
FYS 4110 Non-relativistic Quantum Mechanics, Fall Semester 2009

Problem set 11

11.1 Entanglement
Two persons A and B communicate with the help of quantum entanglement. They share a set of pairs
of particles with spins in the entangled state

|ψ〉 =
1√
2

(|+ +〉+ | − −〉) (1)

where | + +〉 = |+〉 ⊗ |+〉 is a state where both particles of the pair have spin up in the z-direction,
and similarly | − −〉 = |−〉 ⊗ |−〉 is the state where both particles have spin down in the z-direction.

a) How do we measure the degree of entanglement in such a two-partite system, and what is the
degree of entanglement in the given spin state?

b) Assume A and B perform independent spin operations on their particles in a given pair, each
operation described by a unitary operator, ÛA or ÛB . What happens to the entanglement of the two-
particle system under such an operation.

c) Assume A performs an ideal measurement of the spin component in the x- direction, which
projects the spin to an eigenstate of the x-component of the spin operator. What happens to the
entanglement in this case?

11.2 The canonical commutation relations.
The basic commutation relations of the electromagnetic field can be written as[

Âka, Ê
†
k′a′

]
= −i h̄

ε0
δkk′δaa′ (2)

where k is the wave vector of the electromagnetic field and a is a polarization index. The photon
creation and annihilation operators are related to the field operators by

Âka =

√
h̄

2ωkε0
(âka + â†−kā) , Êka = i

√
h̄ωk

2ε0
(âka − â†−kā) (3)

where ā is related to a by a permutation of the two values of the polarization index. Use the above ex-
pressions to show that the creation and annihilation operators satisfy the standard harmonic oscillator
commutation relations, [

âka, â
†
k′a′)

]
= δkk′δaa′

[âka, âk′a′)] =
[
â†ka, â

†
k′a′)

]
= 0 (4)

11.3 The electromagnetic field energy and momentum.
The classical expressions for the electromagnetic field energy E and field momentum P are

E =
1
2

∫
d3r(ε0E2 +

1
µ0

B2)

P = ε0

∫
d3rE×B (5)
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The same expressions are valid in the quantum description, when the classical fields are replaced by
the operator fields, E → Ê, B → B̂. The energy E is then replaced by the hamiltonian Ĥ and the
momentum P by the momentum operator P̂ .

Use expressions for the field operators from the lecture notes to show that Ĥ and P̂ has the
following form, when written in terms of the photon number N̂ka operator

Ĥ =
∑
ka

h̄ωkN̂ka + E01

P̂ =
∑
ka

h̄kN̂ka (6)

where N̂ka is defined by

N̂ka = â†kaâka (7)

Comment on the interpretation of the constant E0 and explain the meaning of removing this from the
definition of the Hamiltonian, as one usually does.

11.4 The electromagnetic field equation
Assuming we apply the Coulomb gauge condition, show that the field operator Â(r, t), in the Heisen-
berg picture, satisfies the same field equation as the classical vector potential

(
∂2

∂t2
− c2 ∇2)Â(r, t) = 0 (8)

11.4 Polarization vectors
Show that the polarization vectors εka satisfy, together with the wave vector k, the following com-
pleteness relation,

∑
a

(εka)i(ε∗ka)j +
kikj

k2
= δij (9)

9.5 Field commutators
The electric and magnetic fields do not commute, but rather satisfy a commutation relation that can
be written as [

Êi(r), B̂j(r′)
]

= i
h̄

ε0

∑
k

εijk
∂

∂xk
δ(r− r′) (10)

with εijk as the three-dimensional Levi-Civita symbol. Show this by considering the Fourier transform
of the equation.

To make precise what is meant by derivatives of delta-functions, one usually consider the corre-
sponding Fourier transformed functions. As a reminder, the Fourier transform of the threedimensional
delta function in a finite volume V is

δ(r) =
1
V

∑
k

eik·r (11)
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