FYS3500 - Problem set 4

Spring term 2019

Updated: Problem 6a $\mu \rightarrow \mu^+$

Updated: Problem 1 – only 1 configuration for each state

Updated: Problem 5 – corrected reaction

Problem 1 - in class: Shell model

a) The ground-state spin of 17 F is $J^{\pi} = 5/2^+$, and of the first excited state it is $J^{\pi} = 1/2^+$. The second excited state is $J^{\pi} = 1/2^-$. Give the configurations for protons and neutron of in the ground-state and first excited state and for the second excited state.

Problem 2 - in class: Particle physics intro

- a) What are elementary particles?
- b) What are the force carriers of the different processes?
- c) Argue for the existence of antiparticles using the Dirac picture of the vacuum. Name at least one experimental evidence of antiparticles.

Problem 3

Draw the topologically distinct Feynman diagrams that contribute to the following process in lowest order

- a) $\gamma + e^- \rightarrow \gamma + e^-$,
- b) $e^+ + e^- \rightarrow e^+ + e^-$,
- c) $v_e \bar{v}_e$ elastic scattering. (Hint: There are (at least) two such diagrams for each reaction)

Problem 4

Draw one forth-order diagram for each of the reactions

- a) $\gamma + e^- \rightarrow \gamma + e^-$,
- b) $e^+ + e^- \rightarrow e^+ + e^-$
- c) and the two forth-order diagrams for $e^- + \mu^+ \rightarrow \nu_e + \bar{\nu}_{\mu}$.

Problem 5

For total centre-of-mass energies up to a fre GeV, the cross-section for the reaction $\nu_e + e^+ \rightarrow \mu^+ + \nu_\mu$ is given by $\sigma = G_F^2 E^2 / \pi$ in natural units, where G_F is the Fermi coupling constant. What is the cross-section in (pico)barns at an energy of E=3 GeV?

1

Problem 6

Which of the following reactions are allowed, and which are forbidden, by the conservation laws appropriate to weak interactions?

- a) $\nu_{\mu} + p \rightarrow \mu^{+} + n$,
- b) $\nu_e + p \to e^- + \pi^+ + p$,
- c) $\nu_{\tau} + e^{-} \rightarrow \tau^{-} + \nu_{e}$
- d) $\tau^+ \rightarrow \mu^+ + \bar{\nu}_\mu + \nu_\tau.$

Problem 7

In MS, sec. 2.3.1. it is stated that electron neutrinos interact with electrons in a different wat from muon and tauon neutrinos. Justify this remark by considering the lowest-order Feynman diagrams for $\nu_e + e^- \rightarrow \nu_e + e^-$ and $\nu_\mu + e^- \rightarrow \nu_\mu + e^-$.

Problem 8

Which of the following reactions are allowed, and which are forbidden? If they are allowed, classify intro strong, electromagnetic and weak reactions.

- a) $\Lambda \rightarrow \pi^+ + e^- + \bar{\nu}_e$
- b) $\pi^- \to \pi^0 + e^- + \bar{\nu}_e$
- c) $p + \bar{p} \to \pi^+ + \pi^- + \pi^0$
- d) $\Lambda + p \rightarrow K^- + 2p$
- e) $K^+ \rightarrow \pi^0 + \mu^+ + \bar{\nu}_{\mu}$
- f) $K^+ \rightarrow \pi + + e^- + \bar{\nu}_e$
- g) $K^- \to \pi +e^+ + e^-$
- h) $\gamma + p \rightarrow \pi^- + n$
- i) $D^- \to K^+ + 2\pi^-$
- j) $\pi +p \to n + e^- + e^+$