
FYS 4110 Modern Quantum Mechanics, Fall Semester 2015

Problem set 11

11.1 Photon emission
A particle with mass m and charge e is trapped in a one-dimensional harmonic oscillator potential,
with the motion restricted to the z-axis. The frequency of the oscillator is ω. At time t = 0 the particle
is excited to energy level n and it then performs a transition to level n− 1 by emitting one photon of
energy h̄ω. We write the energy eigenstates of the composite system of charged particle and photons
as |n, nka〉. With initially no photon present the state is |i〉 = |n, 0〉, while the final state with one
photon present is |f〉 = |n − 1, 1ka〉. To first order in perturbation theory the angular probability
distribution p(θ, φ) of the emitted photon is

p(θ, φ) = κ
∑
a

|〈n− 1, 1ka|Ĥemis|n, 0〉|2 (1)

with (θ, φ) as the polar angle of the photon quantum number k and κ as a proportionality factor.
Ĥemis is the emission part of the interaction Hamiltonian, which in the dipole approximation is

Hemis = − e

m

∑
ka

√
h̄

2V ε0 ω
p̂ · εka â†ka (2)

a) Determine the particle matrix element 〈n− 1|p̂|n〉.
b) Find the probability distribution p(θ, φ).

11.2 Squeezed states
The definition we have used for the coherent states of a harmonic oscillator shows that these states
depend on the frequency ω of the oscillator. It follows from the fact that the raising and lowering
operators â† and â, when expressed in terms of x̂ and p̂, are frequency dependent, while x̂ and p̂ are
independent of ω.

In this problem we examine this dependence on the frequency by assuming that a particle in a
harmonic oscillator potential, with initial frequency ωa, is at time t = 0 is in a coherent state |z0〉a.
At this moment there is a sudden change in the potential to a new frequency ωb. The quantum state
has no time to adjust to this abrupt change, so the state is |z0〉a also immediately after the frequency
has changed.

a) The change of frequency means that the raising and lowering operators are changed. We refer
to the operators before the change as â† and â and as b̂† and b̂ after the change. Show that we have the
following relations between the operators

â = c b̂+ s b̂† , â† = s b̂+ c b̂† , (3)

with the inverse

b̂ = c â− s â† , b̂† = −s â+ c â† , (4)

and find c and s expressed in terms of the two frequencies ωa and ωb. Explain why we may assume c
and s to represent hyperbolic functions of the form c = cosh ξ, s = sinh ξ, for some variable ξ.

b) Show that the two sets operators can be related by a unitary transformation

Û = e
ξ
2
(â2−â†2) = e

ξ
2
(b̂2−b̂†2) (5)

1



so that

â = Û b̂ Û † , â† = Û b̂† Û † (6)

c) We now have two sets of coherent states defined by â|z〉a = z|z〉a and b̂|z〉b = z|z〉b. Show
that |z0〉a is not a coherent state with respect to the new lowering operator b̂.

d) We next consider the case z0 = 0, so the initial state is the ground state of the Hamiltonian
before the change of frequency. Show, by use of results from b), that this state, when expanded in the
energy basis after the change, has the form

|0〉a =
∞∑
n=0

αn|2n〉b (7)

with only contributions from even numbers of excitations. Use the relations between the a and b
operators to find a recursion formula for the expansion coefficients, and show that we have

αn = (− s

2c
)n

√
(2n)!

n!
α0 (8)

e) In the original coherent state representation the state |0〉a is represented as the wave function
ψ0(z) = a〈z|0〉a, and in the later coherent state representation as φ0(z) = b〈z|0〉a. Use the above
expansion to find the function φ0(z) expressed as a sum over n. Choose the numerical value s = 1

2 ,
with the corresponding value for c, and make a numerical 3D or contour plot of the absolute value
|φ0(z)|2, with the real and imaginary components of z as variables. Compare with a similar plot of
|ψ0(z)|2, and give an explanation for what we mean by referring to ψ0(z) as a squeezed state.

f) When time evolves for t > 0 the state ψ0(z) will rotate in the complex z-plane. Show that this
is the case, and comment on what is the frequency of rotation.
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