FYS 4110: Non-relativistic quantum mechanics
Midterm Exam, Fall Semester 2011

The problem set is available from Friday October 14. The set consists of 2 problems written on 4
pages.
Deadline for returning solutions

Friday October 21. Written/printed solutions should be returned to Ekspedisjonskontoret in the
Physics Building before closing time.

Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas (Office: room (#471) or the assistant Marianne Rypestgl
(Office: @457).

Language
Solutions may be written in Norwegian or English, depending on your preference.

PROBLEMS

1 Entanglement and Bell inequalities

We consider an experimental situation, similar to the one discussed in the lecture notes, where
pairs of spin 1/2 particles are initially prepared in a correlated spin state, and then are separated in
space while keeping the spin state unchanged. When far apart spin measurements are performed on
the particles in each pair, and the results are registered and compared. The situation is illustrated
in the figure, where a series of entangled pairs are created in a source K, and where measurements
of the z-components of the spin are performed on both particles (A and B). When the spins in the
z-directions are strictly anticorrelated, the result spin up (spin down) for particle A is always followed
by the result spin up (spin down) for particle B.
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spin measurement

We consider the situation where three different sets of measurements are performed, with different
spin states,
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The notation is | + —) = |[4+) ® |—), where |£) are spin states of a single particle, with .S, quantized.
The first factor in the tensor product refers to particle A and the second one to particle B. Note that all
three states are strictly anticorrelated with respect to the z-component of the spin of the two particles.
The purpose of the (hypothetical) experiment is to examine correlation functions that are relevant for
the Bell inequalities, as already discussed for case I in the lecture notes, to see if the three states show
different behavior. This involves performing the spin measurements also for rotated directions of the
spin axes.

a) Of the three density operators only p; is rotationally invariant. Demonstrate this by calculating
the expectation value of S? for the three cases, where S = (7/2)(o ® 1 + 1 ® o) is the spin vector
of the full system, and comment on the results.

b) What are the reduced density operators p4 and pp in the three cases? Determine the von
Neuman entropy S of the full system, as well as the entropies .S4 and Sp of the subsystems. Check if
the classical restriction on the entropies S > max{S4, Sp} is satisfied in any of the cases. In each of
the cases examine if the states are entangled or separable, and give, if possible, a numerical measure
of the degree of entanglement.

We assume the direction of the two measurement devices can be rotated so they measure spin
components of the form

Sy = cos S, +sin6S, 2)

where the angle € can be chosen independently for A and B. The state |0) = cos g|+> +sin g|—> is the

spin up vector in the rotated direction and the operator P(0) = |0) (6| projects on the corresponding
spin vector.

¢) Show that the given expression for |#), as claimed above, is the spin up state of Sy. Determine
the expectation value P4(0) = <P(0)>A’ for particle A, in the three cases I, IT and III. Comment on
the result.

d) Determine, for the three cases, the joint probability distribution P(6,6’) = <15(0) ® P(¢’ )>
with the two angles 6 and 6’ as independent variables.

The Bell inequality, according to the hidden variable analysis described in the lecture notes, gives
a constraint on the possible classical correlations of the two spins. In the present case the inequality
can be written as

where one of the angles is set to 0 since we, for the states we consider, will only have strict anticorre-
lation for spin measurements along the z-axis. (For details see the derivation in the lecture notes.)

e) Make plots of the function F'(6,0.56) for the three cases I, II and III, with 6 varying in the
interval 0 < 6 < 27. Check in all cases whether the inequality (3) is satisfied or broken, and compare
the results with what is known from point b) concerning entanglement between the two particles.

In addition to these plots, examine the functions for other choices #' = A6 with A # 0.5 to see
if the results are not changed. Alternatively make a 3D plot of the two-variable function F'(6,6’) and
check whether the conclusion concerning the Bell inequality holds in the full parameter space. State
the conclusions, but it is not needed to include the additional plots in the written/ printed solutions.

f) Assume an experimental series is performed, with the two angles fixed. The number of pairs

registered with spin up (in the chosen direction) for both spins A and B is n 4, and the number with
spin down for both spins is n__. Similarly n4_ is the number of pairs registered with spin up for A



and spin down for B, n_ is the number of pairs registered with spin down for A and spin up for B.
The total number of pairs in the series is V.

We refer to the experimental results corresponding to P4(6), Pp(#'), and P(0,6’) as Pg‘g‘ﬁp(ﬁ),
ng(e’ ), and Py (6, 0"). What are these quantities expressed in terms of the numbers {n;;,4,j = +}

and N?

2 Rabi oscillations in a composite quantum system

An atom interacts with the electromagnetic field within a small reflecting cavity. Only one of the
cavity modes of the field has a frequency that matches energy differences between the lowest energy
levels of the atom. The interaction can therefore be described by a simplified model, where only two
atomic levels are included, denoted |g) (ground state) and |e) (excited state), and only one field mode,
with energy levels |n), where n is the photon number of this mode. The model Hamiltonian is

N 1 N N
H = Shwoo + hwala +ihN(a'o_ —aoy) = Ho + H; 4)

where the Hj includes the two first terms, which describe the non-interacting atom and photons, and
H 1 the third term, which describes interactions between the atoms and the photons. hwy is then the
energy difference between the two atomic levels, hw is the photon energy, and A% is an interaction
energy. The model is known as the Jaynes-Cummings model, and it has precisely the form of a two-
level system interacting with a harmonic oscillator. The Pauli matrices act between the two atomic
levels, with o, as the standard diagonal matrix, and with o4+ = (1/2)(0, £ i0y) as matrices that raise
or lower the atomic energy. The raising and lowering operators of the harmonic oscillator, @ and af,
have the physical interpretation as photon creation and destruction operators. The model is based on
the rotating wave approximation, where terms of the form afo; and ao_ are suppressed since they
are unimportant close to resonance, where wy ~ w. An unimportant constant energy contribution to
H has also been subtracted.

a) Show that the interaction Hamiltonian [ couples the unperturbed levels only in pairs that differ
by one photon. We define such a pair of states as [nl) = |g) ®|n) = |g,n) and [n2) = |e)®|n—1) =
le,n — 1) for n > 1. Show that the Hamiltonian in the subspace spanned by this pair of states can be
written as a 2x2 matrix of the form

Hn_;h(_ﬁ)n Z_“Z) +enl 5)
with 1 as the 2 x 2 identity matrix, and find the expressions for A, w,, and €,. Assume |nl) to
correspond to the upper matrix elements of H,, and |n2) to the lower ones, with the corresponding
matrix elements of a state vector referred to as ¢, and c¢,s.

The state |g,0) = |g) ® |0) seems not to have any partner. What happens to this state under time
evolution?

In the following we assume the resonance condition w = wy to be satisfied.

b) Solve the eigenvalue problem for this 2x2 matrix Hamiltonian, and find the two energy eigen-
values EF and the corresponding eigenvectors ¢;F in matrix form. For a general, time dependent state
1y, (t) find the coefficients ¢,,1(t) and ¢,,2(t) expressed in terms of the coefficients ¢,1(0) and c¢,2(0)
at the initial time ¢ = 0.

¢) A general state, with all n-components included, can be written as
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What are the corresponding expressions for the matrix elements of the density matrix, p,; ./, Find the
expressions also for the reduced matrix elements p;; of the atom. What is the physical interpretation
of the diagonal terms p1; and pas?

Consider two different initial conditions for a state vector at ¢ = O:
I [¥(0)) =|e) ® |m — 1), where m is a specific, but at this point unspecified photon number.

II |¢4(0)) = |e) ® |a) with |c) a coherent state, defined by
la) = Z aie—\a|2/2|n> 7

where « is a complex number. Write in both cases the expressions for the reduced density matrix
elements p;;(0) of the atom.

d) Find the matrix elements of the time dependent, reduced density matrix of the atom p;;(t), for
both initial conditions I and II.

e) Make plots of p11(t) as function of ¢, for both cases I and II. Make the following choice for
the parameters, « = 4 and m = 16. Use At as time variable on the horizontal axis. Make a short
time plot, 0 < At < 5, of both cases in the same diagram. Make also a long time plot for case II,
for example with 0 < At < 100. Comment on the results and compare with the case discussed in the
lecture notes, where the (electro)magnetic field is treated classically.



