FYS 4110 Non-relativistic Quantum Mechanics, Fall Semester 2008

Problem set 4

4.1 Harmonic oscillator states
The Hamiltonian of a one-dimensional harmonic oscillator is given by

N |
H= %(ﬁ + m2w?i?) (1)

a) Introduce the lowering and raising operators

1

a=1\5— h(mw:f;’ +ip), al = 5 h(mw:ﬁ — ip) ()
and show that the operator can be written as
N US|
H=hw(a'a+ 5)) (3)

b) In the n representation, the energy eigenvectors |n) are used as a complete,
orthonormal basis. A general observable A in this basis can be expressed as an
infinite matrix with matrix elements

Apn = (m|Aln) 4)

Find the expressions for the (m, n) matrix elements for the following operators
%, p, 22, p* and 2p-+pz. Write the operators in matrix form with the 4x4 submatrix
corresponding to n = 0, 1, 2, 3 written out explicitely.

c) All energy eigenstates can be generated from the ground state by use of the
relations,

al0y =0, a'ln) =vn+1n+1) (5)

Write these equations in the coordinate representation (x-representation), where
the energy eigenstates are represented by wave functions v,,(x) = (z|n). Use the
equations to show that the eigenstates in this representation have the form

() = Py(a)e ™ 6)



with P, (x) as a polynomial of order n in z. Find X and P, (z) for the three lowest
states,n = 0, 1, 2.

4.2 Displacement operators in phase space
For a particle moving in one dimension the position coordinate x and the mo-
mentum p define the coordinates of the two-dimensional classical phase space.

In the quantum description of the one-dimensional harmonic oscillator non-
hermitian lowering operator is defined as

a= ;(mw T+ ip) (7)
2mhw
We may consider this as the operator of a complex phase space variable, with po-
sition as the real part and momentum as the imaginary part. It has a dimensionless
form due to the constants introduced in the expression.
A coherent state, in a similar way is characterized by a complex number z, the
eigenvalue of a, which we may interpret as a complex phase space coordinate,

1
2= —(mwx,+ 1p. 8
2mhw( Pe) (8)

The following operator

A

D(z) = el?d'=2"0) 9)

acts as a displacement operator in phase space, in the sense

~

D(2)iD(2)' =2 — x., D(2)pD(2)" =p — pe (10)

Show that displacements in two different directions in general will not com-
mute but rather satisfy a relation of the form

A

D(22)D(2) = ™) D(2,)D(2,) (11)

with a(z,, z) as a complex phase. Determine the phase as a function of z, and
2p. What is the condition for the two operators to commute?



4.3 Particle encircling a magnetic flux
(Midterm Exam 2004, Problem 1)

A particle with mass m and charge e moves freely on a circle of radius R.
Through the circle passes a solenoid that carries a magnet flux ®. We may con-
sider the total flux to be confined to the solenoid so that the magnetic field vanishes
on the circle where the particle moves.

In the following make use of the general expressions for the Hamiltonian of a
particle in a magnetic field

1
H=_—"—(p—eA)? 12
5, (P — ¢A) (12)
and for the probability current
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with A as the vector potential, so that the magnetic fieldis B =V x A.
Use in the following the angle variable ¢ as coordinate for the particle on the
circle.

a) Assume rotational invariance about the center of the circle and show that the
vector potential on the circle takes the constant value A = ® /27 R with direction
along the circle. Explain why this vector potential has no influence on the motion
of the particle when this is described by the classical equations of motion.



b) Express the Hamiltonian as an operator acting on the wave functions (6) for
the particle on the circle. Find the energy eigenvalues and show that the energy
spectrum varies periodically with the flux . What is the flux period ®(? Plot the
four lowest energies as functions of ® in the interval from 0 to ®,. Characterize
the ground state by its angular momentum in the same interval. What is special
for the spectrum at & = &, /2?

¢) Find the probability current for a general wave function (), and determine
the value of the ground state current as a function of ®. What is the maximum
value of the ground state current and what value for the particle velocity does that
correspond to.

d) Find the propagator G(6,t;0,0) = (6,t|0,0) expressed as a series expansion in
angular momentum states. Show further how this series can be written as a Jacobi
theta function for general ®. Use the definition of the Jacobi theta function as
given in Problem 3.2 (Problem Set 3, 2008).

e) For the Lagrangian of a particle in a magnetic field the effect of the vector
potential is to add a term proportional to the velocity

1
L= imvz—l—eA-v (14)

Follow the path integral approach of Problem 3.2 to find the propagator by sum-
ming over all classical paths with the given initial and final conditions. In the
same way as discussed there the propagator derived in this way is equivalent to
the one derived in d). Show this. (Use the properties listed in Problem 3.2 for the
Jacobi theta function.)



