
FYS 4110/9110 Modern Quantum Mechanics

Midterm Exam, Fall Semester 2015

Return of solutions
The problem set is available from Monday morning, October 19.
Written/printed solutions should be returned to Ekspedisjonskontoret in the Physics Building before
Monday October 26, at 12:00.
Use candidate numbers rather than full names.
Language
Note: The problem set is available also in Norwegian.
Solutions may be written in Norwegian or English depending on your preference.
Questions concerning the problems
Please ask the lecturer, Jon Magne Leinaas (Office: room 471Ø), or the assistant Ola Liabøtrø (room
469Ø).

The problem set consists of 2 problems written on 4 pages.
————————————————————————-

PROBLEMS

1 A three-spin problem
We consider a system consisting of three electrons. They all sit at fixed positions, with their spins

as free variables.

Figure 1: The three-spin-half system. Each of the straight lines shows a division of the full system
into two parts, where one part contains a single spin and the othe part contains two spins.

a) The total spin we write as Ŝ = Ŝ1+ Ŝ2+ Ŝ3 . Use the rule for composition of quantum spins to
show that the (spin) Hilbert space consists of three orthogonal subspaces, characterized by spin values
s = 1/2, 1/2 and 3/2 respectively, with Ŝ2 = s(s+ 1)~2.

b) We consider the following three states of the spin system

|ψn〉 =
1√
3
((|udd〉+ e2πin/3|dud〉+ e−2πin/3|ddu〉) , n = 0,±1 (1)

where |u〉 is a spin up state along the z-axis and |v〉 is a spin down state along the same axis. We use
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the notation |udd〉 = |u〉 ⊗ |d〉 ⊗ |d〉, with the first factor in the tensor produce referring to particle 1,
the second one to particle 2, and the last one to particle 3. Show that the vectors (1) are orthogonal
and have well defined values for the the total spin operators S2 and Sz . Determine these values.

c) The three-particle system can be considered as a bipartite system, with particle 1 defining
one subsystem and particles 2 and 3 defining the other part. We write this partition of the system
symbolically as 123 = 1 + (23). With this partition what is the corresponding entanglement entropy
of the system in the three cases n = 0,±1? Compare with the maximum possible entanglement
entropy in the bipartite system. With the two other partitions, 123 = 2 + (13) and 123 = 3 + (12), is
there any difference in the entanglement?

d) A measurement of the observable Ŝ1z is made on particle 1, with the system in one of the
states |ψn〉. If the result is spin up, what is the entanglement of 2 and 3 in subsystem (23), after the
measurement? If the result instead is spin down, what is then the entanglement?

e) Consider next the state

|φ〉 = 1√
2
(|uuu〉 − |ddd〉) (2)

Determine the entanglement entropy of this state with respect to any of the partitions defined in c),
and compare with the result found for the states |ψn〉.

We introduce state vectors for spin up and down in the x-direction by

|f〉 = 1√
2
(|u〉+ |d〉) , |b〉 = 1√

2
(|u〉 − |d〉) (3)

and for up and down in the y-direction by

|r〉 = 1√
2
(|u〉+ i|d〉) , |l〉 = 1√

2
(|u〉 − i|d〉) (4)

f) Rewrite the state vector (2) in two different ways, first by using the spin basis (3) for all three
spins and next by using spin basis (4) for spin 1 and 2 and basis (3) for spin 3. Use the expressions to
show that all spin components of particle 1, S1x, S1y and S1z , can be determined by performing spin
measurements on particles 2 and 3, while not making any measurement on particle 1. Specify in each
case which measurement that should be performed on particle 2 and 3.

2 Entanglement and Bell inequalities
We consider an experimental situation, similar to the one discussed in the lecture notes, where

pairs of spin 1/2 particles are initially prepared in a correlated spin state, and then are separated in
space while keeping the spin state unchanged. When far apart spin measurements are performed on
the particles in each pair, and the results are registered and compared.

The situation is illustrated in the figure, where a series of entangled pairs are created in a source
K, and where measurements of the z-components of the spin are performed on both particles (A and
B). When the spins in the z-directions are strictly anticorrelated, the result spin up (spin down) for
particle A is always followed by the result spin down (spin up) for particle B.
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Figure 2: EPR experiment with correlated spins

We consider the situation where three different sets of measurements are performed, with different
spin states,

I : ρ̂1 = |ψa〉〈ψa|, |ψa〉 =
1√
2
(|+−〉 − | −+〉)

II : ρ̂2 = |ψs〉〈ψs|, |ψs〉 =
1√
2
(|+−〉+ | −+〉)

III : ρ̂3 =
1

2
(ρ̂1 + ρ̂2) (5)

The notation is |+−〉 = |+〉 ⊗ |−〉, where |±〉 are spin states of a single particle, with Sz quantized.
The first factor in the tensor product refers to particleA and the second one to particleB. Note that all
three states are strictly anticorrelated with respect to the z-component of the spin of the two particles.
The purpose of the (hypothetical) experiment is to examine correlation functions that are relevant for
the Bell inequalities, as already discussed for case I in the lecture notes, to see if the three states show
different behavior. This involves performing the spin measurements also for rotated directions of the
spin axes.

a) Of the three density operators only ρ̂1 is rotationally invariant. Demonstrate this by calculating
the expectation value of S2 for the three cases, where S = (~/2)(σ ⊗ 1 + 1 ⊗ σ) is the spin vector
of the full system, and comment on the results.

b) What are the reduced density operators ρ̂A and ρ̂B in the three cases? Determine the von
Neumann entropy S of the full system, as well as the entropies SA and SB of the subsystems. Check
if the classical restriction on the entropies S ≥ max{SA, SB} is satisfied in any of the cases. In each
of the cases examine if the states are entangled or separable, and give, if possible, a numerical measure
of the degree of entanglement.

We assume the direction of the two measurement devices can be rotated so they measure spin
components of the form

Sθ = cos θSz + sin θSx (6)

where the angle θ can be chosen independently forA andB. The state |θ〉 = cos θ2 |+〉+sin θ
2 |−〉 is the

spin up vector in the rotated direction and the operator P̂ (θ) = |θ〉〈θ| projects on the corresponding
spin vector.

c) Show that the given expression for |θ〉, as claimed above, is the spin up state of Sθ. Determine
the expectation value PA(θ) =

〈
P̂ (θ)

〉
A

, for particle A, in the three cases I, II and III. Comment on
the result.
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d) Determine, for the three cases, the joint probability distribution P (θ, θ′) =
〈
P̂ (θ)⊗ P̂ (θ′)

〉
,

with the two angles θ and θ′ as independent variables.
The Bell inequality, according to the hidden variable analysis described in the lecture notes, gives

a constraint on the possible classical correlations of the two spins. In the present case the inequality
can be written as

F (θ, θ′) ≡ P (0, θ′)− |P (θ, 0)− P (θ, θ′)| ≥ 0 (7)

where one of the angles is set to 0 since we, for the states we consider, will only have strict anticorre-
lation for spin measurements along the z-axis. (For details see the derivation in the lecture notes.)

e) Make plots of the function F (θ, 0.5 θ) for the three cases I, II and III, with θ varying in the
interval 0 < θ < 2π. Check in all cases whether the inequality (7) is satisfied or broken, and compare
the results with what is known from point b) concerning entanglement between the two particles.

In addition to these plots, examine the functions for other choices θ′ = λ θ with λ 6= 0.5 to see
if the results are not changed. Alternatively make a 3D plot of the two-variable function F (θ, θ′) and
check whether the conclusion concerning the Bell inequality holds in the full parameter space.

f) Assume an experimental series is performed, with the two angles fixed. The number of pairs
registered with spin up (in the chosen directions) for both spins A and B is n++, and the number with
spin down for both spins is n−−. Similarly n+− is the number of pairs registered with spin up for A
and spin down for B, n−+ is the number of pairs registered with spin down for A and spin up for B.
The total number of pairs in the series is N .

We refer to the experimental results corresponding to PA(θ), PB(θ′), and P (θ, θ′) as PAexp(θ),
PBexp(θ

′), and Pexp(θ, θ′). What are these quantities expressed in terms of the numbers {nij , i, j = ±}
and N?
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