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Symmetries and Conserved Quantities
❖ Emmy Noether’s theorem “… states that every differentiable 

symmetry of the action of a physical system has a 
corresponding conservation law.” (wikipedia)  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Symmetry Conserved 
quantity

Interactions
Space 

translation
Linear momentum All

Space 
rotation

Angular 
momentum

All
Time 

displacement
Energy All

Space 
inversion

Parity Not weak!
Charge 

inversion
C-Parity Not weak!
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Symmetries and Conserved Quantities
❖ Emmy Noether’s theorem “… states that every differentiable 

symmetry of the action of a physical system has a 
corresponding conservation law.” (wikipedia)  
 
 
 
 
 

❖ Identify symmetries and conservation laws to characterize 
particles (starting with hadrons)
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Conservation laws in QM

❖ Identify a transformation that leaves the Hamiltonian 
unchanged
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Conservation laws in QM

❖ Identify a transformation that leaves the Hamiltonian 
unchanged

❖ Study the effect of the transformation on the 
wavefunction            to identify the associated 
observable

❖ Apply the transformation to 
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Ψ′� = HΨ

̂TH = H

̂TΨ
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Space translation (1 particle)
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df(x)
dx
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Linear momentum conservation
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Linear momentum conservation
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(D̂H( ⃗r) − H( ⃗r)D̂) Ψ( ⃗r) = 0

[D̂, H] = 0 → [1 + iδ ⃗r ⋅ ̂ ⃗p , H] = 0

→ [ ̂ ⃗p , H] = 0
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Linear momentum conservation

❖ Everything is linear, so also applies to system of 
particles
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(D̂H( ⃗r) − H( ⃗r)D̂) Ψ( ⃗r) = 0

[D̂, H] = 0 → [1 + iδ ⃗r ⋅ ̂ ⃗p , H] = 0

→ [ ̂ ⃗p , H] = 0
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Energy conservation

❖ If Hamiltonian is time-independent  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Energy conservation

❖ If Hamiltonian is time-independent  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H(t) = H(t + δt)
̂TΨ( ⃗r, t) = Ψ′�( ⃗r, t) = Ψ( ⃗r, t + δt)

≈ (1 + δt
∂
∂t ) Ψ( ⃗r, t)

= (1 − iδt ̂E) Ψ( ⃗r, t)

Time-displacement:
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Energy conservation

❖ If Hamiltonian is time-independent  
 
 
 
 

❖ Repeat similar steps on pages 4-5
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Energy conservation

❖ If Hamiltonian is time-independent  
 
 
 
 

❖ Repeat similar steps on pages 4-5

❖ Energy conserved: 

!6

H(t) = H(t + δt)
̂TΨ( ⃗r, t) = Ψ′�( ⃗r, t) = Ψ( ⃗r, t + δt)

≈ (1 + δt
∂
∂t ) Ψ( ⃗r, t)

= (1 − iδt ̂E) Ψ( ⃗r, t)

[ ̂E, H] = 0

Time-displacement:
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Angular momentum conservation
❖ Small rotations about the (arbitrary) z-axis 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[
x
y
z]

′�

=
1 −δθ 0
δθ 1 0
0 0 1 [

x
y
z]
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Angular momentum conservation
❖ Small rotations about the (arbitrary) z-axis 
 
 
 

❖ Angular momentum operator  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[
x
y
z]

′�

=
1 −δθ 0
δθ 1 0
0 0 1 [

x
y
z]

̂Lz = − i (x
∂
∂y

− y
∂
∂x )
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Angular momentum conservation
❖ Small rotations about the (arbitrary) z-axis 
 
 
 

❖ Angular momentum operator  

❖ Similar steps gives us for closed system and central potential with spinless 
particles 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[
x
y
z]

′�

=
1 −δθ 0
δθ 1 0
0 0 1 [

x
y
z]

̂Lz = − i (x
∂
∂y

− y
∂
∂x )

[ ̂ ⃗L , H] = 0H = −
1

2m
∇2 + V(r)
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Angular momentum conservation
❖ Small rotations about the (arbitrary) z-axis 
 
 
 

❖ Angular momentum operator  

❖ Similar steps gives us for closed system and central potential with spinless 
particles 
 

❖ Generalizes to conservation of   

!7

[
x
y
z]

′�

=
1 −δθ 0
δθ 1 0
0 0 1 [

x
y
z]

̂Lz = − i (x
∂
∂y

− y
∂
∂x )

[ ̂ ⃗L , H] = 0

⃗J = ⃗L + ⃗S

H = −
1

2m
∇2 + V(r)
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Composite particle properties
❖ Bound states of hydrogen can be characterized by spin 

properties, in rest frame
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properties, in rest frame

❖ We use a similar approach for hadrons, trying to limit 
the number of different constituents while accounting 
for many mass states as different orbital and radial 
excitations of the bound quarks.
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Composite particle properties
❖ Bound states of hydrogen can be characterized by spin 

properties, in rest frame

❖ We use a similar approach for hadrons, trying to limit 
the number of different constituents while accounting 
for many mass states as different orbital and radial 
excitations of the bound quarks.

❖                  are in general not such great quantum numbers 
but J, L2, S2 are often a good approximation, allowing for 
spin flips but conserved absolute values.
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⃗J , ⃗L , ⃗S
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Spectroscopic notation

!9

2S+1LJ



FYS3500 Spring 2019 Alex Read, U. Oslo, Dept. Physics

Spectroscopic notation

!9

2S+1LJ
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Spectroscopic notation
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2S+1LJ
L: Orbital ang. mom.  
S: Total spin of constituents
J: Total angular momentum

L Symbol

0 S

1 P

2 D

3 F

Examples: 1S0 : J = 0
L = 0
S = 0

3P2 : J = 2
L = 1
S = 1
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Spectroscopic notation

!9

2S+1LJ
L: Orbital ang. mom.  
S: Total spin of constituents
J: Total angular momentum

L Symbol

0 S

1 P

2 D

3 F

Examples: 1S0 : J = 0
L = 0
S = 0

3P2 : J = 2
L = 1
S = 1

⃗J = ⃗L + ⃗S → J = |L − S], |L − S + 1 | , . . . , |L + S − 1 | , |L + S |
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❖ Assume (as is often done) that ground state has L=0

❖ This implies pn are in S=1 state and the total state is 
therefore: 
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Example from nuclear physics
❖ Deuteron d (pn bound state) has spin 1, i,.e. J=1

❖ p and n are spin-1/2 particles

❖ Assume (as is often done) that ground state has L=0

❖ This implies pn are in S=1 state and the total state is 
therefore: 

❖ Magnetic moment must come only from the spins of the 
n and p: 
which is close to the experimental value

!10

3S1

μd = μn + μp = 2.793 − 1.913 = 0.880
μd = 0.857
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Example from nuclear physics

❖ Small mixture of L=2 (allowed by J=|2-1|and no 
conservation law forbids it):
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Example from nuclear physics

❖ Small mixture of L=2 (allowed by J=|2-1|and no 
conservation law forbids it):

❖ Lesson is that L is only an approximate quantum number 
for bound states of particles with spin!

!11

3D1
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Hadron spectroscopy (quark model)
❖ Assume:
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Hadron spectroscopy (quark model)
❖ Assume:

❖  L and S are good quantum numbers

❖ Quarks have spin 1/2 

❖ Mesons are        , baryons are           

❖ Lightest meson states have L=0 and lightest baryon 
states have L12=L3=0.

!12

qq̄ qqq (q = u, d, s, c, b)

q2
q3

q1

⃗L 12

⃗L 3
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Mesons
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!13

2S+1LJ



FYS3500 Spring 2019 Alex Read, U. Oslo, Dept. Physics

Mesons
❖ Two possible spin states: S=0 or S=1

❖ For L=0, J=S we can have 2S+1LJ = 1S0 and 3S1

❖ For L=1 or higher we can have

!13

2S+1LJ



FYS3500 Spring 2019 Alex Read, U. Oslo, Dept. Physics

Mesons
❖ Two possible spin states: S=0 or S=1

❖ For L=0, J=S we can have 2S+1LJ = 1S0 and 3S1

❖ For L=1 or higher we can have

❖ S=0 so J=L

!13

2S+1LJ



FYS3500 Spring 2019 Alex Read, U. Oslo, Dept. Physics

Mesons
❖ Two possible spin states: S=0 or S=1

❖ For L=0, J=S we can have 2S+1LJ = 1S0 and 3S1

❖ For L=1 or higher we can have

❖ S=0 so J=L

❖ S=1 so J=L-1,…,L+1

!13

2S+1LJ



FYS3500 Spring 2019 Alex Read, U. Oslo, Dept. Physics

Mesons
❖ Two possible spin states: S=0 or S=1

❖ For L=0, J=S we can have 2S+1LJ = 1S0 and 3S1

❖ For L=1 or higher we can have

❖ S=0 so J=L

❖ S=1 so J=L-1,…,L+1

❖ For the lightest (L=0) states we expect two states with J=0 and J=1 
and the J=0 to be the lightest.

!13

2S+1LJ



FYS3500 Spring 2019 Alex Read, U. Oslo, Dept. Physics

Mesons
❖ Two possible spin states: S=0 or S=1

❖ For L=0, J=S we can have 2S+1LJ = 1S0 and 3S1

❖ For L=1 or higher we can have

❖ S=0 so J=L

❖ S=1 so J=L-1,…,L+1

❖ For the lightest (L=0) states we expect two states with J=0 and J=1 
and the J=0 to be the lightest.

❖ 𝜋, K, and D mesons follow this trend (𝜌, K*, D* are heavier and 
have short lifetimes)

!13

2S+1LJ
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Baryons

❖ 3 spin-1/2 particles so that S=1/2 or 3/2
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❖ 3 spin-1/2 particles so that S=1/2 or 3/2
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Baryons

❖ 3 spin-1/2 particles so that S=1/2 or 3/2

❖ For L=0 we have 2 states 2S1/2 and 4S3/2

❖ For L=1 we have 5 P-states and for L=2 6 D-states
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!14

↑ ↓ ↑ ↑ ↑ ↑

2S+1LJ



FYS3500 Spring 2019 Alex Read, U. Oslo, Dept. Physics

Baryons

❖ 3 spin-1/2 particles so that S=1/2 or 3/2

❖ For L=0 we have 2 states 2S1/2 and 4S3/2

❖ For L=1 we have 5 P-states and for L=2 6 D-states

❖ We’re going to focus on the light S-states:

❖ So far we have come across 2S1/2 states p, n, 𝛬, 𝛬c, 𝛬b

❖ We expect the 4S3/2 states to be heavier and unstable

!14

↑ ↓ ↑ ↑ ↑ ↑

2S+1LJ
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Parity (space-inversion)

❖ Space-inversion:

!15

⃗ri → ⃗ri′� = − ⃗ri
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Parity (space-inversion)

❖ Space-inversion:

❖ Invariance under parity if

!15

⃗ri → ⃗ri′� = − ⃗ri

H( ⃗r1, ⃗r2, . . . ) = H(− ⃗r1, − ⃗r2, . . . )
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Parity (space-inversion)

❖ Space-inversion:

❖ Invariance under parity if

❖ Turns out that weak interaction violates parity - huge 
surprise in 1957!

❖ Parity operator on single particle: 

!15

⃗ri → ⃗ri′� = − ⃗ri

H( ⃗r1, ⃗r2, . . . ) = H(− ⃗r1, − ⃗r2, . . . )

̂PΨ( ⃗r, t) ≡ PaΨ(− ⃗r, t), ̂P2Ψ( ⃗r, t) = P2
aΨ( ⃗r, t)

⇒ Pa = ± 1
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Intrinsic parity

❖ A particle at rest (             ) is an eigenstate of parity  
 

❖ Will have to determine intrinsic Pa for each particle

!16

Ψp( ⃗r, t) = 𝒩e(i ⃗p ⋅ ⃗r−Et)

̂PΨp( ⃗r, t) = Pa𝒩e(−i ⃗p ⋅ ⃗r−Et) = PaΨ−p( ⃗r, t)

⃗p = 0

̂PΨ0( ⃗r, t) = PaΨ0( ⃗r, t)

Free particle:
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Parity of  several particles
❖ Parity inverts positions of all particles, plus a factor Pa for each  

❖ Particle in orbital angular momentum state is also an eigenstate 
of parity  
 

❖ If parity is conserved:

❖ Total parities of initial and final state must be equal

❖ Parity is a good quantum number for bound states

!17

r → r, θ → π − θ, ϕ → π + ϕ

Ym
l (θ, ϕ) → Ym

l (π − θ, π + ϕ) = (−1)lYm
l (θ, ϕ)

̂PΨnlm( ⃗r) = Pa
̂PΨnlm(− ⃗r) = Pa(−1)lΨnlm( ⃗r)
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Intrinsic parity of fermions

❖ We will take for granted the analysis of relativistic 
quantum field theory that yields

❖ Since fermions (leptons and quarks) are produced or 
destroyed in fermion-antifermion pairs, by convention:

!18

Pf Pf̄ = − 1

Pf ≡ + 1 Pf̄ ≡ + 1
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Para-positronium

❖ L=0 bound state of electron-positron  
annihilates

❖ Initial and final states must have the same parity

❖       can be determined by measuring the polarization of 
the two photons, and is consistent with the prediction of 
1.

!19

Pi = Pe+Pe−(−1)0 = − 1 Pf = P2
γ (−1)lγ = (−1)lγ

lγ
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Intrinsic parity of hadrons

❖ Low-mass mesons with L=0 predicted to have P=-1, 
consistent with observations of 𝜋, K, and D

❖ Low-mass baryons with L12=L3=0 predicted to have 
P=+1 and corresponding antibaryons P=-1

!20

Pmeson = PaPb̄(−1)L = (−1)L+1

PB = PaPbPc(−1)L12+L3 = (−1)L12+L3

PB̄ = PāPb̄Pc̄(−1)L12+L3 = (−1)L12+L3+1
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Charge conjugation

❖ Changes particles to antiparticles, and back again  

❖ Some similarities to parity, although it concerns the 
charges of particle rather than (directly) their positions.

❖ Some particles have distinct antiparticles (e.g. 𝜋+, 𝜋-),  

❖ while others do not (e.g. 𝜋0, 𝛾)

!21

Ĉ |γΨ > = Cγ |γΨ >

Ĉ |π+Ψ > = |π−Ψ >

Ĉ2 = 1 ⇒ Cα = ± 1
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Ĉ |aΨ1, āΨ2 > = | āΨ1, aΨ2 > = ± |aΨ1, āΨ2 >
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C-parity eigenstates
❖ Eigenstates can also be constructed from particle-

antiparticle pairs that are symmetric or antisymmetric 
under  
 
 

❖ Example:  
 

!22

Ĉ |aΨ1, āΨ2 > = | āΨ1, aΨ2 > = ± |aΨ1, āΨ2 >

a ↔ ā

Ĉ |π+π−; L > = (−1)l |π+π−; L >
(particle exchange has same effect as parity trans.)
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C-parity for spin-1/2 fermions

❖ Factor (-1) for exchanging fermion-antifermion

❖ Factor (-1)S+1 due to exchange in spin wave functions

!23

Ĉ | ff̄; J, L, S > = (−1)(−1)S+1(−1)L | ff̄; J, L, S >
= (−1)L+S | ff̄; J, L, S >

↑1 ↑2 (S = 1,Sz = 1)
↑1 ↓2 + ↓1 ↑2

2
(S = 1,Sz = 0)

↓1 ↓2 (S = 1,Sz = − 1)

↑1 ↓2 − ↓1 ↑2

2
(S = 0,Sz = 0)
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𝜋0 decays

❖ Conservation of C-parity implies that

❖ 3-photon decay                      never observed implies that  
 

!24

Ĉ |π0 > = Cπ0 |π0 >

Ĉ |γγ > = C2
γ |γγ > = |γγ >π0 → γγ

Cπ0 = 1

π0 → γγγ
Cγ = − 1

(consistent with arguments one can make about  
the C-parity of the photon, e.g. M&S 5.4.1)
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𝜂 decays 

❖ Neutral spin-0 meson of mass 558 MeV  
 
 
 

❖ Momentum spectra of the charged pions should be, and are 
experimentally, indistinguishable  
 

!25

η → γγ B = 0.39
η → π0π0π0 B = 0.33
η → π+π−π0 B = 0.23

Ĉ |γγ > = |γγ > ⇒ Cη = 1
Cη = Cπ0 = 1 ✅

Ĉ[η → π+( ⃗p 1) + π−( ⃗p 2) + π0( ⃗p 3)]
= [η → π−( ⃗p 1) + π+( ⃗p 2) + π0( ⃗p 3)]


