; J, L, S \rangle$

* Factor (-1) for exchanging fermion-antifermion

C-parity for spin-1/2 fermions

$$\hat{C} | f\bar{f}; J, L, S \rangle = (-1)(-1)^{S+1}(-1)^L | f\bar{f}; J, L, S \rangle$$
$$= (-1)^{L+S} | f\bar{f}; J, L, S \rangle$$

- * Factor (-1) for exchanging fermion-antifermion
- * Factor (-1)^{S+1} due to exchange in spin wave functions

$$\begin{array}{ccc} \uparrow_{1}\uparrow_{2} & (S=1,S_{z}=1) \\ \hline \uparrow_{1}\downarrow_{2}+\downarrow_{1}\uparrow_{2} \\ \hline \sqrt{2} \\ \downarrow_{1}\downarrow_{2} \end{array} & (S=1,S_{z}=0) \\ \hline \begin{array}{c} \uparrow_{1}\downarrow_{2}-\downarrow_{1}\uparrow_{2} \\ \hline \sqrt{2} \\ \hline \sqrt{2} \end{array} & (S=0,S_{z}=0) \\ \hline \sqrt{2} \\ \hline \end{array} & (S=0,S_{z}=0) \end{array}$$

FYS3500 Spring 2019

 π^0 decays

 $\pi^0 \to \gamma \gamma$

π^0 decays

$$\pi^0 \to \gamma \gamma \qquad \qquad \hat{C} |\gamma \gamma \rangle = C_{\gamma}^2 |\gamma \gamma \rangle = |\gamma \gamma \rangle$$

π^0 decays

 $\pi^0 \to \gamma \gamma$

$$\hat{C} | \gamma \gamma \rangle = C_{\gamma}^{2} | \gamma \gamma \rangle = | \gamma \gamma \rangle$$
$$\hat{C} | \pi^{0} \rangle = C_{\pi^{0}} | \pi^{0} \rangle$$

$$\pi^0$$
 decays

$$\pi^{0} \to \gamma \gamma \qquad \qquad \hat{C} |\gamma \gamma \rangle = C_{\gamma}^{2} |\gamma \gamma \rangle = |\gamma \gamma \rangle$$
$$\hat{C} |\pi^{0} \rangle = C_{\pi^{0}} |\pi^{0} \rangle$$

* Conservation of C-parity implies that $C_{\pi^0} = 1$

$$\pi^0$$
 decays

$$\pi^{0} \to \gamma \gamma \qquad \qquad \hat{C} |\gamma \gamma \rangle = C_{\gamma}^{2} |\gamma \gamma \rangle = |\gamma \gamma \rangle$$
$$\hat{C} |\pi^{0} \rangle = C_{\pi^{0}} |\pi^{0} \rangle$$

- * Conservation of C-parity implies that $C_{\pi^0} = 1$
- * 3-photon decay $\pi^0 \rightarrow \gamma \gamma \gamma$ never observed implies that

$$C_{\gamma} = -1$$

$$\pi^0$$
 decays

$$\pi^{0} \to \gamma \gamma \qquad \qquad \hat{C} |\gamma \gamma \rangle = C_{\gamma}^{2} |\gamma \gamma \rangle = |\gamma \gamma \rangle$$
$$\hat{C} |\pi^{0} \rangle = C_{\pi^{0}} |\pi^{0} \rangle$$

- * Conservation of C-parity implies that $C_{\pi^0} = 1$
- * 3-photon decay $\pi^0 \rightarrow \gamma \gamma \gamma$ never observed implies that

 $C_{\gamma} = -1$

* Neutral spin-0 meson of mass 558 MeV

* Neutral spin-0 meson of mass 558 MeV

$\eta \to \gamma \gamma$	B = 0.39
$\eta \to \pi^0 \pi^0 \pi^0$	B = 0.33
$\eta \to \pi^+ \pi^- \pi^0$	B = 0.23

* Neutral spin-0 meson of mass 558 MeV

 $\begin{array}{ll} \eta \rightarrow \gamma \gamma & B = 0.39 \\ \eta \rightarrow \pi^0 \pi^0 \pi^0 & B = 0.33 \end{array} \quad \hat{C} | \gamma \gamma \rangle \Rightarrow | \gamma \gamma \rangle \Rightarrow C_{\eta} = 1 \\ \eta \rightarrow \pi^+ \pi^- \pi^0 & B = 0.23 \end{array}$

* Neutral spin-0 meson of mass 558 MeV

 $\begin{array}{ll} \eta \rightarrow \gamma \gamma & B = 0.39 \\ \eta \rightarrow \pi^0 \pi^0 \pi^0 & B = 0.33 \\ \eta \rightarrow \pi^+ \pi^- \pi^0 & B = 0.23 \end{array} \begin{array}{ll} \hat{C} \mid \gamma \gamma > = \mid \gamma \gamma > \Rightarrow & C_\eta = 1 \\ C_\eta = C_{\pi^0} = 1 \end{array}$

* Neutral spin-0 meson of mass 558 MeV

 $\begin{array}{ll} \eta \rightarrow \gamma \gamma & B = 0.39 \\ \eta \rightarrow \pi^0 \pi^0 \pi^0 & B = 0.33 \\ \eta \rightarrow \pi^+ \pi^- \pi^0 & B = 0.23 \end{array} \begin{array}{l} \hat{C} \mid \gamma \gamma > = \mid \gamma \gamma > \Rightarrow \quad C_\eta = 1 \\ C_\eta = C_{\pi^0} = 1 \end{array}$

- * Neutral spin-0 meson of mass 558 MeV
 - $\begin{array}{ll} \eta \rightarrow \gamma \gamma & B = 0.39 \\ \eta \rightarrow \pi^0 \pi^0 \pi^0 & B = 0.33 \\ \eta \rightarrow \pi^+ \pi^- \pi^0 & B = 0.23 \end{array} \begin{array}{l} \hat{C} \mid \gamma \gamma > = \mid \gamma \gamma > \Rightarrow \quad C_\eta = 1 \\ C_\eta = C_{\pi^0} = 1 \end{array}$
- Momentum spectra of the charged pions should be, and are experimentally, indistinguishable

Neutral spin-0 meson of mass 558 MeV

$$\begin{array}{ll} \eta \rightarrow \gamma \gamma & B = 0.39 \\ \eta \rightarrow \pi^0 \pi^0 \pi^0 & B = 0.33 \\ \eta \rightarrow \pi^+ \pi^- \pi^0 & B = 0.23 \end{array} \begin{array}{l} \hat{C} \mid \gamma \gamma > = \mid \gamma \gamma > \Rightarrow \quad C_\eta = 1 \\ C_\eta = C_{\pi^0} = 1 \end{array}$$

 Momentum spectra of the charged pions should be, and are experimentally, indistinguishable

$$\hat{C}\left[\eta \to \pi^{+}(\overrightarrow{p}_{1}) + \pi^{-}(\overrightarrow{p}_{2}) + \pi^{0}(\overrightarrow{p}_{3})\right]$$
$$= \left[\eta \to \pi^{-}(\overrightarrow{p}_{1}) + \pi^{+}(\overrightarrow{p}_{2}) + \pi^{0}(\overrightarrow{p}_{3})\right]$$