FYS 4110 Non-relativistic Quantum Mechanics, Fall Semester 2011

Problem set 5

5.1 Displacement operators in phase space

For a particle moving in one dimension the position coordinate x and the momentum p define the coordinates of the two-dimensional classical phase space.

In the quantum description of the one-dimensional harmonic oscillator non-hermitian lowering operator is defined as

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2 m \hbar \omega}}(m \omega \hat{x}+i \hat{p}) \tag{1}
\end{equation*}
$$

We may consider this as the operator of a complex phase space variable, with position as the real part and momentum as the imaginary part. It has a dimensionless form due to the constants introduced in the expression.

A coherent state, in a similar way is characterized by a complex number z, the eigenvalue of \hat{a}, which we may interpret as a complex phase space coordinate,

$$
\begin{equation*}
z=\frac{1}{\sqrt{2 m \hbar \omega}}\left(m \omega x_{c}+i p_{c}\right) \tag{2}
\end{equation*}
$$

The following operator

$$
\begin{equation*}
\hat{\mathcal{D}}(z)=e^{\left(z \hat{a}^{\dagger}-z^{*} \hat{a}\right)} \tag{3}
\end{equation*}
$$

acts as a displacement operator in phase space, in the sense

$$
\begin{equation*}
\hat{\mathcal{D}}(z) \hat{x} \hat{\mathcal{D}}(z)^{\dagger}=\hat{x}-x_{c}, \quad \hat{\mathcal{D}}(z) \hat{p} \hat{\mathcal{D}}(z)^{\dagger}=\hat{p}-p_{c} \tag{4}
\end{equation*}
$$

Show that displacements in two different directions in general will not commute but rather satisfy a relation of the form

$$
\begin{equation*}
\hat{\mathcal{D}}\left(z_{a}\right) \hat{\mathcal{D}}\left(z_{b}\right)=e^{i \alpha\left(z_{a}, z_{b}\right)} \hat{\mathcal{D}}\left(z_{b}\right) \hat{\mathcal{D}}\left(z_{a}\right) \tag{5}
\end{equation*}
$$

with $\alpha\left(z_{a}, z_{b}\right)$ as a complex phase. Determine the phase as a function of z_{a} and z_{b}. What is the condition for the two operators to commute?

5.2 Energy eigenstates in the coherent state representation

The energy eigenstates of a harmonic oscillator are denoted by $|n\rangle$ and the coherent states by $|z\rangle$. We consider states described as wave functions in the coherent state representation, $\psi(z)=\langle z \mid \psi\rangle$.

In the coherent state representation the energy eigenstates have the form of wave functions, $\psi_{n}(z)=\langle z \mid n\rangle=\exp \left(-|z|^{2} / 2\right)\left[z^{* 2} / \sqrt{n!}\right]$. Show that the modulus squared of the energy eigenfunctions, $\left|\psi_{n}(z)\right|^{2}$, only depends on the absolute value of $z, r \equiv|z|$, and find the position r_{n} of its maximum. Plot the functions $\left|\psi_{n}(z)\right|^{2}$ as function of r for values of n from 0 to 5 .

5.3 Eigenvectors for \hat{a}^{\dagger} ?

The coherent states $|z\rangle$ are defined as eigenvectors of the lowering operator \hat{a}. Assume $|\bar{z}\rangle$ to be eigenvector of the raising operator \hat{a}^{\dagger},

$$
\begin{equation*}
\hat{a}^{\dagger}|\bar{z}\rangle=\bar{z}|\bar{z}\rangle \tag{6}
\end{equation*}
$$

Show that no normalizable vector exists that satisfies this equation by expanding the state $|\bar{z}\rangle$ in the energy eigenstates $|n\rangle$.

5.4 Driven harmonic oscillator (Midterm Exam 2008)

The Hamiltonian of a one-dimensional harmonic oscillator is given by the expression

$$
\begin{equation*}
\hat{H}=\frac{1}{2 m}\left(\hat{p}^{2}+m^{2} \omega_{0}^{2} \hat{x}^{2}\right)=\hbar \omega_{0}\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) \tag{7}
\end{equation*}
$$

with the raising and lowering operators defined by

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2 m \hbar \omega_{0}}}\left(m \omega_{0} \hat{x}+i \hat{p}\right), \quad \hat{a}^{\dagger}=\frac{1}{\sqrt{2 m \hbar \omega_{0}}}\left(m \omega_{0} \hat{x}-i \hat{p}\right) \tag{8}
\end{equation*}
$$

The time evolution operator is

$$
\begin{equation*}
\hat{\mathcal{U}}_{0}(t)=e^{-\frac{i}{\hbar} t \hat{H}_{0}} \tag{9}
\end{equation*}
$$

The coherent states of the oscillator are defined as eigenvectors of the lowering operator

$$
\begin{equation*}
\hat{a}|z\rangle=z|z\rangle \tag{10}
\end{equation*}
$$

The general coherent state $|z\rangle$ is related to the ground state of the oscillator $|0\rangle$ by

$$
\begin{equation*}
|z\rangle=\hat{\mathcal{D}}(z)|0\rangle=e^{-z^{*} z} e^{z \hat{a}^{\dagger}}|0\rangle \tag{11}
\end{equation*}
$$

where the unitary shift operator is given by

$$
\begin{equation*}
\hat{\mathcal{D}}(z)=e^{z \hat{a}^{\dagger}-z^{*} \hat{a}} \tag{12}
\end{equation*}
$$

a) Show that for a general operator \hat{A} we have the relation

$$
\begin{equation*}
\hat{\mathcal{U}} e^{\hat{A}} \hat{\mathcal{U}}^{-1}=e^{\hat{\mathcal{U}} \hat{\mathcal{U}} \hat{\mathcal{U}}^{-1}} \tag{13}
\end{equation*}
$$

and use that to calculate the operator $\hat{\mathcal{U}}_{0}(t) \hat{\mathcal{D}}(z) \hat{\mathcal{U}}_{0}(t)^{\dagger}$. Make use of the result to determine the time dependent state vector $|\psi(t)\rangle$, when this initially is a coherent state $|\psi(0)\rangle=\left|z_{0}\right\rangle$. Show that $|\psi(t)\rangle$ at later times t is also a coherent state.

We next assume the harmonic oscillator to be under influence of a time dependent external potential, so that the hamiltonian now is

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+\hat{W}(x, t) \tag{14}
\end{equation*}
$$

In the following we assume the external potential to have the specific form

$$
\begin{equation*}
\hat{W}(x, t)=A \hat{x} \sin \omega t \tag{15}
\end{equation*}
$$

with A as a constant and ω as the oscillation frequency of the external potential.
b) Find the Heisenberg equation of motion for \hat{x} and \hat{p} and show that they correspond to the equation of motion of a driven harmonic oscillator, that is subject to the periodic force $f(t)=-A \sin \omega t$.
c) Give the definition of the time evolution operator $\hat{\mathcal{U}}_{I}(t)$ in the interaction picture and show that it satisfies an equation of the form

$$
\begin{equation*}
i \hbar \frac{d}{d t} \hat{\mathcal{U}}_{I}(t)=\hat{H}_{I}(t) \hat{\mathcal{U}}_{I}(t) \tag{16}
\end{equation*}
$$

Assume \hat{W} is treated as the interaction. Show that $\hat{H}_{I}(t)$ then is a linear function of \hat{a} and \hat{a}^{\dagger},

$$
\begin{equation*}
\hat{H}_{I}(t)=\theta(t)^{*} \hat{a}+\theta(t) \hat{a}^{\dagger} \tag{17}
\end{equation*}
$$

and determine the function $\theta(t)$.
d) Show that the equation (16) has a solution of the form

$$
\begin{equation*}
\hat{\mathcal{U}}_{I}(t)=e^{\xi(t) \hat{a}^{\dagger}-\xi^{*}(t) \hat{a}} e^{i \phi(t)} \tag{18}
\end{equation*}
$$

with $\xi(t)$ as a complex and $\phi(t)$ as a real function of time. What are the equations that these two functions should satisfy?
e) Use the expressions for $\hat{\mathcal{U}}_{0}(t)$ and $\hat{\mathcal{U}}_{I}(t)$ to find the time dependent state vector $|\psi(t)\rangle$ in the Schrödinger picture, with the same initial condition as in a). Show that also in this case it describes a time dependent coherent state, of the form $|\psi(t)\rangle=e^{i \gamma(t)}|z(t)\rangle$. Find $z(t)$ expressed in terms of z_{0}, $\xi(t)$ and ω_{0}.
f) Determine the function $\xi(t)$ and find an explicit expression for $z(t)$. The corresponding real coordinate is $x(t)=\sqrt{2 \hbar / m \omega_{0}} \operatorname{Re} z(t)$. Does this coordinate satisfy the classical equation of motion of the driven harmonic oscillator?

