
FYS3500 - Problem set 2

Spring term 2019

Problem 1 – In class

a) What is the nuclear radius? Give several different ways to measure it and compare important
differences.

b) All known heavy nuclei exhibit an excess neutrons. Looking eg. at 240Pu, it has more then
40 % more neutrons then protons. Naively one should expect a larger radius for the neutrons
then for the protons (→ How do we usually call these radii), however, they are observed to
agree within about 0.1fm. How can this be explained?

c) When analyze the scattering of α-particles on medium and heavy nuclei we can learn about
the nuclear radius. How?

d) What is the angular dependence of scattered α-particles? Sketch the cross-section of backscat-
tered nuclei (scattering angle θ ≈ π) as a function of the incident energy. Take this to estimate
the nuclear radius of 64Cu, where the critical energy Ec is about 13.7 MeV.
Hint: What is the relation of kinetic and potential energy in backscattering?

Problem 2 – in class

When we describe nuclear γ-ray resonances, we usually give the energy Eγ of an emitted photon
is the difference E0 between the excited state with energy Ex and the ground state (GS), Eγ =
E0 = Ex− EGS. This is not exact for free atoms or molecules, as it neglects the recoil energy of the
nucleus.

a) Suppose that the nucleus was at rest before γ-ray emission and calculate the exact gamma-ray
energy. Can we neglect the recoil effect?

b) 60Co is one of the most important γ-ray calibration sources. By β-decay it feeds excited levels
in 60Ni. The 1332 keV level (with direct decay into ground state) has a half-life t1/2 below
1ps (< 10−12 s). What does this imply for the energy of the γ-ray emitted in the emission?
(Remember to convert half-life to lifetime)

c) What are the implication for the nuclear resonance absorption of γ-ray photons? Argue qual-
itatively how these results would be effected if the nucleus was not at rest during decay.

d) (At home?) What is the Mössbauer effect and how does this combine with these results?

Problem 3: Nuclear binding energy

The emiprical mass formula is (neglecting the odd-even effect)

M(A, Z) = Z(mp + me) + (A− Z)mn − av A + as A2/3 + ac
Z(Z− 1)

A1/3 + asym
(A− 2Z)2

A
(1)

Where av, as, ac and asym are constants. Explain the dependence on Z and A for the different
terms.

a) Two isobar nuclei 1 and 2 are called mirror nuclei if they result in each other by the exchange
of the neutron an proton number: A1 = A2, Z1 = N2, N1 = Z2. They have a analogous struc-
ture and therefore also the same quantum numbers for the total angular momentrum J and
parity π. As an example we look at 27Al and 27Si, both having (J=5/2,π=+1) in the ground
state. 27Si decays by β+-decay into 27Al (27Si →27Al+e+ + ν), where the sum of the kinetic
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energies of the positron and neutrino has been measured to be at max E0 = 3.8 MeV. Deduce
the radius parameter r0 from E0.

Hint: If we assume that the nuclear forces are charge independent, the energy released in
the decay of mirror nuclei is given by the mass difference (mn − mp)2 = 1.29 MeV and the
difference in the coulomb energy. The charge distribution can be assumes as a homogeneously
charged sphere (total charge Ze and radius R) with the coulomb energy Wc

Wc =
3
5

Q2

4πε0

1
R

(2)

b) Use (1) to show that for a constant A the Z value that corresponds to the most stable nucleus
is

Zmin =
mnc2 − (mp + me)c2 + ac A−1/3 + 4asym

2ac A−1/3 + 8asym A−1

c) Determine the most stable isobar with mass number A = 87. (Again, use av = 15.5 MeV,
as = 16.8 MeV, ac = 0.72 MeV and asym = 23 MeV).

Problem 4: Reaction Q-values

Find the Q-value of the reaction:
86Kr + d→87 Kr + p

Rember: d = 2H.

Problem 5: ”The binding energy plot”

Explain how the mass of a nucleus can be calculated from the plot in figure below. Explain briefly
some of the main features of the plot and estimate the mass of 130Xe. What is the relation to fission
and fusion? How did we get the heavy elements?
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Figure 1: Average binding energy per nucleon for stable nuclei as a function of the mass number.

Problem 6: Nuclear Scattering

In Figure 2 the differential cross-sections dσ/dΩ for scattering of high energy electrons on 40Ca
and 48Ca are displayed.

a) Explain the general behavior of the cross-section as a function of the scattering angle. What is
the source for the (local)minima?

b) The form factor F(q2) is defined as the Fourier transformation of the charge density ρ(r), with
the momentum transfer q = kf − ki and the initial and final momentum ki,f. Under the usual
assumption of the Born approximation and negligible recoil, F(q2) can be calculated by

F(q2) =
∫

eiqr/h̄ρ(r)d3r. (3)

Calculate F(q2) for a homogeneous spherical charge distribution, ρ(r) = 3Ze/(4πR3) for r < R,
and 0 elsewhere. Show that the result is given by

F(q2) = 3Ze(
h̄

qR
)3[(

qR
h̄
) cos(

qR
h̄
)− sin(

qR
h̄
)] (4)

c) Plot the result. (It is important to choose a reasonable scaling for q. Recall that |q| = 2|p| sin( θ
2 ))

d) Use this and Figure 2 to compare the radius of 40Ca and 48Ca. Hint: How does the location of
the minima depend on R for given angle.
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e) Some extra calculations (”bonus”): Develop eq.(3) for a general spherical potential in powers
of |q| (first 2 non-vanishing terms) using the mean square radius 〈r2〉. This will lead you to

F(q) = 1− 1
6

q 〈r2〉
h̄2 + . . . . (5)

How can you solve the expression for the mean square charge radius 〈r2〉. What momentum
transfers are most important in order to measure 〈r2〉? What does this mean for the experiment
(for example, would you measure at certain angles, rather high or low energies,...?) Hint: a)
The mean square charge radius is defined as 〈r2〉 =

∫
r2ρ(r) d3r. b) Remember that the form

factor is normed such that F(q2 = 0) = 0.

f) For further thought ;P: Experimentally only a restricted range of momentum transfers is acces-
sible, as it is limited by the beam intensity. In addition, the cross-section drops quickly with
increasing momentum transfers. Think about a method to determine the charge distribution
despite these problems.

Figure 2: Differential cross-section for scattering of 750 MeV electrons on 40Ca and 48Ca. The
cross-sections have been multiplied by 10 for 40Ca and by 10−1 for 48Ca for displaying purposes.
Source: J. B. Bellicard, et al. Phys. Rev. Lett. 19 (1967) 527

Problem 7: LS-coupling in the shell model – Special hand-in for
this part: In 2 weeks

In order to get the correct magic numbers in the nuclear shell model we need to include a spin-
orbit coupling. This leads to a Hamiltonian similar to:

Ĥ = Ĥ0 −VSO~̂L · ~̂S (6)

Where Ĥ0 is a Hamiltonian with eigenstates Ĥ0 |N, l〉 = h̄ω(N + 3/2) |N, l〉 with l = N, N −
2, N− 4, . . . 1 or 0, l ≥ 0 and VSO~̂L · ~̂S is the spin-orbit coupling. VSO is the strength of the coupling
and can be regarded as a constant in this problem. In this problem we only look at spin-1/2
fermions.
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a) The operator for the total spin is ~̂J = ~̂L + ~̂S. Where ~̂L is the angular momentum operator and
~̂S is the spin operator. Show that:

~̂L · ~̂S =
1
2
(~̂J2 −~̂L2 − ~̂S2)

b) For a given angular momentum l the total spin state |j, mj〉 can be j = |l − 1/2|, l + 1/2. The
two possible states can be written as a superposition of |l, ml = mj ± 1/2〉⊗ |s = 1/2, ms ∓ 1/2〉
states:

|j = l ± 1/2, mj〉 = Cl
1/2 |l, mj − 1/2〉 ⊗ |↑〉

+ Cl
−1/2 |l, mj + 1/2〉 ⊗ |↓〉 ,

where the Clebsch-Gordan coefficients Cl
ms = 0 if |mj − ms| > l or mj + ms > l; and |↑〉 =

|1/2, 1/2〉, |↓〉 = |1/2,−1/2〉. Find the energy of the state |N, l, j = l ± 1/2, mj〉 using (6).
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