FYS3500 - spring 2019

Spacetime Symmetries*

Alex Read
University Of Oslo
Department of Physics

*Martin and Shaw, Particle Physics, 4th Ed., Chapter 5

Symmetries and Conserved Quantities

* Emmy Noether's theorem "... states that every differentiable symmetry of the action of a physical system has a corresponding conservation law." (wikipedia)

Symmetries and Conserved Quantities

* Emmy Noether's theorem "... states that every differentiable symmetry of the action of a physical system has a corresponding conservation law." (wikipedia)

Symmetry	Conserved	Interactions
Space	Linear momentum	All
Space	Angular	All
Time	Energy	All
Space	Parity	Not weak!
Charge	C-Parity	Not weak!

Symmetries and Conserved Quantities

* Emmy Noether's theorem "... states that every differentiable symmetry of the action of a physical system has a corresponding conservation law." (wikipedia)

Symmetry	Conserved	Interactions
Space	Linear momentum	All
Space	Angular	All
Time	Energy	All
Space	Parity	Not weak!
Charge	C-Parity	Not weak!

* Identify symmetries and conservation laws to characterize particles (starting with hadrons)

Conservation laws in QM

* Identify a transformation that leaves the Hamiltonian unchanged $\hat{T} H=H$

Conservation laws in QM

* Identify a transformation that leaves the Hamiltonian unchanged $\hat{T} H=H$
* Study the effect of the transformation on the wavefunction $\hat{T} \Psi$ to identify the associated observable

Conservation laws in QM

* Identify a transformation that leaves the Hamiltonian unchanged $\hat{T} H=H$
* Study the effect of the transformation on the wavefunction $\hat{T} \Psi$ to identify the associated observable
* Apply the transformation to $\Psi^{\prime}=H \Psi$

Space translation (1 particle)

Space translation (1 particle)

$\hat{D}: \vec{r} \rightarrow \vec{r}+\delta \vec{r}$

Space translation (1 particle)

$$
\hat{D}: \vec{r} \rightarrow \vec{r}+\delta \vec{r} \quad f(x+\delta x) \approx f(x)+\frac{d f(x)}{d x} \delta x+\ldots
$$

Space translation (1 particle)

$$
\begin{aligned}
& \hat{D}: \vec{r} \rightarrow \vec{r}+\delta \vec{r} \quad f(x+\delta x) \approx f(x)+\frac{d f(x)}{d x} \delta x+\ldots \\
& \hat{D} \Psi(\vec{r}) \equiv \Psi(\vec{r}+\delta \vec{r}) \approx(1+\delta \vec{r} \cdot \vec{\nabla}) \Psi(\vec{r})
\end{aligned}
$$

Space translation (1 particle)

$$
\begin{aligned}
& \hat{D}: \vec{r} \rightarrow \vec{r}+\delta \vec{r} \quad f(x+\delta x) \approx f(x)+\frac{d f(x)}{d x} \delta x+\ldots \\
& \hat{D} \Psi(\vec{r}) \equiv \Psi(\vec{r}+\delta \vec{r}) \approx(1+\delta \vec{r} \cdot \vec{\nabla}) \Psi(\vec{r}) \\
& \hat{\vec{p}}=-i \vec{\nabla} \rightarrow \hat{D}=1+i \delta \vec{r} \cdot \hat{\vec{p}}
\end{aligned}
$$

Space translation (1 particle)

$$
\begin{aligned}
& \hat{D}: \vec{r} \rightarrow \vec{r}+\delta \vec{r} \quad f(x+\delta x) \approx f(x)+\frac{d f(x)}{d x} \delta x+\ldots \\
& \hat{D} \Psi(\vec{r}) \equiv \Psi(\vec{r}+\delta \vec{r}) \approx(1+\delta \vec{r} \cdot \vec{\nabla}) \Psi(\vec{r}) \\
& \hat{\vec{p}}=-i \vec{\nabla} \rightarrow \hat{D}=1+i \delta \vec{r} \cdot \hat{\vec{p}} \\
& \Psi^{\prime}(\vec{r})=H(\vec{r}) \Psi(\vec{r}) \rightarrow \hat{D} \Psi^{\prime}(\vec{r})=\hat{D} H(\vec{r}) \Psi(\vec{r})
\end{aligned}
$$

Space translation (1 particle)

$$
\begin{aligned}
& \hat{D}: \vec{r} \rightarrow \vec{r}+\delta \vec{r} \quad f(x+\delta x) \approx f(x)+\frac{d f(x)}{d x} \delta x+\ldots \\
& \hat{D} \Psi(\vec{r}) \equiv \Psi(\vec{r}+\delta \vec{r}) \approx(1+\delta \vec{r} \cdot \vec{\nabla}) \Psi(\vec{r}) \\
& \hat{\vec{p}}=-i \vec{\nabla} \rightarrow \hat{D}=1+i \delta \vec{r} \cdot \hat{\vec{p}} \\
& \Psi^{\prime}(\vec{r})=H(\vec{r}) \Psi(\vec{r}) \rightarrow \hat{D^{\prime}} \Psi^{\prime}(\vec{r})=\hat{D} H(\vec{r}) \Psi(\vec{r})
\end{aligned}
$$

Space translation (1 particle)

$$
\begin{aligned}
& \hat{D}: \vec{r} \rightarrow \vec{r}+\delta \vec{r} \quad f(x+\delta x) \approx f(x)+\frac{d f(x)}{d x} \delta x+\ldots \\
& \hat{D} \Psi(\vec{r}) \equiv \Psi(\vec{r}+\delta \vec{r}) \approx(1+\delta \vec{r} \cdot \vec{\nabla}) \Psi(\vec{r}) \\
& \hat{\vec{p}}=-i \vec{\nabla} \rightarrow \hat{D}=1+i \delta \vec{r} \cdot \hat{\vec{p}} \\
& \Psi^{\prime}(\vec{r})=H(\vec{r}) \Psi(\vec{r}) \rightarrow \underline{\hat{D} \Psi^{\prime}(\vec{r})}=\hat{D} H(\vec{r}) \Psi(\vec{r}) \\
& \hat{D} \Psi^{\prime}(\vec{r})=\Psi^{\prime}(\vec{r}+\delta \vec{r})=H(\vec{r}+\delta \vec{r}) \Psi(\vec{r}+\delta \vec{r}) \\
& =H(\vec{r}) \Psi(\vec{r}+\delta \vec{r})=H(\vec{r}) \hat{D} \Psi(\vec{r})
\end{aligned}
$$

Space translation (1 particle)

$$
\begin{aligned}
& \hat{D}: \vec{r} \rightarrow \vec{r}+\delta \vec{r} \quad f(x+\delta x) \approx f(x)+\frac{d f(x)}{d x} \delta x+\ldots \\
& \hat{D} \Psi(\vec{r}) \equiv \Psi(\vec{r}+\delta \vec{r}) \approx(1+\delta \vec{r} \cdot \vec{\nabla}) \Psi(\vec{r}) \\
& \hat{\vec{p}}=-i \vec{\nabla} \rightarrow \hat{D}=1+i \delta \vec{r} \cdot \hat{\vec{p}} \\
& \Psi^{\prime}(\vec{r})=H(\vec{r}) \Psi(\vec{r}) \rightarrow \underline{\hat{D} \Psi^{\prime}(\vec{r})}=\hat{D} H(\vec{r}) \Psi(\vec{r}) \\
& \hat{D^{\prime} \Psi^{\prime}(\vec{r})}=\Psi^{\prime}(\vec{r}+\delta \vec{r})=H(\vec{r}+\delta \vec{r}) \Psi(\vec{r}+\delta \vec{r}) \\
& =H(\vec{r}) \Psi(\vec{r}+\delta \vec{r})=H(\vec{r}) \hat{D} \Psi(\vec{r})
\end{aligned}
$$

Linear momentum conservation

$$
(\hat{D} H(\vec{r})-H(\vec{r}) \hat{D}) \Psi(\vec{r})=0
$$

Linear momentum conservation

$$
\begin{aligned}
& (\hat{D} H(\vec{r})-H(\vec{r}) \hat{D}) \Psi(\vec{r})=0 \\
& {[\hat{D}, H]=0 \rightarrow[1+i \delta \vec{r} \cdot \hat{\vec{p}}, H]=0} \\
& \rightarrow[\hat{\vec{p}}, H]=0
\end{aligned}
$$

Linear momentum conservation

$$
\begin{aligned}
&(\hat{D} H(\vec{r})-H(\vec{r}) \hat{D}) \Psi(\vec{r})=0 \\
& {[\hat{D}, H]=0 } \rightarrow[1+i \delta \vec{r} \cdot \hat{\vec{p}}, H]=0 \\
& \rightarrow[\hat{\vec{p}}, H]=0
\end{aligned}
$$

* Everything is linear, so also applies to system of particles

Energy conservation

* If Hamiltonian is time-independent $H(t)=H(t+\delta t)$

Energy conservation

* If Hamiltonian is time-independent $H(t)=H(t+\delta t)$

Time-displacement:

Energy conservation

* If Hamiltonian is time-independent $H(t)=H(t+\delta t)$

Time-displacement: $\hat{T} \Psi(\vec{r}, t)=\Psi^{\prime}(\vec{r}, t)=\Psi(\vec{r}, t+\delta t)$

$$
\begin{aligned}
& \approx\left(1+\delta t \frac{\partial}{\partial t}\right) \Psi(\vec{r}, t) \\
& =(1-i \delta t \hat{E}) \Psi(\vec{r}, t)
\end{aligned}
$$

Energy conservation

* If Hamiltonian is time-independent $H(t)=H(t+\delta t)$

Time-displacement: $\hat{T} \Psi(\vec{r}, t)=\Psi^{\prime}(\vec{r}, t)=\Psi(\vec{r}, t+\delta t)$

$$
\begin{aligned}
& \approx\left(1+\delta t \frac{\partial}{\partial t}\right) \Psi(\vec{r}, t) \\
& =(1-i \delta t \hat{E}) \Psi(\vec{r}, t)
\end{aligned}
$$

* Repeat similar steps on pages 4-5

Energy conservation

* If Hamiltonian is time-independent $H(t)=H(t+\delta t)$

Time-displacement: $\hat{T} \Psi(\vec{r}, t)=\Psi^{\prime}(\vec{r}, t)=\Psi(\vec{r}, t+\delta t)$

$$
\begin{aligned}
& \approx\left(1+\delta t \frac{\partial}{\partial t}\right) \Psi(\vec{r}, t) \\
& =(1-i \delta t \hat{E}) \Psi(\vec{r}, t)
\end{aligned}
$$

* Repeat similar steps on pages 4-5
* Energy conserved: $[\hat{E}, H]=0$

Angular momentum conservation

* Small rotations about the (arbitrary) z-axis

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
1 & -\delta \theta & 0 \\
\delta \theta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

Angular momentum conservation

* Small rotations about the (arbitrary) z-axis

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
1 & -\delta \theta & 0 \\
\delta \theta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

* Angular momentum operator $\hat{L}_{z}=-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$

Angular momentum conservation

* Small rotations about the (arbitrary) z-axis

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
1 & -\delta \theta & 0 \\
\delta \theta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

* Angular momentum operator $\hat{L}_{z}=-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$
* Similar steps gives us for closed system and central potential with spinless particles

$$
H=-\frac{1}{2 m} \nabla^{2}+V(r) \quad[\hat{\vec{L}}, H]=0
$$

Angular momentum conservation

* Small rotations about the (arbitrary) z-axis

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
1 & -\delta \theta & 0 \\
\delta \theta & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

* Angular momentum operator $\hat{L}_{z}=-i\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)$
* Similar steps gives us for closed system and central potential with spinless particles

$$
H=-\frac{1}{2 m} \nabla^{2}+V(r) \quad[\hat{\vec{L}}, H]=0
$$

*Generalizes to conservation of $\vec{J}=\vec{L}+\vec{S}$

Composite particle properties

* Bound states of hydrogen can be characterized by spin properties, in rest frame

Composite particle properties

* Bound states of hydrogen can be characterized by spin properties, in rest frame
* We use a similar approach for hadrons, trying to limit the number of different constituents while accounting for many mass states as different orbital and radial excitations of the bound quarks.

Composite particle properties

* Bound states of hydrogen can be characterized by spin properties, in rest frame
* We use a similar approach for hadrons, trying to limit the number of different constituents while accounting for many mass states as different orbital and radial excitations of the bound quarks.
* $\vec{J}, \vec{L}, \vec{S}$ are in general not such great quantum numbers but J, L^{2}, S^{2} are often a good approximation, allowing for spin flips but conserved absolute values.

Spectroscopic notation

${ }^{2 S+1} L_{J}$

Spectroscopic notation

${ }^{2 S+1} L_{J}$

L: Orbital ang. mom.
S: Total spin of constituents
J : Total angular momentum

Spectroscopic notation

${ }^{2 S+1} L_{J}$

L: Orbital ang. mom.
S: Total spin of constituents
J: Total angular momentum

L	Symbol
0	S
1	P
2	D
3	F

Spectroscopic notation

${ }^{2 S+1} L_{J}$

L: Orbital ang. mom.

S: Total spin of constituents
J: Total angular momentum

Examples:

Spectroscopic notation

${ }^{2 S+1} L_{J}$

L: Orbital ang. mom.
S: Total spin of constituents
J: Total angular momentum

L	Symbol
0	S
1	P
2	D
3	F

Examples: ${ }^{1} S_{0}: J=0$

$$
\begin{aligned}
& L=0 \\
& S=0
\end{aligned}
$$

Spectroscopic notation

$2 S+1 \quad$ L: Orbital ang. mom.
S: Total spin of constituents
J: Total angular momentum

L	Symbol
0	S
1	P
2	D
3	F

Examples: ${ }^{1} S_{0}: J=0 \quad{ }^{3} P_{2}: J=2$

$$
\begin{array}{ll}
L=0 & L=1 \\
S=0 & S=1
\end{array}
$$

Spectroscopic notation

$2 S+1 \quad$ L: Orbital ang. mom.
S: Total spin of constituents
J: Total angular momentum

L	Symbol
0	S
1	P
2	D
3	F

Examples: ${ }^{1} S_{0}: J=0 \quad{ }^{3} P_{2}: J=2$

$$
\begin{array}{ll}
L=0 & L=1 \\
S=0 & S=1
\end{array}
$$

$$
\vec{J}=\vec{L}+\vec{S} \rightarrow J=\mid L-S],|L-S+1|, \ldots,|L+S-1|,|L+S|
$$

Example from nuclear physics

* Deuteron d (pn bound state) has spin 1, i,.e. $J=1$

Example from nuclear physics

* Deuteron d ($p n$ bound state) has spin 1, i,.e. $J=1$
* p and n are spin- $1 / 2$ particles

Example from nuclear physics

* Deuteron d ($p n$ bound state) has spin 1, i,.e. $J=1$
* p and n are spin- $1 / 2$ particles
* Assume (as is often done) that ground state has $L=0$

Example from nuclear physics

* Deuteron d ($p n$ bound state) has spin 1, i,.e. $J=1$
* p and n are spin- $1 / 2$ particles
* Assume (as is often done) that ground state has $L=0$
* This implies $p n$ are in $S=1$ state and the total state is therefore: ${ }^{3} S_{1}$

Example from nuclear physics

* Deuteron d ($p n$ bound state) has spin 1, i,.e. $J=1$
* p and n are spin- $1 / 2$ particles
* Assume (as is often done) that ground state has $L=0$
* This implies $p n$ are in $S=1$ state and the total state is therefore: ${ }^{3} S_{1}$
* Magnetic moment must come only from the spins of the n and $p: \mu_{d}=\mu_{n}+\mu_{p}=2.793-1.913=0.880$ which is close to the experimental value $\mu_{d}=0.857$

Example from nuclear physics

* Small mixture of $L=2$ (allowed by $J=|2-1|$ and no conservation law forbids it):

Example from nuclear physics

* Small mixture of $L=2$ (allowed by $J=|2-1|$ and no conservation law forbids it):

Example from nuclear physics

* Small mixture of $L=2$ (allowed by $J=|2-1|$ and no conservation law forbids it): ${ }^{3} D_{1}$

Example from nuclear physics

* Small mixture of $L=2$ (allowed by $J=|2-1|$ and no conservation law forbids it): ${ }^{3} D_{1}$
* Lesson is that L is only an approximate quantum number for bound states of particles with spin!

Hadron spectroscopy (quark model)

* Assume:

Hadron spectroscopy (quark model)

- Assume:
* L and S are good quantum numbers

Hadron spectroscopy (quark model)

* Assume:
* L and S are good quantum numbers
* Quarks have spin 1/2

Hadron spectroscopy (quark model)

- Assume:
* L and S are good quantum numbers
* Quarks have spin 1 / 2
* Mesons are $q \bar{q}$, baryons are $q q q \quad(q=u, d, s, c, b)$

Hadron spectroscopy (quark model)

* Assume:
* L and S are good quantum numbers
- Quarks have spin $1 / 2$
* Mesons are $q \bar{q}$, baryons are $q q q \quad(q=u, d, s, c, b)$
* Lightest meson states have $L=0$ and lightest baryon states have $L_{12}=L_{3}=0$.

Mesons
 ${ }^{2 S+1} L_{J}$

Mesons
 ${ }^{2 S+1} L_{J}$

* Two possible spin states: $S=0$ or $S=1$

Mesons
 ${ }^{2 S+1} L_{J}$

* Two possible spin states: $S=0$ or $S=1$
* For $L=0, J=S$ we can have ${ }^{2 S+1} L_{J}={ }^{1} S_{0}$ and ${ }^{3} S_{1}$

Mesons
 ${ }^{2 S+1} L_{J}$

* Two possible spin states: $S=0$ or $S=1$
* For $L=0, J=S$ we can have ${ }^{2 S+1} L_{J}={ }^{1} S_{0}$ and ${ }^{3} S_{1}$
* For $\mathrm{L}=1$ or higher we can have

Mesons
 ${ }^{2 S+1} L_{J}$

* Two possible spin states: $S=0$ or $S=1$
* For $L=0, J=S$ we can have ${ }^{2 S+1} L_{J}={ }^{1} S_{0}$ and ${ }^{3} S_{1}$
* For L=1 or higher we can have
* $\mathrm{S}=0$ so $\mathrm{J}=\mathrm{L}$

Mesons
 ${ }^{2 S+1} L_{J}$

* Two possible spin states: $S=0$ or $S=1$
* For $L=0, J=S$ we can have ${ }^{2 S+1} L_{J}={ }^{1} S_{0}$ and ${ }^{3} S_{1}$
* For L=1 or higher we can have
* $\mathrm{S}=0$ so $\mathrm{J}=\mathrm{L}$
* $\mathrm{S}=1$ so $\mathrm{J}=\mathrm{L}-1, \ldots, \mathrm{~L}+1$

Mesons
 ${ }^{2 S+1} L_{J}$

* Two possible spin states: $S=0$ or $S=1$
* For $L=0, J=S$ we can have ${ }^{2 S+1} L_{J}={ }^{1} S_{0}$ and ${ }^{3} S_{1}$
* For $\mathrm{L}=1$ or higher we can have
* S $=0$ so $\mathrm{J}=\mathrm{L}$
* $\mathrm{S}=1$ so $\mathrm{J}=\mathrm{L}-1, \ldots, \mathrm{~L}+1$
* For the lightest $(\mathrm{L}=0)$ states we expect two states with $\mathrm{J}=0$ and $\mathrm{J}=1$ and the $\mathrm{J}=0$ to be the lightest.

Mesons
 ${ }^{2 S+1} L$

* Two possible spin states: $S=0$ or $S=1$
* For $L=0, J=S$ we can have ${ }^{2 S+1} L_{J}={ }^{1} S_{0}$ and ${ }^{3} S_{1}$
* For $\mathrm{L}=1$ or higher we can have
- $\mathrm{S}=0$ so $\mathrm{J}=\mathrm{L}$
* $\mathrm{S}=1$ so $\mathrm{J}=\mathrm{L}-1, \ldots, \mathrm{~L}+1$
* For the lightest $(\mathrm{L}=0)$ states we expect two states with $\mathrm{J}=0$ and $\mathrm{J}=1$ and the $\mathrm{J}=0$ to be the lightest.
* π, K, and D mesons follow this trend (ρ, K^{*}, D^{*} are heavier and have short lifetimes)

Baryons

${ }^{2 S+1} L_{J}$

Baryons
 ${ }^{2 S+1} L_{J}$

* 3 spin- $1 / 2$ particles so that $S=1 / 2$ or $3 / 2$

Baryons
 ${ }^{2 S+1} L_{J}$

- 3 spin- $1 / 2$ particles so that $S=1 / 2$ or $3 / 2 \uparrow$

Baryons
 ${ }^{2 S+1} L_{J}$

- 3 spin- $1 / 2$ particles so that $\begin{gathered}\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \\ S=1 / 2\end{gathered}$ or $3 / 2$

Baryons
 ${ }^{2 S+1} L_{J}$

-3 spin- $1 / 2$ particles so that $\begin{gathered}\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \\ S=1 / 2\end{gathered}$ or $3 / 2$

* For $L=0$ we have 2 states ${ }^{2} S_{1 / 2}$ and ${ }^{4} S_{3 / 2}$

Baryons
 ${ }^{2 S+1} L_{J}$

- 3 spin- $1 / 2$ particles so that $\begin{gathered}\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \\ S=1 / 2\end{gathered}$ or $3 / 2$
* For $L=0$ we have 2 states ${ }^{2} S_{1 / 2}$ and ${ }^{4} S_{3 / 2}$
* For $L=1$ we have $5 P$-states and for $L=26 D$-states

Baryons
 ${ }^{2 S+1} L_{J}$

- 3 spin- $1 / 2$ particles so that $\begin{gathered}\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \\ S=1 / 2\end{gathered}$ or $3 / 2$
* For $L=0$ we have 2 states ${ }^{2} S_{1 / 2}$ and ${ }^{4} S_{3 / 2}$
* For $L=1$ we have $5 P$-states and for $L=26 D$-states
* We're going to focus on the light S-states:

Baryons
 ${ }^{2 S+1} L_{J}$

- 3 spin- $1 / 2$ particles so that $\begin{gathered}\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \\ S=1 / 2\end{gathered}$ or $3 / 2$
* For $L=0$ we have 2 states ${ }^{2} S_{1 / 2}$ and ${ }^{4} S_{3 / 2}$
* For $L=1$ we have $5 P$-states and for $L=26 D$-states
* We're going to focus on the light S-states:
* So far we have come across ${ }^{2} S_{1 / 2}$ states $p, n, \Lambda, \Lambda_{c}, \Lambda_{b}$

Baryons
 ${ }^{2 S+1} L_{J}$

- 3 spin- $1 / 2$ particles so that $\begin{gathered}\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow \\ S=1 / 2\end{gathered}$ or $3 / 2$
* For $L=0$ we have 2 states ${ }^{2} S_{1 / 2}$ and ${ }^{4} S_{3 / 2}$
* For $L=1$ we have $5 P$-states and for $L=26 D$-states
* We're going to focus on the light S-states:
* So far we have come across ${ }^{2} S_{1 / 2}$ states $p, n, \Lambda, \Lambda_{c}, \Lambda_{b}$
* We expect the ${ }^{4} S_{3 / 2}$ states to be heavier and unstable

Parity (space-inversion)

* Space-inversion: $\vec{r}_{i} \rightarrow \vec{r}_{i}^{\prime}=-\vec{r}_{i}$

Parity (space-inversion)

* Space-inversion: $\vec{r}_{i} \rightarrow \vec{r}_{i}^{\prime}=-\vec{r}_{i}$
* Invariance under parity if $H\left(\vec{r}_{1}, \vec{r}_{2}, \ldots\right)=H\left(-\vec{r}_{1},-\vec{r}_{2}, \ldots\right)$

Parity (space-inversion)

* Space-inversion: $\vec{r}_{i} \rightarrow \vec{r}_{i}^{\prime}=-\vec{r}_{i}$
* Invariance under parity if $H\left(\vec{r}_{1}, \vec{r}_{2}, \ldots\right)=H\left(-\vec{r}_{1},-\vec{r}_{2}, \ldots\right)$
* Turns out that weak interaction violates parity - huge surprise in 1957!

Parity (space-inversion)

* Space-inversion: $\vec{r}_{i} \rightarrow \vec{r}_{i}^{\prime}=-\vec{r}_{i}$
* Invariance under parity if $H\left(\vec{r}_{1}, \vec{r}_{2}, \ldots\right)=H\left(-\vec{r}_{1},-\vec{r}_{2}, \ldots\right)$
* Turns out that weak interaction violates parity - huge surprise in 1957!
- Parity operator on single particle:

Parity (space-inversion)

* Space-inversion: $\vec{r}_{i} \rightarrow \vec{r}_{i}^{\prime}=-\vec{r}_{i}$
* Invariance under parity if $H\left(\vec{r}_{1}, \vec{r}_{2}, \ldots\right)=H\left(-\vec{r}_{1},-\vec{r}_{2}, \ldots\right)$
* Turns out that weak interaction violates parity - huge surprise in 1957!
* Parity operator on single particle:

$$
\hat{P} \Psi(\vec{r}, t) \equiv P_{a} \Psi(-\vec{r}, t), \hat{P}^{2} \Psi(\vec{r}, t)=P_{a}^{2} \Psi(\vec{r}, t)
$$

Parity (space-inversion)

* Space-inversion: $\vec{r}_{i} \rightarrow \vec{r}_{i}^{\prime}=-\vec{r}_{i}$
* Invariance under parity if $H\left(\vec{r}_{1}, \vec{r}_{2}, \ldots\right)=H\left(-\vec{r}_{1},-\vec{r}_{2}, \ldots\right)$
* Turns out that weak interaction violates parity - huge surprise in 1957!
* Parity operator on single particle:

$$
\begin{gathered}
\hat{P} \Psi(\vec{r}, t) \equiv P_{a} \Psi(-\vec{r}, t), \hat{P}^{2} \Psi(\vec{r}, t)=P_{a}^{2} \Psi(\vec{r}, t) \\
\Rightarrow P_{a}= \pm 1
\end{gathered}
$$

Intrinsic parity

Intrinsic parity

$$
\text { Free particle: } \Psi_{p}(\vec{r}, t)=\mathcal{N} e^{(i \vec{p} \cdot \vec{r}-E t)}
$$

Intrinsic parity

Free particle: $\Psi_{p}(\vec{r}, t)=\mathcal{N} e^{(i \vec{p} \cdot \vec{r}-E t)}$

$$
\hat{P} \Psi_{p}(\vec{r}, t)=P_{a} \mathcal{N} e^{(-i \vec{p} \cdot \vec{r}-E t)}=P_{a} \Psi_{-p}(\vec{r}, t)
$$

Intrinsic parity

Free particle: $\Psi_{p}(\vec{r}, t)=\mathcal{N} e^{(i \vec{p} \cdot \vec{r}-E t)}$

$$
\hat{P} \Psi_{p}(\vec{r}, t)=P_{a^{\mathscr{N}}} \mathcal{N} e^{(-i \vec{p} \cdot \vec{r}-E t)}=P_{a} \Psi_{-p}(\vec{r}, t)
$$

* A particle at rest ($\vec{p}=0$) is an eigenstate of parity

Intrinsic parity

Free particle: $\Psi_{p}(\vec{r}, t)=\mathcal{N} e^{(i \vec{p} \cdot \vec{r}-E t)}$

$$
\hat{P} \Psi_{p}(\vec{r}, t)=P_{a} \mathcal{N} e^{(-i \vec{p} \cdot \vec{r}-E t)}=P_{a} \Psi_{-p}(\vec{r}, t)
$$

* A particle at rest ($\vec{p}=0$) is an eigenstate of parity

$$
\hat{P} \Psi_{0}(\vec{r}, t)=P_{a} \Psi_{0}(\vec{r}, t)
$$

Intrinsic parity

Free particle: $\Psi_{p}(\vec{r}, t)=\mathcal{N} e^{(i \vec{p} \cdot \vec{r}-E t)}$

$$
\hat{P} \Psi_{p}(\vec{r}, t)=P_{a} \mathcal{N} e^{(-i \vec{p} \cdot \vec{r}-E t)}=P_{a} \Psi_{-p}(\vec{r}, t)
$$

* A particle at rest $(\vec{p}=0)$ is an eigenstate of parity

$$
\hat{P} \Psi_{0}(\vec{r}, t)=P_{a} \Psi_{0}(\vec{r}, t)
$$

* Will have to determine intrinsic P_{a} for each particle

Parity of several particles

* Parity inverts positions of all particles, plus a factor P_{a} for each

Parity of several particles

* Parity inverts positions of all particles, plus a factor P_{a} for each

$$
r \rightarrow r, \theta \rightarrow \pi-\theta, \phi \rightarrow \pi+\phi
$$

Parity of several particles

* Parity inverts positions of all particles, plus a factor P_{a} for each

$$
r \rightarrow r, \theta \rightarrow \pi-\theta, \phi \rightarrow \pi+\phi
$$

* Particle in orbital angular momentum state is also an eigenstate of parity

Parity of several particles

* Parity inverts positions of all particles, plus a factor P_{a} for each

$$
r \rightarrow r, \theta \rightarrow \pi-\theta, \phi \rightarrow \pi+\phi
$$

* Particle in orbital angular momentum state is also an eigenstate of parity

$$
Y_{l}^{m}(\theta, \phi) \rightarrow Y_{l}^{m}(\pi-\theta, \pi+\phi)=(-1)^{l} Y_{l}^{m}(\theta, \phi)
$$

Parity of several particles

* Parity inverts positions of all particles, plus a factor P_{a} for each

$$
r \rightarrow r, \theta \rightarrow \pi-\theta, \phi \rightarrow \pi+\phi
$$

* Particle in orbital angular momentum state is also an eigenstate of parity

$$
\begin{aligned}
& Y_{l}^{m}(\theta, \phi) \rightarrow Y_{l}^{m}(\pi-\theta, \pi+\phi)=(-1)^{l} Y_{l}^{m}(\theta, \phi) \\
& \hat{P} \Psi_{n l m}(\vec{r})=P_{a} \hat{P} \Psi_{n l m}(-\vec{r})=P_{a}(-1)^{l} \Psi_{n l m}(\vec{r})
\end{aligned}
$$

Parity of several particles

* Parity inverts positions of all particles, plus a factor P_{a} for each

$$
r \rightarrow r, \theta \rightarrow \pi-\theta, \phi \rightarrow \pi+\phi
$$

* Particle in orbital angular momentum state is also an eigenstate of parity

$$
\begin{aligned}
& Y_{l}^{m}(\theta, \phi) \rightarrow Y_{l}^{m}(\pi-\theta, \pi+\phi)=(-1)^{l} Y_{l}^{m}(\theta, \phi) \\
& \hat{P} \Psi_{n l m}(\vec{r})=P_{a} \hat{P} \Psi_{n l m}(-\vec{r})=P_{a}(-1)^{l} \Psi_{n l m}(\vec{r})
\end{aligned}
$$

* If parity is conserved:

Parity of several particles

* Parity inverts positions of all particles, plus a factor P_{a} for each

$$
r \rightarrow r, \theta \rightarrow \pi-\theta, \phi \rightarrow \pi+\phi
$$

* Particle in orbital angular momentum state is also an eigenstate of parity

$$
\begin{aligned}
& Y_{l}^{m}(\theta, \phi) \rightarrow Y_{l}^{m}(\pi-\theta, \pi+\phi)=(-1)^{l} Y_{l}^{m}(\theta, \phi) \\
& \hat{P} \Psi_{n l m}(\vec{r})=P_{a} \hat{P} \Psi_{n l m}(-\vec{r})=P_{a}(-1)^{l} \Psi_{n l m}(\vec{r})
\end{aligned}
$$

* If parity is conserved:
* Total parities of initial and final state must be equal

Parity of several particles

* Parity inverts positions of all particles, plus a factor P_{a} for each

$$
r \rightarrow r, \theta \rightarrow \pi-\theta, \phi \rightarrow \pi+\phi
$$

* Particle in orbital angular momentum state is also an eigenstate of parity

$$
\begin{aligned}
& Y_{l}^{m}(\theta, \phi) \rightarrow Y_{l}^{m}(\pi-\theta, \pi+\phi)=(-1)^{l} Y_{l}^{m}(\theta, \phi) \\
& \hat{P} \Psi_{n l m}(\vec{r})=P_{a} \hat{P} \Psi_{n l m}(-\vec{r})=P_{a}(-1)^{l} \Psi_{n l m}(\vec{r})
\end{aligned}
$$

* If parity is conserved:
* Total parities of initial and final state must be equal
* Parity is a good quantum number for bound states

Intrinsic parity of fermions

* We will take for granted the analysis of relativistic quantum field theory that yields $P_{f} P_{\bar{f}}=-1$

Intrinsic parity of fermions

* We will take for granted the analysis of relativistic quantum field theory that yields $P_{f} P_{\bar{f}}=-1$
* Since fermions (leptons and quarks) are produced or destroyed in fermion-antifermion pairs, by convention:

$$
P_{f} \equiv+1 \quad P_{\bar{f}} \equiv+1
$$

Para-positronium

* $L=0$ bound state of electron-positron

 annihilates

Para-positronium

* $L=0$ bound state of electron-positron annihilates
- Initial and final states must have the same parity

$$
P_{i}=P_{e^{+}} P_{e^{-}}(-1)^{0}=-1 \quad P_{f}=P_{\gamma}^{2}(-1)^{l_{\gamma}}=(-1)^{l_{\gamma}}
$$

Para-positronium

* $L=0$ bound state of electron-positron annihilates
- Initial and final states must have the same parity

$$
P_{i}=P_{e^{+}} P_{e^{-}}(-1)^{0}=-1 \quad P_{f}=P_{\gamma}^{2}(-1)^{l_{\gamma}}=(-1)^{l_{\gamma}}
$$

Para-positronium

* $L=0$ bound state of electron-positron annihilates

- Initial and final states must have the same parity
$P_{i}=P_{e^{+}} P_{e^{-}}(-1)^{0}=-1 \quad P_{f}=P_{\gamma}^{2}(-1)^{l_{\gamma}}=(-1)^{l_{\gamma}}$
* l_{γ} can be determined by measuring the polarization of the two photons, and is consistent with the prediction of 1.

Intrinsic parity of hadrons

$$
P_{\text {meson }}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}
$$

Intrinsic parity of hadrons

$$
P_{\text {meson }}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}
$$

Intrinsic parity of hadrons

$$
P_{\text {meson }}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}
$$

* Low-mass mesons with $L=0$ predicted to have $P=-1$, consistent with observations of π, K, and D

Intrinsic parity of hadrons

$$
P_{\text {meson }}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}
$$

* Low-mass mesons with $L=0$ predicted to have $P=-1$, consistent with observations of π, K, and D

Intrinsic parity of hadrons

$$
P_{\text {meson }}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}
$$

* Low-mass mesons with $L=0$ predicted to have $P=-1$, consistent with observations of π, K, and D

Intrinsic parity of hadrons

$$
P_{\text {meson }}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}
$$

* Low-mass mesons with $L=0$ predicted to have $P=-1$, consistent with observations of π, K, and D

$$
P_{B}=P_{a} P_{b} P_{c}(-1)^{L_{12}+L_{3}}=(-1)^{L_{12}+L_{3}}
$$

Intrinsic parity of hadrons

$$
P_{\text {meson }}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}
$$

* Low-mass mesons with $L=0$ predicted to have $P=-1$, consistent with observations of π, K, and D

$$
\begin{aligned}
& P_{B}=P_{a} P_{b} P_{c}(-1)^{L_{12}+L_{3}}=(-1)^{L_{12}+L_{3}} \\
& P_{\bar{B}}=P_{\bar{a}} P_{\bar{b}} P_{\bar{c}}(-1)^{L_{12}+L_{3}}=(-1)^{L_{12}+L_{3}+1}
\end{aligned}
$$

Intrinsic parity of hadrons

$$
P_{\text {meson }}=P_{a} P_{\bar{b}}(-1)^{L}=(-1)^{L+1}
$$

* Low-mass mesons with $L=0$ predicted to have $P=-1$, consistent with observations of π, K, and D

$$
\begin{aligned}
& P_{B}=P_{a} P_{b} P_{c}(-1)^{L_{12}+L_{3}}=(-1)^{L_{12}+L_{3}} \\
& P_{\bar{B}}=P_{\bar{a}} P_{\bar{b}} P_{\bar{c}}(-1)^{L_{12}+L_{3}}=(-1)^{L_{12}+L_{3}+1}
\end{aligned}
$$

* Low-mass baryons with $L_{12}=L_{3}=0$ predicted to have $P=+1$ and corresponding antibaryons $P=-1$

Charge conjugation

Charge conjugation

* Changes particles to antiparticles, and back again

$$
\hat{C}^{2}=1 \Rightarrow C_{\alpha}= \pm 1
$$

Charge conjugation

* Changes particles to antiparticles, and back again

$$
\hat{C}^{2}=1 \Rightarrow C_{\alpha}= \pm 1
$$

* Some similarities to parity, although it concerns the charges of particle rather than (directly) their positions.

Charge conjugation

* Changes particles to antiparticles, and back again

$$
\hat{C}^{2}=1 \Rightarrow C_{\alpha}= \pm 1
$$

* Some similarities to parity, although it concerns the charges of particle rather than (directly) their positions.
* Some particles have distinct antiparticles (e.g. π^{+}, π^{-}),

$$
\hat{C}\left|\pi^{+} \Psi>=\right| \pi^{-} \Psi>
$$

Charge conjugation

* Changes particles to antiparticles, and back again

$$
\hat{C}^{2}=1 \Rightarrow C_{\alpha}= \pm 1
$$

* Some similarities to parity, although it concerns the charges of particle rather than (directly) their positions.
- Some particles have distinct antiparticles (e.g. π^{+}, π^{-}),

$$
\hat{C}\left|\pi^{+} \Psi>=\right| \pi^{-} \Psi>
$$

* while others do not (e.g. π^{0}, γ)

$$
\hat{C}\left|\gamma \Psi>=C_{\gamma}\right| \gamma \Psi>
$$

C-parity eigenstates

* Eigenstates can also be constructed from particleantiparticle pairs that are symmetric or antisymmetric under $a \leftrightarrow \bar{a}$

C-parity eigenstates

* Eigenstates can also be constructed from particleantiparticle pairs that are symmetric or antisymmetric under $a \leftrightarrow \bar{a}$

$$
\hat{C}\left|a \Psi_{1}, \bar{a} \Psi_{2}>=\left|\bar{a} \Psi_{1}, a \Psi_{2}>= \pm\right| a \Psi_{1}, \bar{a} \Psi_{2}>\right.
$$

C-parity eigenstates

* Eigenstates can also be constructed from particleantiparticle pairs that are symmetric or antisymmetric under $a \leftrightarrow \bar{a}$

$$
\hat{C}\left|a \Psi_{1}, \bar{a} \Psi_{2}>=\left|\bar{a} \Psi_{1}, a \Psi_{2}>= \pm\right| a \Psi_{1}, \bar{a} \Psi_{2}>\right.
$$

*. Example: $\hat{C}\left|\pi^{+} \pi^{-} ; L>=(-1)^{l}\right| \pi^{+} \pi^{-} ; L>$
(particle exchange has same effect as parity trans.)

C-parity for spin-1/2 fermions

$$
\begin{aligned}
\hat{C} \mid f \bar{f} ; J, L, S> & =(-1)(-1)^{S+1}(-1)^{L} \mid f \bar{f} ; J, L, S> \\
& =(-1)^{L+S} \mid f \bar{f} ; J, L, S>
\end{aligned}
$$

C-parity for spin-1/2 fermions

$$
\begin{aligned}
\hat{C} \mid f \bar{f} ; J, L, S> & =(-1)(-1)^{S+1}(-1)^{L} \mid f \bar{f} ; J, L, S> \\
& =(-1)^{L+S}| | f \bar{f} ; J, L, S>
\end{aligned}
$$

* Factor (-1) for exchanging fermion-antifermion

C-parity for spin-1/2 fermions

$$
\begin{aligned}
\hat{C} \mid f \bar{f} ; J, L, S> & =(-1)(-1)^{S+1}(-1)^{L} \mid f \bar{f} ; J, L, S> \\
& =(-1)^{L+S} \mid f \bar{f} ; J, L, S>
\end{aligned}
$$

* Factor (-1) for exchanging fermion-antifermion
- Factor $(-1)^{S+1}$ due to exchange in spin wave functions

$$
\begin{array}{cl}
\uparrow_{1} \uparrow_{2} & \left(S=1, S_{z}=1\right) \\
\frac{\uparrow_{1} \downarrow_{2}+\downarrow_{1} \uparrow_{2}}{\sqrt{2}} & \left(S=1, S_{z}=0\right) \\
\downarrow_{1} \downarrow_{2} & \left(S=1, S_{z}=-1\right)
\end{array} \quad \frac{\uparrow_{1} \downarrow_{2}-\downarrow_{1} \uparrow_{2}}{\sqrt{2}} \quad\left(S=0, S_{z}=0\right)
$$

π^{0} decays

$$
\pi^{0} \rightarrow \gamma \gamma
$$

π^{0} decays

$$
\pi^{0} \rightarrow \gamma \gamma
$$

$$
\hat{C}\left|\gamma \gamma>=C_{\gamma}^{2}\right| \gamma \gamma>=\mid \gamma \gamma>
$$

π^{0} decays

$\pi^{0} \rightarrow \gamma \gamma$

$$
\begin{aligned}
& \hat{C}\left|\gamma \gamma>=C_{\gamma}^{2}\right| \gamma \gamma>=\mid \gamma \gamma> \\
& \hat{C}\left|\pi^{0}>=C_{\pi^{0}}\right| \pi^{0}>
\end{aligned}
$$

π^{0} decays

$$
\begin{array}{ll}
\pi^{0} \rightarrow \gamma \gamma & \hat{C}\left|\gamma \gamma>=C_{\gamma}^{2}\right| \gamma \gamma>=\mid \gamma \gamma> \\
& \hat{C}\left|\pi^{0}>=C_{\pi^{0}}\right| \pi^{0}>
\end{array}
$$

- Conservation of C-parity implies that $C_{\pi^{0}}=1$

π^{0} decays

$$
\begin{array}{ll}
\pi^{0} \rightarrow \gamma \gamma & \hat{C}\left|\gamma \gamma>=C_{\gamma}^{2}\right| \gamma \gamma>=\mid \gamma \gamma> \\
& \hat{C}\left|\pi^{0}>=C_{\pi^{0}}\right| \pi^{0}>
\end{array}
$$

* Conservation of C-parity implies that $C_{\pi^{0}}=1$
* 3-photon decay $\pi^{0} \rightarrow \gamma \gamma \gamma$ never observed implies that

$$
C_{\gamma}=-1
$$

π^{0} decays

$$
\begin{array}{ll}
\pi^{0} \rightarrow \gamma \gamma & \hat{C}\left|\gamma \gamma>=C_{\gamma}^{2}\right| \gamma \gamma>=\mid \gamma \gamma> \\
& \hat{C}\left|\pi^{0}>=C_{\pi^{0}}\right| \pi^{0}>
\end{array}
$$

- Conservation of C-parity implies that $C_{\pi^{0}}=1$
* 3-photon decay $\pi^{0} \rightarrow \gamma \gamma \gamma$ never observed implies that

$$
C_{\gamma}=-1
$$

(consistent with arguments one can make about the C-parity of the photon, e.g. M\&S 5.4.1)

η decays

- Neutral spin-0 meson of mass 558 MeV

η decays

* Neutral spin-0 meson of mass 558 MeV
$\eta \rightarrow \gamma \gamma$
$B=0.39$
$\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$
$B=0.33$
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$B=0.23$

η decays

- Neutral spin-0 meson of mass 558 MeV

$$
\begin{array}{ll}
\eta \rightarrow \gamma \gamma & B=0.39 \\
\eta \rightarrow \pi^{0} \pi^{0} \pi^{0} & B=0.33 \\
\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} & B=0.23
\end{array}
$$

η decays

* Neutral spin-0 meson of mass 558 MeV
$\eta \rightarrow \gamma \gamma$
$\eta \rightarrow \pi^{0} \pi^{0} \pi^{0}$
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$B=0.39$
$\hat{C}|\gamma \gamma>=| \gamma \gamma>\Rightarrow C_{\eta}=1$
$C_{\eta}=C_{\pi^{0}}=1$

η decays

* Neutral spin-0 meson of mass 558 MeV

$$
\begin{array}{lll}
\eta \rightarrow \gamma \gamma & B=0.39 & \hat{C}|\gamma \gamma>=| \gamma \gamma>\Rightarrow C_{\eta}=1 \\
\eta \rightarrow \pi^{0} \pi^{0} \pi^{0} & B=0.33 & C_{\eta}=C_{\pi^{0}}=1
\end{array}
$$

η decays

* Neutral spin-0 meson of mass 558 MeV

$$
\begin{array}{lll}
\eta \rightarrow \gamma \gamma & B=0.39 & \hat{C}|\gamma \gamma>=| \gamma \gamma>\Rightarrow C_{\eta}=1 \\
\eta \rightarrow \pi^{0} \pi^{0} \pi^{0} & B=0.33 & C_{\eta}=C_{\pi^{0}}=1 \nabla \\
\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} & B=0.23 &
\end{array}
$$

* Momentum spectra of the charged pions should be, and are experimentally, indistinguishable

η decays

* Neutral spin-0 meson of mass 558 MeV

$$
\begin{array}{lll}
\eta \rightarrow \gamma \gamma & B=0.39 & \hat{C}|\gamma \gamma>=| \gamma \gamma>\Rightarrow C_{\eta}=1 \\
\eta \rightarrow \pi^{0} \pi^{0} \pi^{0} & B=0.33 & C_{\eta}=C_{\pi^{0}}=1 \nabla \\
\eta \rightarrow \pi^{+} \pi^{-} \pi^{0} & B=0.23 &
\end{array}
$$

* Momentum spectra of the charged pions should be, and are experimentally, indistinguishable

$$
\begin{gathered}
\hat{C}\left[\eta \rightarrow \pi^{+}\left(\vec{p}_{1}\right)+\pi^{-}\left(\vec{p}_{2}\right)+\pi^{0}\left(\vec{p}_{3}\right)\right] \\
=\left[\eta \rightarrow \pi^{-}\left(\vec{p}_{1}\right)+\pi^{+}\left(\vec{p}_{2}\right)+\pi^{0}\left(\vec{p}_{3}\right)\right]
\end{gathered}
$$

