FYS 4110 Non-relativistic Quantum Mechanics, Fall Semester 2011
Problem set 4

4.1 Poisson summation
Consider an unspecified function g(z) in one dimension. We define the related function f(x) by
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where we assume the infinite sum to be well defined.
a) Show that f is a periodic function, f(x + 27) = f(«x), and therefore can be expressed as a
discrete Fourier sum on the interval 0 < x < 2,
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b) Show from this the identity
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This is expression is known as Poisson summation, and when the integral can be performed it gives in
many cases a useful resummation of the original sum.
¢) Assume g(z) to be specified as a Gaussian function
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with k£ and )\ as a constants. Find the explicit expression for the Fourier sum (2) in this case. (Use the
results for Gaussian integrals from one of the earlier problem sets, and consider A to have a positive
real part in order for the integral to converge.)

4.2 Jacobi’s Theta Function
As a preparation for Problem 4.3 we consider here the symmetries of a special function called the
Jacobi Theta Function 03. The function 03(z|w) is defined by the sum

O3(zlw) = Z exp(iTwl? + 2ilz) (6)
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¢) Show that this sum has the same form as the Fourier sum (2) of the gaussian function (5), with
x = 2z, and show that the alternative expression for 65 that corresponds to the sum (1) is
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b) Show, by use of the above results, that function 83 has the following symmetry properties

O3(z + mlw) = 03(z|lw)
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4.3 Particle on a circle
A particle with mass m moves freely on a circle of radius R.
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a) Use the polar angle ¢ as coordinate and find the expresssion for the angular momentum eigen-
states, ¥;(¢) = (¢|l), with [ as the dimensionless angular momentum quantum number (which take
integer values). These states are also energy eigenstates. What is the energy F, expressed in terms of
of [?

b) Find an expression for the propagator G(¢,%;0,0) = (4|U(t,0)|0) as a sum over angular
momenta, by making a direct calculation of the relevant matrix element of the time evolution operator
U(t,0). (The coordinates of the initial position are here chosen as (¢;,;) = (0,0).) Show that the
propagator can be expressed in terms of the Jacobi theta function 03(z|w).

¢) Explain why there is an infinity of classical paths, with different winding numbers n, that
connect the two points (0, 0) and (¢, t), and use the semi-classical expression for the path integral to
write the propagator G(¢, t;0,0) as a sum over winding numbers n. Show that also this sum can be
expressed in terms of the Jacobi theta function.

d) Use the results of Problem 4.2 to show that expressions found for the propagator in a) and b) are
equivalent. This demonstrates that the semi-classical expression for the propagator of a free particle
on a circle, in the same way as for a free particle on a line, is identical to the exact expression for the
propagator.

4.4 Harmonic oscillator states
The Hamiltonian of a one-dimensional harmonic oscillator is given by
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a) Introduce the lowering and raising operators

0=\ 5 (mwi +ip), al = 5 (mwi = ip) (10)
and show that the Hamiltonian can be written as
. N
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b) The energy eigenvectors |n) are defined by the equation
H|n) = Ey,|n) (12)

Show that E,, = hw(n + %) and that the raising and lowering operators satisfy the relations

a'lny =vn+1|n+1), aln)=+vnln—1) (13)

b) In the energy representation (or n representation), the energy eigenvectors |n) are used as a
complete, orthonormal basis. A general observable A in this basis can be expressed as an infinite
matrix with matrix elements

Apmn = (m|A|n) (14)

Find the expressions for the (m, n) matrix elements for the following operators
#,p, 22, p? and £p + pa. Write the operators in matrix form with the 4x4 submatrix corresponding to
n = 0,1, 2, 3 written out explicitely.

¢) All energy eigenstates can be generated from the ground state by use of the relations,

al0) =0, a'ln)=vn+1n+1) (15)

Write these equations in the coordinate representation (z-representation), where the energy eigenstates
are represented by wave functions 1, (x) = (z|n). Use the equations to show that the eigenstates in
this representation have the form

Yn(x) = Py(z)e ™ (16)

with P, (x) as a polynomial of order n in z. Find A and P, () for the three lowest states, n = 0, 1, 2.



