FYS3520 - Problem set 1

Spring term 2019

Problem 1: Commutator relations – **Discussion in class**

a) Derive following commutator relations. What is their significance?

$$\begin{split} & [\hat{L}_x, \hat{L}_y] = i\hbar \hat{L}_z, \qquad [\hat{L}_x, \hat{y}] = i\hbar \hat{z}, \qquad [\hat{L}_x, \hat{p}_y] = i\hbar \hat{p}_z, \\ & [\hat{L}_x, \hat{x}] = [\hat{L}_x, \hat{p}_x] = [\hat{L}_x, \hat{L}^2] = [\hat{L}_x, \hat{r}^2] = [\hat{L}_x, \hat{p}^2] = 0 \end{split}$$

Hint: You may use $\mathbf{L} = \mathbf{r} \times \mathbf{p} \rightarrow \widehat{\mathbf{L}} = \widehat{\mathbf{r}} \times \widehat{\mathbf{p}}$ and $[\widehat{r}_i, \widehat{p}_i] = i\hbar \delta_{ij}$

b) Given a system with the angular momentum L = 0 (L = 2) and spin S = 1/2, write down the states and their degeneracy in spectroscopic notation: ${}^{2S+1}L_I$.

Problem 2: Potential barrier – Discussion in class

We want to get a qualitative understanding of the situation where an incoming free particle from the left with energy E hits on a potential barrier $V(x)_{II} > 0$. The particle can be taken as wavepackage produced by a superposition of plain waves. In the following graphs, two such cases are plotted for a the real part of the function, $Re(\psi(x)) = \cos(k_I x)$. Sketch how the wave will continue in the different regions and compare the situation to a classical system.

Problem 3: Probability density – **Discussion in class**

In a simple model, the nuclear potential can be assumed to be an **infinite spherical well**. The solutions of the Schrödinger equation are then given by product of the radial function R(kr), which are proportional to the Bessel functions $j_l(kr)$, and the spherical harmonics $Y_l^m(\vartheta, \varphi)$.

- a) What is the meaning of the different symbols? What quantum numbers does the energy of the states depend on? What is there degeneracy?
- b) What is the relation between the quantum numbers?
- c) Sketch the probability density $|\psi_{n,l,m}|^2$ for i) n=0, l=0, m=0 and ii) n=2, l=1, m=1.
- d) What is the parity of these states?

Problem 4

Use the notation ${}^{A}_{Z}X_{N}$ with mass number *A*, element number *Z* and neutron number *N*.

- a) How many neutrons does ²³²Th and ²³⁵U have?
- b) List all **stable** nuclei with mass number 20.
- c) List all **stable** nuclei with element number 82.
- d) List all **stable** polonium (Po) nuclei.
- e) Write down all the stable Zirconium (Zr) isotopes.

Hint: Charts of most known nuclides can be found at http://www.nndc.bnl.gov/chart/chartNuc.jsp or at https://www-nds.iaea.org/livechart.

Problem 5

Of the following nuclei: ¹⁶O, ¹⁹Ne ¹⁸F, ¹⁵N, ¹⁶C, ²⁰O, ¹⁶Ne, ¹⁴C, ²⁰N and ²⁰Ne.

- a) Write out the full ${}^{A}_{Z}X_{N}$ notation for all the listed nuclei.
- b) List the nuclei that are **isotopes**.
- c) List the nuclei that are **isotones**.
- d) List the nuclei that are isobars.
- e) What is an **isomer**?

Problem 6

What is the mass of one ¹²C and ²³⁹Pu nucleus in

- a) Atomic mass units(AMU) [u]?
- b) Units of $[MeV/c^2]$?
- c) In [kg]?

Hint: There are several databases containing properties of known nuclei. The Atomic Mass Data Center(AMDC) have lists of masses of most of the known nuclides availble as a text file at https://www-nds.iaea.org/amdc/ or as an interactive table at https://www-nds.iaea.org/livechart.

Problem 7: Cats in 1D

The one-dimensional time-independent Schrödinger equation is given by

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + V(x)\psi(x) = E\psi(x)$$

- a) Derive this from the time dependent Schrödinger equation for a time-independent potential V(x,t) = V(x).
- b) Assume that the potential is a infinite well, ie. infinite at x < 0 and x > a and zero in between (0 < x < a). Show that the eigenstates are given by

$$\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}, \quad n = 1, 2, 3, \dots$$

and find the energy E_n for each state.

- c) Assume that we have a particle in the super-position: $\Psi(x) = A(\psi_1(x) + \psi_3(x))$. Find the normalization factor *A*.
- d) Find the average energy of $\Psi(x)$. What is the variance?
- e) What is the propability of finding the particle between $\frac{a}{4} \le x \le \frac{3a}{4}$?

Problem 8: Binding energy: a start (after 3rd lecture)

- a) The mass of ²⁷Al and ²³⁵U has been measured to be 26.9815 u and 235.0439 u respectively. Use this to estimate the binding energy of the two.
- b) Find the binding energy of the two nuclei using the semi empirical mass formula. How well does it agree with the result in a)/what are possible reasons for the deviations? (Use $a_v = 15.5$ MeV, $a_s = 16.8$ MeV, $a_c = 0.72$ MeV and $a_{sym} = 23$ MeV).

Problem 9 – A nice little extra

The potential of a simple one-dimensional harmonic oscillator in one dimension can be described by $V(x) = \frac{1}{2}m\omega^2 x^2$.

a) Find the energy of the number state $|n\rangle$ using ladder operators:

$$\widehat{a} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \widehat{x} + i\widehat{p})$$
$$\widehat{a}^{\dagger} = \frac{1}{\sqrt{2\hbar m\omega}} (m\omega \widehat{x} - i\widehat{p})$$

Remember: $\hat{a} |n\rangle = \sqrt{n} |n-1\rangle$, $\hat{a}^{\dagger} |n\rangle = \sqrt{n+1} |n+1\rangle$, and $[\hat{a}, \hat{a}^{\dagger}] = 1$.

- b) What two particle states with fermions are possible with the three first states (ignoring spin)?
- c) Give the degeneracy for 3D symmetric HO, so $\omega_x = \omega_y = \omega_z$, with $E = \frac{7}{2}\hbar\omega$.