FYS 4110 Non-relativistic Quantum Mechanics, Fall Semester 2011

Problem set 10

10.1 The canonical commutation relations.

The basic commutation relations of the electromagnetic field can be written as

$$\left[\hat{A}_{\mathbf{k}a}, \hat{E}_{\mathbf{k}'a'}^{\dagger}\right] = -i\frac{\hbar}{\epsilon_0} \delta_{\mathbf{k}\mathbf{k}'} \delta_{aa'} \tag{1}$$

where k is the wave vector of the electromagnetic field and a is a polarization index. The photon creation and annihilation operators are related to the field operators by

$$\hat{A}_{\mathbf{k}a} = \sqrt{\frac{\hbar}{2\omega_k \epsilon_0}} (\hat{a}_{\mathbf{k}a} + \hat{a}_{-\mathbf{k}\bar{a}}^{\dagger}), \quad \hat{E}_{\mathbf{k}a} = i\sqrt{\frac{\hbar\omega_k}{2\epsilon_0}} (\hat{a}_{\mathbf{k}a} - \hat{a}_{-\mathbf{k}\bar{a}}^{\dagger})$$
 (2)

where \bar{a} is related to a by a permutation of the two values of the polarization index. Use the above expressions to show that the creation and annihilation operators satisfy the standard harmonic oscillator commutation relations,

$$\begin{bmatrix}
\hat{a}_{\mathbf{k}a}, \hat{a}_{\mathbf{k}'a'}^{\dagger})
\end{bmatrix} = \delta_{\mathbf{k}\mathbf{k}'}\delta_{aa'}$$

$$[\hat{a}_{\mathbf{k}a}, \hat{a}_{\mathbf{k}'a'})] = [\hat{a}_{\mathbf{k}a}^{\dagger}, \hat{a}_{\mathbf{k}'a'}^{\dagger})] = 0$$
(3)

10.2 The electromagnetic field energy and momentum.

The classical expressions for the electromagnetic field energy ${\mathcal E}$ and field momentum ${\mathcal P}$ are

$$\mathcal{E} = \frac{1}{2} \int d^3 r (\epsilon_0 \mathbf{E}^2 + \frac{1}{\mu_0} \mathbf{B}^2)$$

$$\mathcal{P} = \epsilon_0 \int d^3 r \mathbf{E} \times \mathbf{B}$$
(4)

The same expressions are valid in the quantum description, when the classical fields are replaced by the operator fields, $\mathbf{E} \to \hat{\mathbf{E}}$, $\mathbf{B} \to \hat{\mathbf{B}}$. The energy \mathcal{E} is then replaced by the hamiltonian \hat{H} and the momentum \mathcal{P} by the momentum operator $\hat{\mathcal{P}}$.

Use expressions for the field operators from the lecture notes to show that \hat{H} and \hat{P} has the following form, when written in terms of the photon number $\hat{N}_{\mathbf{k}a}$ operator

$$\hat{H} = \sum_{\mathbf{k}a} \hbar \omega_k \hat{N}_{\mathbf{k}a} + E_0 \mathbb{1}$$

$$\hat{P} = \sum_{\mathbf{k}a} \hbar \mathbf{k} \hat{N}_{\mathbf{k}a}$$
(5)

where $\hat{N}_{\mathbf{k}a}$ is defined by

$$\hat{N}_{\mathbf{k}a} = \hat{a}_{\mathbf{k}a}^{\dagger} \hat{a}_{\mathbf{k}a} \tag{6}$$

Comment on the interpretation of the constant E_0 and explain the meaning of removing this from the definition of the Hamiltonian, as one usually does.

10.3 Polarization vectors

Show that the polarization vectors $\epsilon_{\mathbf{k}a}$ satisfy, together with the wave vector \mathbf{k} , the following completeness relation,

$$\sum_{a} (\epsilon_{\mathbf{k}a})_i (\epsilon_{\mathbf{k}a}^*)_j + \frac{k_i k_j}{\mathbf{k}^2} = \delta_{ij}$$
 (7)

10.4 Squeezed states

The definition we have used for the coherent states of a harmonic oscillator shows that these states depend on the frequency ω of the oscillator. It follows from the fact that the raising and lowering operators \hat{a}^{\dagger} and \hat{a} , when expressed in terms of \hat{x} and \hat{p} , are frequency dependent, while \hat{x} and \hat{p} are independent of ω .

In this problem we examine this dependence on the frequency by assuming that a particle in a harmonic oscillator potential, with initial frequency ω_a , is at time t=0 is in a coherent state $|z_0\rangle_a$. At this moment there is a sudden change in the potential to a new frequency ω_b . The quantum state has no time to adjust to this abrupt change, so the state is $|z_0\rangle_a$ also immediately after the frequency has changed.

a) The change of frequency means that the raising and lowering operators are changed. We refer to the operators before the change as \hat{a}^{\dagger} and \hat{a} and as \hat{b}^{\dagger} and \hat{b} after the change. Show that we have the following relations between the operators

$$\hat{a} = c \,\hat{b} + s \,\hat{b}^{\dagger}, \quad \hat{a}^{\dagger} = s \,\hat{b} + c \,\hat{b}^{\dagger},$$
 (8)

with the inverse

$$\hat{b} = c \,\hat{a} - s \,\hat{a}^{\dagger} \,, \quad \hat{a}^{\dagger} = -s \,\hat{a} + c \,\hat{a}^{\dagger} \,, \tag{9}$$

and find c and s expressed in terms of the two frequencies ω_a and ω_b . Explain why we may assume c and s to represent hyperbolic functions of the form $c = \cosh \xi$, $s = \sinh \xi$, for some variable ξ .

b) Show that the two sets operators can be related by a unitary transformation

$$\hat{U} = e^{-\frac{\xi}{2}(\hat{a}^2 - \hat{a}^{\dagger 2})} = e^{\frac{\xi}{2}(\hat{b}^2 - \hat{b}^{\dagger 2})}$$
(10)

so that

$$\hat{a} = \hat{U}\,\hat{b}\,\hat{U}^{\dagger}\,, \hat{a}^{\dagger} = \hat{U}\,\hat{b}^{\dagger}\,\hat{U}^{\dagger} \tag{11}$$

This is called a Bogoliubov transformation.

- c) We now have two sets of coherent states defined by $\hat{a}|z\rangle_a = z|z\rangle_a$ and $\hat{b}|z\rangle_b = z|z\rangle_b$. Show that $|z_0\rangle_a$ is not a coherent state with respect to the new lowering operator \hat{b} .
- d) We next consider the case $z_0 = 0$, so the initial state is the ground state of the Hamiltonian before the change of frequency. Show that this state, when expanded in the energy basis after the change, is

$$|0\rangle_a = \sum_{n=0}^{\infty} \alpha_n |n\rangle_b \tag{12}$$

with expansion coefficients

$$\alpha_{2n} = (-\frac{s}{2c})^n \frac{\sqrt{(2n)!}}{n!} \alpha_0 \tag{13}$$

and

$$\alpha_0^{-2} = \sum_{n=0}^{\infty} \left(\frac{s}{2c}\right)^{2n} \frac{(2n)!}{(n!)^2} \tag{14}$$

- e) In the original coherent state representation the state $|0\rangle_a$ is represented as the wave function $\psi_0^a(z) = \langle z_a | 0\rangle_a$ and in the later coherent state representation as $\psi_0^b(z) = \langle z_b | 0\rangle_a$. Use the above expansion to find an expression for $\psi_0^b(z) = \langle z_b | 0\rangle_a$ as a sum over n. Choose the numerical value $s = \frac{1}{2}$, with the corresponding value for c, and make a numerical 3D or contour plot of the absolute value $|\psi_0^b(z)|^2$, with the real and imaginary components of z as variables, to get a picture of the form of the function. Compare with a similar plot of $|\psi_0^a(z)|^2 = e^{-|z-z_0|^2}$ and suggest an explanation for the name squeezed state used for $\psi_0^b(z)$.
- f) When time evolves for t > 0 the state $\psi_0^b(z)$ will rotate in the complex z-plane. Give a simple demonstration of this and comment on what is the frequency of rotation.

10.5 Coupled harmonic oscillators (Exam 2009)

Two harmonic oscillators, called \mathcal{A} og \mathcal{B} , are treated as a composite quantum system. The Hamiltonian has the form

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \hat{b}^{\dagger}\hat{b} + 1) + \hbar\lambda(\hat{a}^{\dagger}\hat{b} + \hat{b}^{\dagger}\hat{a})$$
(15)

with $(\hat{a}, \hat{a}^{\dagger})$ as lowering and raising operators for \mathcal{A} and $(\hat{b}, \hat{b}^{\dagger})$ as corresponding operators for \mathcal{B} . ω og λ are two real constants.

a) Show that the Hamiltonian can be written in the diagonal form,

$$\hat{H} = \hbar \omega_c \, \hat{c}^{\dagger} \hat{c} + \hbar \omega_d \, \hat{d}^{\dagger} \hat{d} + \hbar \omega \, \mathbb{1}$$
(16)

with c and d as linear combinations of a and b,

$$c = \mu a + \nu b$$
, $d = -\nu a + \mu b$ (17)

and with μ and ν as real constants that satisfy $\mu^2 + \nu^2 = 1$. (Corresponding expressions are valid for the hermitian conjugate operators \hat{c}^\dagger og \hat{d}^\dagger .) Determine the new parameters ω_c , ω_d , μ og ν , expressed in terms of ω og λ . Check that the new operators \hat{c} og \hat{d} satisfy the same commutation relations as \hat{a} og \hat{b} , so that $\left[\hat{c},\hat{c}^\dagger\right] = \left[\hat{d},\hat{d}^\dagger\right] = 1$ og $\left[\hat{c},\hat{d}^\dagger\right] = 0$.

b) Assume the state $|\psi(0)\rangle$ of the composite system at t=0 is a coherent state of both variables,

b) Assume the state $|\psi(0)\rangle$ of the composite system at t=0 is a coherent state of both variables so that

$$\hat{c} |\psi(0)\rangle = z_{c0}|\psi(0)\rangle, \quad \hat{d} |\psi(0)\rangle = z_{d0}|\psi(0)\rangle$$
(18)

The state will also at a later time be a coherent state for \hat{c} og \hat{d} , with eigenvalues

$$z_c(t) = e^{-i\omega_c t} z_{c0}, \quad z_d(t) = e^{-i\omega_d t} z_{d0}$$
 (19)

Show this for $z_c(t)$. (The expression for $z_d(t)$ can be found in the same way, and is therefore not needed to be shown.)

c) Show that the state $|\psi(t)\rangle$ is a coherent state also for the original harmonic oscillator operators \hat{a} og \hat{b} , and determine the eigenvalues $z_a(t)$ og $z_b(t)$ expressed in terms of the initial values $z_{a\,0}$ og $z_{b\,0}$.