FYS3500 - Solutions to Problem set 5

Spring term 2019

Problem 1 Dark matter – From last years exam

Show that, if there is a process $\chi\chi \to \chi\phi$ by which two cold (very low velocity) dark matter particles χ of mass m_{χ} annihilate to produce a single χ plus an additional massless dark particle ϕ , the remaining χ has 25% more energy than one of the cold χ 's that collided.

From conservation of energy we find $2m_{\chi} = E_{\chi}^{f} + E_{\phi}$ and $E_{\chi}^{i} = m_{\chi}$. Conservation of momentum yields $p_{\chi}^{f} = p_{\phi}$. We can then use the invariant mass $E_{\chi}^{f,2} = m_{\chi}^{2} + p_{\chi}^{f,2}$ (and $E_{\phi} = p_{\phi}$):

$$2m_{\chi} = E_{\chi}^{f} + E_{\phi} = E_{\chi}^{f} + p_{\phi} = E_{\chi}^{f} + p_{\chi}^{f}$$
(1)

$$E_{\chi}^{f,2} = (2m_{\chi} - p_{\chi}^{f})^{2} = 4m_{\chi}^{2} + p_{\chi}^{f,2} - 4m_{\chi}p_{\chi}^{f}, \text{ but also (s.a.)} \quad E_{\chi}^{f,2} = m_{\chi}^{2} + p_{\chi}^{f,2}$$
(2)

$$m_{\chi}^{2} = 4m_{\chi}^{2} - 4m_{\chi}p_{\chi}^{j} \tag{3}$$

$$p_{\chi}^{J} = 3/4m_{\chi} \tag{4}$$

$$\to E_{\chi}^{J,2} = m_{\chi}^2 + (3/4m_{\chi})^2$$
⁽⁵⁾

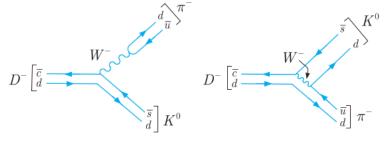
$$\rightarrow \frac{E_{\chi}^{\prime}}{m_{\chi}} = \frac{E_{\chi}^{\prime}}{E_{\chi}^{i}} = \frac{5}{4} \tag{6}$$

Theoughout, we have used the superscripts i and f to describe initial and final state.

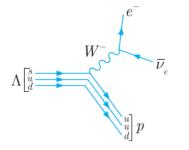
Problem 2

Problem 3.4 in M&S Note that it should be Table 3.4, not 3.5

The quantum numbers are:


$$X^{\scriptscriptstyle 0}: \; B=1,\; S=-1,\; C=0,\; B=0\; ; \; Y^{\scriptscriptstyle -}:\; B=1,\; S=-2,\; C=0,\; B=0\; .$$

From their charges, and the definitions of \tilde{B} , *S*, *C* and *B*, it follows that $X^0 = uds$ and $Y^- = dss$. The decay $Y^- \to \Lambda + \pi^-$ violates strangeness conservation and is a weak interaction, so we expect $\tau = 10^{-6} - 10^{-13}$ s. (The Y^- is in fact the so-called $\Xi^-(1321)$ state with a lifetime 1.6×10^{-10} s.)


Problem 3

Problem 3.9 in M&S

(a) The quark compositions are: $D^- = d\overline{c}$; $K^0 = d\overline{s}$; $\pi^- = d\overline{u}$ and since the dominant decay of a *c*-quark is $c \to s$, we can have either of the diagrams shown below.

(b) The quark compositions are: $\Lambda = sud$; p = uud and since the dominant decay of an s-quark is $s \to u$, we have the diagram:

