UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in FYS3500 - Introduction to nuclear and particle physics

Day of exam: 6 June, 2019 Exam hours: 14:30-18:30

This examination paper consists of 8 page(s).

Appendices: None

Permitted materials: Chart of the nuclides, calculator

Make sure that your copy of this examination paper is complete before answering.

100 points total

Useful constants:

$$c = 3 \cdot 10^8 \text{ m/s}$$

 $\hbar c = 197 \text{ MeV-F}$
 $G_F = 1.166 \cdot 10^{-5} \text{ GeV}^{-2}$

Particle	Quark composition	Mass (MeV/c²)
π^+	$u\overline{d}$	140
π^0	$u\overline{u}, d\overline{d}$	135
K^{+}	u s	494
K^{0}	ds	498
n	udd	940
p	uud	938
Λ^0	uds	1116

Shell Model - Energy Levels

$$1p - - < - - - 1p_{1/2} 2 8 \over 1p_{3/2} 4$$

$$1s$$
 — $1s_{1/2}$ 2 2 Intermediate t spin orbit coupling

1. Concepts in particle physics (7 points)

Associate the following list of concepts with the symbols or formulae below:

- a) Flavor-changing neutral current
- b) Isospin symmetry
- c) Parity violation
- d) Color confinement
- e) Electroweak unification
- f) Lepton universality
- g) Lepton-quark symmetry
- 1) Σ^{+} (1189 MeV) = uus, Σ^{0} (1193 MeV) = uds, Σ^{-} (1197 MeV) = dds
- 2) $\Gamma(W^+ \to e^+ v_e) \simeq \Gamma(W^+ \to \tau^+ v_\tau)$
- 3) $e/(2\sqrt{2\varepsilon_0}) = g_W sin(\theta_W) = g_Z cos(\theta_W)$
- 4) $\Gamma_{\mu^+ \to e^+ \nu_e \overline{\nu_{\tau}}}(cos\theta) \neq \Gamma_{\mu^+ \to e^+ \nu_e \overline{\nu_{\tau}}}(cos(\pi \theta))$
- 5) $\Gamma(W^+ \to u\overline{d}') = 3 \Gamma(W^+ \to e^+ v_e)$
- 6) $B_s^0(\overline{b}s) \rightarrow \mu^+\mu^-$
- 7) $I_3^c = Y^c = 0$

2. Multiple choice (3 points)

- 1. The half-life $t_{1/2}$ for α -decay for a chain of isotopes
 - a. increases with Q-value.
 - b. decreases with Q-value.
 - c. is independent of the Q-value.
- 2. The half-life $t_{1/2}$ for α -decay for a chain of isotopes
 - a. decreases with increasing deformation.
 - b. increases with increasing deformation.
 - c. is independent of deformation.
- 3. With increased excitation energy of the nucleus we find in general states with shorter half-life and
 - a. smaller width Γ .
 - b. larger width.
 - c. the same width.

3. Nuclear forces (4 points)

- a) The nuclear force is described as "charge independent". Why don't we observe a bound system of two protons or two neutrons in nature?
- b) What is the typical range of the nuclear force and why is it so much shorter than for example the electromagnetic force?

4. Nuclear binding energy (16 points)

- a) Make a sketch of the binding energy per nucleon versus mass number A. Where is the maximum?
- b) Write down the binding energy formula and explain the different terms.
- c) From which term can we learn about the range of the nuclear force? Explain briefly.
- d) The stable light nuclei have roughly the same number of neutrons N and protons Z. For heavier nuclei there is a deviation from this N=Z line. In which direction is the deviation and which term is responsible? Explain briefly.
- e) Why are 233 U, 235 U and 239 Pu fissionable with high probability by thermal neutrons, while 232 Th and 238 U are not? Hint: Think about the δ -term.
- f) The fission fragments of fissile nuclei are not distributed symmetrically in mass, why?

5. Shell model (6 points)

- a) Find and explain ground state spin and parity of ⁴³Sc.
- a) Consider 48 Ca (N=28, Z=20). If we now take one neutron from the level $1f_{7/2}$ and promote it to the level $2p_{3/2}$, we would have an excited state. What are the possible values for the spin and parity of this excited configuration?

6. Gamma decay (10p)

- a. For decay from states in the nucleus with the initial state J_i^{π} to the final state J_f^{π} , what are the possible γ decays (E1, M1 etc). If more than one are possible which is the most probable?
 - i. $1^+ -> 1^+$
 - ii. $9/2^- -> 3/2^+$
 - iii. $2^+ -> 2^-$
 - iv. $0^+ -> 0^+$
- b. In an experiment you observe three γ -rays with following energies and multipolarities:
 - i. 100 keV, E2
 - ii. 200 keV, M1
 - iii. 300 keV, E1

No higher energy gamma-rays were observed. *Construct the most probable level scheme(s), including spin assignment of the levels.* Hint: There are (at least) two possible solutions.

c. As hinted upon, there are several possible solutions. Discuss *briefly* a possibility to distinguish between them (i.e. what additional measurement would be needed and why).

7. Radioactive decay (12 points)

A nucleus A is unstable and decays with the decay constant λ_A to a another unstable nucleus B. This decays further to the nucleus C with the decay constant λ_B . This is usually written as $A \to B \to C$.

- a) Derive the decay law, i.e. the number of particles of A, $N_A(t)$, at a given time t, from the number of particles A at time zero, $N_{A,0}$.
- b) *Prove* that the number of particles B at time t is given by $N_B(t) = \frac{N_{A,0}\lambda_A}{\lambda_B \lambda_A} (e^{-\lambda_A t} e^{-\lambda_B t}).$
- c) Suppose there was a lump of ${}^{76}_{32}Ge$ (~1 mol, 6×10^{23} atoms) just after the big bang $(13.8 \times 10^9 \text{ years ago})$. The half-life of ${}^{76}_{32}Ge$, which decays mainly by double-beta decay, is 1.78×10^{21} years. How many decays are there per week today?
- d) Why are the shapes of the energy spectra for β^+ and β^- in nuclear decays different?

8. Medical application (4 points)

- a) What is the advantage of proton therapy versus conventional radiation therapy with electrons or X-rays?
- b) Sketch the proton radiation dose as a function of depth in the body.

9. Quark-gluon plasma (4 points)

Explain why the $J/\Psi(c\overline{c})$ and $Y(b\overline{b})$ states are expected to be suppressed in the quark-gluon plasma that is formed during high-energy collisions between heavy ions. Also, tell what happens to the bottom and charmed quarks when a J/Ψ or Y meson is "suppressed", i.e., what sorts of charm and bottom particles emerge from the plasma.

10. Hadrons and quarks (8 points)

Consider the decay sequence $\Lambda_b^0(udb) \to K^-(\overline{u}s) P_c^+$ followed by the decay $P_c^+ \to p J/\Psi$, where the P_c^+ is an exotic hadron consisting of $uudc\overline{c}$.

- a) As you solve part (b), identify which interaction types are most likely to mediate the two decays (explain your answers).
- b) Draw the quark diagrams for the decay sequence.
- c) Describe qualitatively how to determine experimentally whether the P_c^+ exists as a bound state in Λ_b^0 decays.

11. The Higgs boson (8 points)

The decay rate of the Higgs boson H to fermion-antifermion pairs $f\bar{f}$ is given by $\Gamma(H \to f\bar{f}) = (N_c)\alpha_W(m_f^2/m_W^2)m_H$.

- a) What is the factor N_c for quarks and leptons, i.e. what does it account for and how big is it?
- b) Predict the ratios of branching fractions (symbols only) $B(H \to b\overline{b}) : B(H \to c\overline{c}) : B(H \to \tau^+\tau^-).$
- c) Describe how the Higgs boson can decay to pairs of massless photons ($H \to \gamma \gamma$) or gluons ($H \to gg$), i.e. suggest 1-2 likely Feynman diagrams for each.

12. The Standard Model (8 points)

- a) How many continuous variable parameters are needed to describe the entire Standard Model of fundamental particles and interactions? Explain your reasoning/accounting for the various contributions to the total.
- b) How many of these parameters are given by pure theory and how many need to be determined by experiment?

13. Relativistic kinematics (10 points)

A beam of negatively charged pions (π^-) hits protons at rest. What is the minimum energy of the pion beam (or the minimum momentum if you prefer) needed to produce a Λ^0 ? Hint: Describe what type of interaction this is most likely to be (let's say the cross-section is very large) and think about how to insure that the relevant quantum numbers are conserved. A correct symbolic answer will receive full credit, but it could be a good idea to plug in some numbers and check if your formula gives sensible results.