
FYS 4110: Non-relativistic quantum mechanics

Midterm Exam, Fall Semester 2008

The problem set is available from Friday October 17. The set consists of 2 problems written on
4 pages. For solving the problems, it may be useful to consult the relevant sections of the lecture
notes.

Deadline for returning solutions
Friday October 24. Written/printed solutions should be returned to Ekspedisjonskontoret in the
Physics Building.

Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas ( Office: room 471, email: j.m.leinaas@fys.uio.no)
or the assistant Mads Stormo Nilsson (Office: room 340V, email: m.s.nilsson@fys.uio.no).

Language
Solutions may be written in Norwegian or English, depending on your preference.

————————————————————————-

PROBLEMS

1 Spin splitting in positronium
Positronium is a bound system of an electron and a positron. The two particles have the

same mass m and charges of opposite signs ±e, with e denoting the electron charge. The energy
spectrum of the bound system is similar to that of a hydrogen atom, but the energy scale is dif-
ferent since the reduced mass of the two-particle system has about half the value in positronium
compared to hydrogen. Positronium has a finite life time since the electron and the positron will
eventually annihilate.

The ground state of positronium is degenerate due to the spin degrees of freedom of the two
particles. We distinguish between para-positronium, which is a spin singlet state with total spin
S = 0, and ortho-positronium which is a triplet state with total spin S = 1. Para-positronium has
a life time of 125 picoseconds while the life time of ortho-positronium is about 140 nanoseconds.

The interaction between the magnetic moments of the two particles give rise to a (hyperfine)
splitting of the ground state energy, so that the singlet state has a slightly lower energy than the
triplet state. In the following we make the simplifying assumption that this effect can be studied
in the four-dimensional spin space of the two particles. This means that we assume no coupling
between the spin and orbital coordinates of the particles so that the wave function of the orbital
motion is the same for all the spin states and can therefore be neglected.

We denote in the following the spin up state vector of the z-component of the spin for any
of the two particles as |+〉 and the spin down state by |−〉. The four dimensional space of spin
states has the tensor product form H = He ⊗ Hp, with He as the two-dimensional spin space
of the electron and Hp as the spin space of the positron. The full space is spanned by the four
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product states

|+ +〉 = |+〉 ⊗ |+〉 , |+−〉 = |+〉 ⊗ |−〉 ,
| −+〉 = |−〉 ⊗ |+〉 , | − −〉 = |−〉 ⊗ |−〉 , (1)

where we assume the first factor in the tensor product to describe the electron spin. In the four-
dimensional spin space the spin operators of the electron and the positron have the following
forms,

Ŝe =
h̄

2
σe ⊗ 1p ≡

h̄

2
Σe

Ŝp =
h̄

2
1e ⊗ σp ≡

h̄

2
Σp (2)

with 1e as the identity operator in the two-dimensional spin space of the electron,1p as the iden-
tity operator in the spin space of the positron, and σe and σp as the Pauli matrices acting in the
two-dimensional spin spaces of the electron and the positron respectively.

a) Show that in the product basis we have

〈ij|Σe ·Σp|kl〉 = 〈i|σe|k〉 · 〈j|σp|l〉 (3)

b) Find the operator product Ŝe · Ŝp expressed as a 4× 4 matrix in the product basis. (In the
matrix representation list the basis vectors in the order |+ +〉, |+−〉, | −+〉, | − −〉.)

We now introduce another basis, the spin basis with the four vectors

|0, 0〉 =
1√
2
(|+−〉 − | −+〉) (4)

and

|1, 1〉 = |+ +〉

|1, 0〉 =
1√
2
(|+−〉+ | −+〉)

|1,−1〉 = | − −〉 (5)

c) Show that Ŝe · Ŝp is a diagonal matrix in the new basis.
The total (intrinsic) spin of the two particles is Ŝ = Ŝe + Ŝp. Show that the new basis vectors

are eigenstates of Ŝ2 and Ŝz and find the eigenvalues. Check that the result for the eigenvalues is
consistent with (4) being the singlet state and (5) being the triplet state.

The Hamiltonian in the spin space can be written in the form

H0 = E01+ κŜe · Ŝp (6)

where E0 is the ground state energy with spin effects excluded, 1 is the identity operator in the
four-dimensional spin space and κ is a positive constant determined by the magnetic moments of
the particles.
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A magnetic field B is turned on in the z direction. This leads to a splitting of the spin energy
states, referred to as the Zeeman effect. The form of the modified Hamiltonian is

Ĥ = E01+ κŜe · Ŝp + λh̄(Ŝe z − Ŝp z) (7)

with λ as a parameter proportional to B.
d) Write the Hamilton H as a 4× 4 matrix in the spin basis.
e) Solve the eigenvalue problem for the Hamiltonian (7) and find the energies expressed in

terms of the parameters E0, κ and λ. Plot the energies as functions of x ≡ λ/κ for fixed E0 and
κ.

Two of the energy eigenstates are mixtures of |0, 0〉 and |1, 0〉. We write these two states as

|A〉 = a |+−〉+ b | −+〉
|B〉 = −b∗ |+−〉+ a∗ | −+〉 (8)

where a and b are functions of x, with |a|2 + |b|2 = 1.
f) Give the expressions for the corresponding density operators ρ̂A and ρ̂B, and for the re-

duced density operators ρ̂Ae, ρ̂Ap and ρ̂Be, ρ̂Bp of the electron and positron subsystems. The
degree of entanglement in the system is given by the von Neumann entropy of the reduced den-
sity operators. Show that the degree of entanglement is the same for |A〉 and |B〉 and can be
expressed as a function of |a|2.

g) Determine the function |a(x)|2 from the eigenvalue problem in e) and use this to make a
plot of the degree of entanglement in the system as a function of x for the two states |A〉 and |B〉.
Are these maximum entanglement states for any value of x?

2 Driven harmonic oscillator
The Hamiltonian of a one-dimensional harmonic oscillator is given by the expression

Ĥ =
1

2m
(p̂2 +m2ω2

0x̂
2) = h̄ω0(â

†â+
1

2
) (9)

with the raising and lowering operators defined by

â =
1√

2mh̄ω0

(mω0x̂+ ip̂) , â† =
1√

2mh̄ω0

(mω0x̂− ip̂) (10)

The time evolution operator is

Û0(t) = e−
i
h̄

tĤ0 (11)

The coherent states of the oscillator are defined as eigenvectors of the lowering operator

â|z〉 = z|z〉 (12)

The general coherent state |z〉 is related to the ground state of the oscillator |0〉 by

|z〉 = D̂(z)|0〉 = e−z∗zezâ†|0〉 (13)
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where the unitary shift operator is given by

D̂(z) = ezâ†−z∗â (14)

a) Show that for a general operator Â we have the relation

ÛeÂ Û−1 = eÛÂ Û−1

(15)

and use that to calculate the operator Û0(t)D̂(z)Û0(t)
†. Make use of the result to determine the

time dependent state vector |ψ(t)〉, when this initially is a coherent state |ψ(0)〉 = |z0〉. Show
that |ψ(t)〉 at later times t is also a coherent state.

We next assume the harmonic oscillator to be under influence of a time dependent external
potential, so that the hamiltonian now is

Ĥ = Ĥ0 + Ŵ (x, t) (16)

In the following we assume the external potential to have the specific form

Ŵ (x, t) = Ax̂ sinωt (17)

with A as a constant and ω as the oscillation frequency of the external potential.
b) Find the Heisenberg equation of motion for x̂ and p̂ and show that they correspond to the

equation of motion of a driven harmonic oscillator, that is subject to the periodic force f(t) =
A sinωt.

c) Give the definition of the time evolution operator ÛI(t) in the interaction picture and show
that it satisfies an equation of the form

ih̄
d

dt
ÛI(t) = ĤI(t)ÛI(t) (18)

Assume Ŵ is treated as the interaction. Show that ĤI(t) then is a linear function of â and â†,

ĤI(t) = θ(t)∗ â+ θ(t) â† (19)

and determine the function θ(t).
d) Show that the equation (18) has a solution of the form

ÛI(t) = eξ(t)â†−ξ∗(t)â eiφ(t) (20)

with ξ(t) as a complex and φ(t) as a real function of time. What are the equations that these two
functions should satisfy?

e) Use the expressions for Û0(t) and ÛI(t) to find the time dependent state vector |ψ(t)〉 in
the Schrödinger picture, with the same initial condition as in a). Show that also in this case it
describes a time dependent coherent state, of the form |ψ(t)〉 = eiγ(t)|z(t)〉. Find z(t) expressed
in terms of z0, ξ(t) and ω0.

f) Determine the function ξ(t) and find an explicit expression for z(t). The corresponding
real coordinate is x(t) =

√
2h̄/mω0 Re z(t). Does this coordinate satisfy the classical equation

of motion of the driven harmonic oscillator?
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