
FYS 4110 Non-relativistic Quantum Mechanics, Fall Semester 2008

Problem set 8

8.1 Spin coherent states
We consider two different sets of basis vectors for a spin-half system. The first one is the standard
set of eigenvectors for the Pauli matrix σz,

σz|m〉 = m|m〉 , m = ±1 (1)

The second set is the set of spin up states for all rotated Pauli matrices, which have been intro-
duced in Sect. 1.3.1 of the lecture notes,

σn|n〉 ≡ n · σ|n〉 = |n〉 , n = sin θ cosφi + sin θ sinφj + cos θk (2)

Clearly this is a much larger set, since it depends on two continuous variables θ and φ. (In fact,
as discussed in the lecture notes, any state of the spin half system can be written in this way.)

The set of states |n〉 have several properties similar to the coherent states of a harmonic
oscillator, and are therefore referred to as spin coherent states. In this problem the objective is to
study some of these properties. You may make use of the results of Sect. 1.3.2.

In order to bring the notation closer to that of the coherent states of the harmonic oscillator
we represent the unit vector n by a complex number z in the following way

z = eiφ cot
θ

2
(3)

and define |z〉 ≡ |n〉.
a) Show that the transition function between the two sets of states can be written in the form

〈z|m〉 =
z(m+1)/2√
1 + |z|2

(4)

b) Determine the overlap function

|ψz0(z)|2 ≡ |〈z|z0〉|2 (5)

c) Show that the spin coherent states satisfy a completeness relation of the form

∫ d2z

2π

4

(1 + |z|2)2
|z〉〈z| = 1 (6)

where d2z denotes the standard area element in the two-dimensional plane.
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8.2 Entangled photons
Midterm Exam 2004 Problem 2
In this problem correlations between pairs of entangled photons are studied. The interesting
degree of freedom is the polarization of each photon. For a single photon this means that the
quantum state is a vector in a two-dimensional vector space spanned by the vectors |H〉 and |V 〉,
which correspond to linear polarization in the horizontal and vertical direction, respectively. A
general polarization state is a linear combination of these two. As special cases we consider
linearly polarized photons in a rotated direction,

|θ〉 = cos θ|H〉+ sin θ|V 〉 (7)

and circularly polarized photons with right-handed and left-handed orientation, respectively,

|R〉 =
1√
2
(|H〉+ i|V 〉) , |L〉 =

1√
2
(|H〉 − i|V 〉) (8)

The two-photon states, when only polarization is taken into account, are vectors in the tensor
product space spanned by the four vectors,

|HH〉 = |H〉 ⊗ |H〉 , |HV 〉 = |H〉 ⊗ |V 〉 ,
|V H〉 = |V 〉 ⊗ |H〉 , |V V 〉 = |V 〉 ⊗ |V 〉 , (9)

(Note that even if the photons are bosons there is no symmetry constraint on the two-photon
states, since we assume that the two photons can be distinguished by their different direction of
propagation.)
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As a specific way to produce entangled photon pairs we consider the method of parametric
down conversion, as described below and sketched in the Figure 2 and 3.

As illustrated in Fig. 2a a (weak) beam of photons enter a crystal, where each photon due
to the non-linear interaction with the crystal is split into two photons. These appear with equal
energy, half the energy of the incoming photon. The transverse momentum of the emerging pho-
tons is fixed so that their direction of propagation is limited to a cone, as indicated in the figure.
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The photons appear with constant probability around the cone. However, due to conservation of
total transverse momentum, the two photons in each a pair are correlated so that they always are
emitted at opposite sides of the cone.

There is furthermore a polarization effect, since photons with horizontal and vertical polariza-
tion (relative to the crystal planes) do not propagate in exactly the same way. As a consequence
the cones corresponding to these two polarizations are slightly shifted. This is shown in the head-
on view of Fig. 2b, where the cone corresponding to polarization H is slightly lifted relative to
the cone corresponding to polarization V.

Two photons in a correlated pair will be located on opposite points of the central point O,
like the pair of points 1 and 2 and the pair 3 and 4, and they always appear with orthogonal
polarization. As shown by the figure this means that for most directions of the emitted photons
the polarization of each photon is uniquely determined by its direction of propagation. For such
a pair the two-photon state is a product state of the form |HV 〉. As an illustration, the pair 3, 4
of directions of the cone, as shown in Fig.2b, will be of this type.

However two directions are different since they lie on both cones. This is illustrated by the
points 1 and 2 in Fig. 2b. A photon at one of these positions will be in a superposition of |H〉
and |V 〉. Due to correlations between the photons a pair located at this position will be described
by an entangled two-photon state of the form

|ψ〉 =
1√
2
(|HV 〉+ eiχ|V H〉) (10)

where the complex phase χ can be regulated in the experimental set up.
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We assume in the following that a filter close to the crystal will single out photons only in
the directions 1 and 2. This is schematically shown in Fig. 3. To analyze correlations between
the two photons in each pair, polarization filters are applied to photons in both directions as also
shown in the figure. Those that pass the polarization filters are registered in the detectors and the
registrations are paired by use of coincidence counters.

The polarization filters may be represented by operators that project on linearly polarized
states along a (rotated) direction

P̂ (θ) = |θ〉〈θ| (11)
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In the following we examine the expected results of the polarization measurements by calcu-
lating the following expectation values

P1(θ1) ≡
〈
P̂1(θ1)

〉
photon 1

P2(θ1) ≡
〈
P̂2(θ2)

〉
photon 2

P12(θ1, θ2) ≡
〈
P̂1(θ1)P̂2(θ2)

〉
photon 1 and photon 2 (12)

a) Assume a series of N entangled photon pairs are used in an experiment. In this series
n1 photons are registered in detector 1, n2 photons are registered in detector 2 and and n12 are
registered at coincidence in the two detectors. What are the relations between the registered
frequences n1/N , etc. and the the expectation values P1, P2 and P12?

b) For the general two-photon state of the form (10) find the density operator of the two-
photon pair, and find the corresponding reduced density operators for photon 1 and photon 2.

We consider three different situations where the the incoming photon pairs are in the state
(10) with I: χ = π, II: χ = 0 and III: χ = π/2.

c) Consider an input state of the form I. Determine the detection probability P1 of photon 1
as a function of the angle θ1 of polarizer 1. Do the same with P2 for photon 2. Determine next
the probability P12 for detecting photons at both analyzers as a function of the angles θ1 and θ2.
What do the results tell about correlations of the two photons?

d) Consider next a two-photon input state of the form II. Examine the same questions as in
c). Are the results obtained rotationally invariant? Compare the cases b) and c).

e) Consider finally the case III. Find also in this case the expectation values P1, P2 and P12 as
fuctions of the angles of the polarizers. Show that in this case there exists a mixed state, which
is an incoherent mixture of |HV 〉 and |V H〉, that has identical expectation values.

f) The Bell inequality, which is based on an assumed set of ”hidden variables” as a source
of the statistical distributions, can be written as a constraint on the function P12 in the following
way (see Sect. 2.3.2 of the lecture notes),

F (θ1, θ2, θ3) ≡ P12(θ2, θ3)− |P12(θ1, θ2)− P12(θ1, θ3)| ≥ 0 (13)

Examine the Bell inequality in the cases I, II and III for the special choice of angles θ1 = 0,
θ2 = θ and θ3 = 2θ by plotting the function F (0, θ, 2θ). Comment on which of the cases that
show that the Bell inequality is not satisfied. Is there a relation between the conclusion for the
case III and the results in e)?
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