Problem tet 1
11
a) We use $\hat{L}=\hat{F} \times \vec{p} \rightarrow \hat{\bar{L}}=\hat{\vec{F}} \times \hat{\vec{p}}$

50

$$
\begin{aligned}
& L_{x}=y p_{z}-z p_{y} \\
& L_{y}=z p_{x}-x p_{z}
\end{aligned}
$$

[dropping hat for conventarce]
as $[a, b]=a b-b a$

$$
\begin{aligned}
& \text { Since }\left[r_{\Delta i} p_{j}\right]=i \hbar \delta_{i j}, \\
& =y p_{z} z p_{x}-\left(i \hbar+p_{z} z\right) y p_{x}+z p_{y} x p_{z}-\left(z p_{z}-i \hbar\right) x p_{y} \\
& =-i \hbar y P_{x}+i \hbar x P_{y}=t i \hbar L_{z}
\end{aligned}
$$

Significance: Can't simultaneously measure precisely of $\left[L_{x}, L_{y}\right] \neq 0$ two angular momentum components. Analog for $\left[L_{x, y}\right]$ and $\left[L_{x, ~} p_{y}\right] \neq 0$
$\left[L^{2}, L_{x}\right]=0 \Rightarrow$ System of good quantum numbest; describing a state by L^{2} and one component $\left(e^{\text {eg }} i_{x}\right)$
b) $L=0, S=\frac{1}{2} \quad \rightarrow \quad \vec{J}=\left(\underline{L}+\vec{S} \left\lvert\,=\frac{1}{2} \quad\right. ; m_{j}=-\frac{1}{2} \cdot \frac{1}{2}\right.$
${ }^{2} S_{\frac{1}{2}}$ with \#dey \sum_{2}

$$
\text { ii) } \begin{aligned}
L=2, S=\frac{1}{2} \rightarrow \vec{J} & =\frac{3}{2}, m_{j}=-\frac{3}{2}, \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3}{2} \rightarrow \operatorname{Hog}^{\#-4} \\
\vec{J} & =\frac{5}{2}, m_{j}=-\frac{5}{2}, \cdots, \frac{5}{2} \xrightarrow[\text { \#dig } 6]{ } \quad{ }^{2} d_{\frac{5}{2}}
\end{aligned}
$$

Problem 21

Slightly incorrect drawing here: The energy should be the same as in I (!)

PSI
a) $R\left((k r) \underset{\text { wavanumbo }}{\sim} \mathcal{V}_{n}(k r)\right.$ Bessel-fti, dependent on e arises due to boundary conditions!

$$
1 \pi(r=R)=011
$$

Energy depends on n and 1. but not on $m_{1}(=m)$. Thus degeneracy $\Rightarrow 2 l+1$
b) $\quad l \leq n, \quad|m| \leq 1$
c) given in the picture: $|r \operatorname{Ron}|^{2}$ and $1 \frac{1}{e} 1^{2}$

$$
10, \infty, 0\rangle
$$

Problem 41
a) ${ }_{90}^{232} \mathrm{Th}_{142}, \quad{ }_{92} \mathrm{U}_{143}$
b) 20 Na
c) $206 \mathrm{~Pb}, 207 \mathrm{~Pb},{ }^{208} \mathrm{~Pb}$
d) -
e) $90-92,94 z r, \frac{\left({ }^{96} z_{r}\right)}{p_{h_{\frac{1}{2}}}}=10^{1.5}$ years

PSI

a) ordered by isotopes
b) isotones $N=8:{ }^{16} \mathrm{O},{ }^{15} \mathrm{~N},{ }^{14} \mathrm{C}$

$$
\begin{array}{ll}
N=9: & \bar{r}_{g}, N e g \\
N=10: & C_{10}, N e_{10}
\end{array}
$$

C) isobars $A=16: \quad{ }^{16} 0,{ }^{16} \mathrm{Ne},{ }^{16} \mathrm{C}$

$$
A=20: \quad 20 \mathrm{~N},{ }^{20} \mathrm{O},{ }^{20} \mathrm{Ne}
$$

note that ${ }_{6}{ }_{6} C_{10}$ and ${ }_{10}^{16} \mathrm{~N}_{6}$ are called mirror nuclei
e) isomer = excited state of nuclei with long lifetime
a) $[u]$
b) $\left[\mathrm{MeV} / \mathrm{c}^{2}\right] \sim 11178$

$$
1 u=931,502 \frac{14 v}{c^{2}}
$$

c) $[\mathrm{kg}] \quad-1.99 \times 10^{-26}$

$$
1\left[\mathrm{Mev} \mathrm{c}^{2}\right]=1.783 \cdot 10^{-20} \mathrm{~g}
$$

$P Z$

$$
\left(-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V_{(x)}\right) \psi(x)=E \psi(x)
$$

a)

$$
\left(-\frac{t^{2}}{2 m} \frac{d}{d x^{2}}+V(x, t)\right) \Psi(x, x)=i x^{2} \frac{d}{\partial t} \psi(x, t)
$$

with separation $\Psi(x, t)=\Psi(x) \nsim(t)$ and ansate $-\psi(t)=e^{-i \frac{E}{5} t}$ we find

$$
\begin{aligned}
& =\Psi \Psi(x, t) \\
& \rightarrow\left(-\frac{t^{2}}{2 m} \frac{d^{2}}{d x^{2}}+U(x)\right) \Psi(x)=E \pi(x)
\end{aligned}
$$

b) in finite coll.
berendory conditions:
i) $\psi(0)=\psi(x=a)=0$

Ansate: $\psi=A \sin (k x)+B \cos (k x)$ as solutions to SGL
continuity \rightarrow cont be cosine $\left(\cos \binom{k x}{0} \neq 0\right)$

$$
\psi(x=a)=A \sin (k a)=0
$$

$-1 \quad k a=n \pi$ with $n=1,2,3, \ldots$
$\rightarrow p$ egg in $J G L=E_{n}=\frac{\hbar k^{2}}{3 \operatorname{in}}\left(=\left(\frac{t_{1} \pi}{r_{1}}\right)^{2} \frac{1}{2 i n} n^{2}\right.$
hus, the normalized wave -function is

$$
\psi_{n}(x)=\sqrt{\frac{2}{a}} \sin \left(\frac{n \pi}{a} x\right)
$$

c) We now assume that $\psi(x)=A\left(\psi_{1}(x)+\psi_{3}(x)\right)$ We need to find A :

$$
\begin{aligned}
& \int_{0}^{a}|A|^{2}\left|\psi_{1}(x)\right|^{2}+\psi_{1}^{*}(x) \psi_{3}(x)+\psi_{3}^{*}(x) \psi_{1}(x)+\left|\psi_{3}(x)\right|^{2} \mid d x \\
= & \left.\left.|A|_{0}^{2} \int_{0}^{a}| | \psi_{1}(x)\right|^{2}+\left|\psi_{3}(x)\right|^{2}+\psi_{1}^{*} \psi_{3}+\psi_{3}^{*} \psi_{1}\right) d x
\end{aligned}
$$

* Due to orthogonality, $\int_{0}^{a} \varphi_{n}^{*} \psi_{m} d x=\delta_{n_{m}}$

$$
\begin{aligned}
& \int_{0}^{a}\left|P_{1}^{2} d x=|A|^{2} \cdot 2=1 \Rightarrow\right| A \left\lvert\,=\frac{1}{\sqrt{2}}\right. \\
& \Psi(x)=\frac{\psi_{1}(x)+\varphi_{2}(x)}{\sqrt{2}}
\end{aligned}
$$

d)

We want to find the curerage energy of ψ :

$$
\begin{aligned}
& \hat{H} \psi=\frac{1}{\sqrt{2}}\left(\hat{H} \psi_{1}+\hat{H} \psi_{3}\right)=\frac{1}{\sqrt{2}}\left(\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \psi_{1}+\frac{9 \pi^{2} \hbar^{2}}{2 m a^{2}} \psi_{3}\right) \\
& =\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \frac{1}{\sqrt{2}}\left(\psi_{1}+3 \psi_{3}\right) \\
& (E)=\int_{0}^{a} \psi^{*} \hat{H} \psi d x=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \frac{1}{2}(1+9)=\frac{5 \pi^{2} \hbar^{2}}{2 m a^{2}} \\
& \left\langle E^{2}\right\rangle=\int_{0}^{a} \psi^{*} \hat{H}^{2} \psi d x= \\
& \hat{H} \hat{H} \psi=\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \frac{1}{\sqrt{2}}\left(\hat{H} \psi_{1}+9 \hat{H} \cdot \psi_{3}\right) \\
& =\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \frac{1}{\sqrt{2}}\left(\frac{\pi^{2} \hbar^{2}}{2 m a^{2}} 1481 \frac{\pi^{2} \hbar^{2}}{2 m a^{2}} \psi_{3}\right) \\
& =\left(\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\right)^{2} \frac{1}{\sqrt{2}}\left(\psi_{1}+81 \psi_{3}\right) \\
& \left\langle E^{2}\right\rangle=\left|\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\right|^{2} \frac{82}{2}=41\left|\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\right|^{2} \\
& (\Delta E)^{2}=\left\langle E^{2}\right\rangle-\langle E\rangle^{2}=16\left(\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\right)^{2} \\
& \Delta E=4\left(\frac{\pi^{2} \hbar^{2}}{2 m a^{2}}\right)
\end{aligned}
$$

Propabillity of finding $\Psi(x)$ between $\frac{a}{4}$ and $\frac{3 a}{4}$

$$
\begin{aligned}
& \Psi(x)=\sqrt{\frac{2}{a}} \frac{\sin \left(\frac{\pi}{a} x\right)+\sin \left(\frac{3 \pi}{a} x\right)}{\sqrt{2}}=\frac{\sin \left(\frac{\pi}{a} x\right)+\sin \frac{3 \pi}{a} x}{\sqrt{a}} \\
& P\left(\frac{a}{4} \leq x \leq \frac{3 a}{4}\right)=\int_{a / 4}|\psi(x)|^{2} d x \\
& x a / 4 \\
& =\int_{a / 4} \frac{1}{a} \left\lvert\, \sin \left(\frac{\pi}{a} x\left|+\sin \left(\frac{3 \pi}{a} x\right)\right|^{2} d x\right.\right. \\
& \left.\left.=\frac{1}{a} \int_{a / 4} \sin ^{2} \right\rvert\, \frac{\pi}{a} x\right) d x+\frac{2}{a} \int \sin \left|\frac{\pi}{a} x\right| \sin \left(\frac{3 \pi}{a} x\right) d x+\frac{1}{a} \int \sin ^{2}\left(\frac{3 \pi}{a} x\right) d x \\
& \text { First we a/4 } \quad 3 a / 4
\end{aligned}
$$

First we solve $\int_{a / 4}^{3 u / 4} \sin ^{2}\left(\frac{\pi}{a} x\right) d x$.
We substitute $4=\frac{\pi}{a} x, \quad d u=\frac{\pi}{a} d x, \quad 4(a / 4)=\frac{\pi}{4}, \quad u\left(\frac{3 a}{4}\right)=\frac{3 \pi}{4}$
$3 \pi / 4$ $=\frac{a}{2 \pi}\left[\frac{3 \pi}{4}-\frac{\pi}{4}+\frac{1}{2}+\frac{1}{2}\right]=\frac{a}{2 \pi}\left[\frac{\pi+2}{2}\right]=\frac{(2+\pi) a}{4 \pi}$

For $\int_{a / 4}^{3 a / 4} \sin ^{2}\left(\frac{3 \pi}{a} x\right) d x$ we let

$$
\begin{aligned}
& u=\frac{3 \pi}{a} x, d u=\frac{3 \pi}{a} d x, 4(a / 4)=\frac{3 \pi}{4}, 4\left(\frac{3 a}{4}\right)=\frac{9 \pi}{4} \\
& \int_{a / 4} \sin ^{2}\left(\frac{3 \pi}{a} x\right) d x=\frac{9}{3 \pi} \int_{\frac{3 \pi}{4}}^{\frac{9 \pi}{4}} \sin ^{2} 4 d u \\
& =\frac{9}{6 \pi}[4-\sin 4 \cos 4]_{3 \pi / 4}^{9 \pi / 4} \\
& =\frac{9}{6 \pi}\left[\frac{9 \pi-3 \pi}{4}-\frac{1}{2}-\frac{1}{2}\right]=\frac{9}{6 \pi}\left[\frac{3 \pi-2}{2}\right] \\
& =\frac{(3 \pi-2 / a}{12 \pi}
\end{aligned}
$$

For $0^{3 a / 4}$
$a / 4 \sin \frac{\pi}{a} \pi \sin \frac{3 \pi}{a} x d x$ we use that

$$
\sin _{x / 4} \alpha \sin \beta=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta)
$$

So $3 \mathrm{al} / 4$

$$
\begin{aligned}
& \int_{a / 4}^{50} \sin \left(\frac{\pi}{a} x\right) \sin \frac{3 \pi}{a} \\
& \cos (-x)=\cos (x) \\
& 3 a / 4
\end{aligned}
$$

$$
3 a / 4
$$

$$
=\frac{1}{2} \int_{4 / 4}^{3 a / 4} \cos \left(\frac{2 \pi}{a} x\right)-\cos \left(\frac{4 \pi}{a} x\right) d x
$$

$$
\begin{aligned}
& \quad=\frac{1}{2}\left[\frac{a}{2 \pi} \sin \left(\frac{2 \pi}{a} x\right)-\frac{a}{4 \pi} \sin \left(\frac{4 \pi}{a} x\right)\right]_{a / 4}^{3 a / 4} \\
& =\frac{1}{2}\left[\frac{a}{2 \pi} \sin \left(\frac{3 \pi}{2}\right)-\frac{a}{2 \pi} \sin \left(\frac{\pi}{2}\right)-\frac{a}{4 \pi} \sin 3 \pi+\frac{a}{4 \pi} \sin \pi\right] \\
& =-\frac{2}{2} \frac{a}{2 \pi}=-\frac{a}{2 \pi}
\end{aligned}
$$

So:

$$
\begin{aligned}
& P\left(\frac{a}{4} \leq x \leq \frac{3 a}{4}\right)=\int_{a / 4}^{3 a / 4}|\psi|^{2} d x \\
& E \quad 3 a / 4 \\
& =\frac{1}{a} \int_{a / 4}^{\sin ^{2} \frac{\pi}{a} x d x+\frac{2}{a} \int_{a / 4}^{3 a / 4} \sin \frac{\pi}{a} x \sin \frac{3 \pi}{a} x d x+\frac{1}{a} \int_{a / 4}^{3 a / 4} \frac{\sin ^{2}}{a \pi} x d x} \begin{array}{l}
=\frac{1}{4} \frac{(2+\pi)}{4 \pi} x-\frac{2}{a} \frac{a}{2 \pi}+\frac{1}{a} \frac{(3 \pi-2) x}{12 \pi} \\
=\frac{2}{4 \pi}+\frac{\pi}{4 \pi}-\frac{1}{\pi}+\frac{3 \pi}{12 \pi}-\frac{2}{12 \pi} \\
=\frac{1}{2 \pi}+\frac{1}{4}-\frac{1}{\pi}+\frac{1}{4}-\frac{1}{6 \pi} \\
\quad=\frac{1}{2}+\frac{3}{6 \pi}-\frac{6}{6 \pi}-\frac{1}{6 \pi}=\frac{1}{2}-\frac{4}{6 \pi}=\frac{1}{2}-\frac{2}{3 \pi} \approx 0,29
\end{array}
\end{aligned}
$$

a)

$$
\begin{aligned}
& \hat{a}=\sqrt{\frac{1}{2 \tan \omega}}(m \omega \hat{x}+i \hat{p}) \\
& a^{+}=\sqrt{\frac{1}{2 H m \omega}}(m \omega \hat{x}-i \hat{p}) \\
& \Rightarrow \hat{x}=\sqrt{\frac{\hbar}{2} \frac{1}{m \omega}}\left(a^{+}+a\right) \\
& \hat{p}=\sqrt{\frac{\hbar}{2} m \omega}\left(a^{+}-a\right)
\end{aligned}
$$

and $H=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2}$

$$
\begin{aligned}
& \hat{p}^{2}=-\frac{\hbar}{2} m \omega\left(\hat{a}^{+2}-\hat{a}^{+} \hat{a}-\hat{a}^{+}+\hat{a}^{2}\right) \\
& \text { with }\left[\hat{a}, \hat{a}^{+}\right]=\hat{a} \hat{a}^{+}-\hat{a}^{+} \hat{a}=1 \\
&=-\frac{\hbar}{2} m \omega\left(\hat{a}^{+2}+\hat{a}^{2}-\hat{a}^{+} \hat{a}\left(1+\hat{a}^{+} \hat{a}\right)\right) \\
&=-\frac{\hbar}{2} m \omega\left(\hat{a}^{+2}+\hat{a}^{2}-2 \hat{N} \hat{N} 1\right) \\
& \hat{x}^{2}=\ldots=\frac{\hbar}{2} \frac{1}{m \omega}\left(\hat{a}^{+2}+\hat{a}^{2}+2 \hat{N}+1\right) \\
& \hat{H}=\ldots= \hbar \omega\left(\hat{N}+\frac{1}{2}\right) \\
& \Rightarrow \hat{H}|n\rangle=\hbar \omega\left(n+\frac{1}{2}\right)
\end{aligned}
$$

$$
y \text {): } \psi\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{2}}\left[\psi_{0}\left(x_{1}\right) \psi_{1}\left(x_{2}\right)-\psi_{0}\left(x_{1}\right) \psi_{1}\left(x_{1}\right)\right]
$$

ii) $\quad=\frac{1}{\sqrt{2}}\left[\psi_{0}\left(x_{2}\right) \psi_{2}\left(x_{2}\right)-\psi_{0}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right]$
iii) $\quad=\frac{1}{\sqrt{2}}\left[\pi_{1}\left(x_{1}\right) \psi_{2}\left(x_{2}\right)-\pi_{1}\left(x_{2}\right) \psi_{2}\left(x_{1}\right)\right.$
\rightarrow ron 4 have two cornice fermion. i. cather \because.....,
c)
degeneracy

$$
E=E_{x}+E_{y}+E_{z}=\hbar \omega\left(n_{x}+n_{y}+n_{z}+\frac{1}{2} \times 3\right)
$$

\Rightarrow with $E=\frac{7}{2}$ kn we find

$$
\begin{aligned}
& \left|n_{x}, n_{y}, n_{z}\right\rangle \\
& \left.\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right\} 6 \text { degenerate states }
\end{aligned}
$$

