UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in: FYS4110/9110 Modern Quantum Mechanics

Day of exam: Monday 5 December 2016 **Exam hours:** 4 hours, beginning at 14:30

This examination paper consists of 3 problems, written on 3 pages

Permitted materials: Approved calculator

Angell and Lian: Størrelser og enheter i fysikken

Rottmann: Matematisk formelsamling

Language: The solutions may be written in Norwegian or English depending on your own

preference. Note: This paper is also available in norsk bokmål and nynorsk.

Make sure that your copy of this examination paper is complete before answering.

PROBLEM 1

Spin-half particle in a harmonic oscillator potential

A spin-half particle is moving in a one-dimensional harmonic oscillator potential (in the x-direction) under the influence of a constant magnetic field (in the z-direction). The Hamiltonian is

$$\hat{H} = \hbar\omega_0(\hat{a}^{\dagger}\hat{a} + \frac{1}{2}) + \frac{1}{2}\hbar\omega_1\sigma_z + \lambda\hbar(\hat{a}^{\dagger}\sigma_- + \hat{a}\sigma_+)$$
(1)

where the first term is the harmonic oscillator part, with ω_0 as the oscillator angular frequency, and the second term is the spin energy due to the magnetic field, with ω_1 as the angular spin precession frequency. The third term is a coupling term between the spin and the position coordinates of the particle, with λ as a coupling parameter. The spin flip operators are defined as $\sigma_{\pm} = \frac{1}{2}(\sigma_x \pm i\sigma_y)$, \hat{a} , \hat{a}^{\dagger} are the standard lowering and raising operators of the harmonic oscillator, and σ_x , σ_y , σ_z are the Pauli spin matrices.

When $\lambda=0$, the spin and position of the particle are uncoupled and the energy eigenstates are $|n,m\rangle$, with n=0,1,2,... as the harmonic oscillator quantum number and $m=\pm 1$ as the spin quantum number, corresponding to spin up/down along the z-axis. When $\lambda\neq 0$, the unperturbed eigenstates will pairwise be coupled by the Hamiltonian, so that $|n,+1\rangle$ is coupled to $|n+1,-1\rangle$. (The state $|0,-\rangle$ is an exception; it is not affected by the coupling term and remains the non-degenerate ground state also for $\lambda\neq 0$.)

a) Consider the two-dimensional subspace spanned by the basis vectors $|0, +1\rangle$ and $|1, -1\rangle$. Show that in this space, and in the given basis, the Hamiltonian takes the form of a 2x2 matrix

$$H = \frac{1}{2}\hbar\Delta \begin{pmatrix} \cos\theta & \sin\theta \\ \sin\theta & -\cos\theta \end{pmatrix} + \hbar\epsilon\mathbb{1}$$
 (2)

with \mathbb{I} as the 2x2 identity matrix. Determine Δ , $\cos \theta$, $\sin \theta$ and ϵ .

b) Find the energies and eigenstates of H in the two-dimensional subspace, expressed as functions of Δ , θ and ϵ .

c) The basis vectors $|n,m\rangle$ can be regarded as tensor products of position and spin vectors, $|n,m\rangle = |n\rangle \otimes |m\rangle$. The two eigenstates found under b) will be entangled with respect to the position and spin variables. Determine the entanglement entropy as function of θ . What value for θ gives the least and what gives the greatest entanglement?

PROBLEM 2

Coupled harmonic oscillators

Two harmonic oscillators, referred to as A and B, form a composite quantum mechanical system. The Hamiltonian of the system has the form

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \hat{b}^{\dagger}\hat{b} + 1) + \hbar\lambda(\hat{a}^{\dagger}\hat{b} + \hat{b}^{\dagger}\hat{a})$$
(3)

with $(\hat{a}, \hat{a}^{\dagger})$ as lowering and raising operators for \mathcal{A} and $(\hat{b}, \hat{b}^{\dagger})$ as corresponding operators for \mathcal{B} , while ω and λ are real valued constants.

a) Show that the Hamiltonoperator can be expressed in diagonal form as

$$\hat{H} = \hbar\omega_c \,\hat{c}^{\dagger} \hat{c} + \hbar\omega_d \,\hat{d}^{\dagger} \hat{d} + \hbar\omega \mathbb{1} \tag{4}$$

where c and d are linear combinations of a and b,

$$\hat{c} = \mu \, \hat{a} + \nu \, \hat{b} \,, \quad \hat{d} = -\nu \, \hat{a} + \mu \, \hat{b}$$
 (5)

with μ and ν as real constants satisfying $\mu^2 + \nu^2 = 1$, and determine the new parameters μ , ν , ω_c , and ω_d , expressed in terms of ω og λ . (The same type of expressions are found for the harmitian conjugate operators \hat{c}^{\dagger} og \hat{d}^{\dagger} .) Check that the new operators \hat{c} and \hat{d} satisfy the same set of harmonic oscillator commutation relations as \hat{a} and \hat{b} . It is sufficient to show

$$\left[\hat{c}, \hat{c}^{\dagger}\right] = \left[\hat{d}, \hat{d}^{\dagger}\right] = 1, \quad \left[\hat{c}, \hat{d}^{\dagger}\right] = 0 \tag{6}$$

b) Assume that the state $|\psi(0)\rangle$ of the composite system, at time t=0, is a coherent state when expressed in terms of the new variables,

$$\hat{c} |\psi(0)\rangle = z_{c0}|\psi(0)\rangle, \quad \hat{d} |\psi(0)\rangle = z_{d0}|\psi(0)\rangle \tag{7}$$

Also at a later time the state $|\psi(t)\rangle$ will be a coherent state for both \hat{c} og \hat{d} , with eigenvalues

$$z_c(t) = e^{-i\omega_c t} z_{c0}, \quad z_d(t) = e^{-i\omega_d t} z_{d0}$$
 (8)

Show this for $z_c(t)$. (The expression for $z_d(t)$ follows in the same way, and is therefore not needed to be shown.)

c) Show that the state $|\psi(t)\rangle$ is a coherent state also for the original harmonic oscillator operators \hat{a} og \hat{b} , and find the eigenvalues $z_a(t)$ and $z_b(t)$ expressed in terms of $z_{a\,0}$ and $z_{b\,0}$.

PROBLEM 3

Two-level system in a heat bath

We consider a two-level system, with $|g\rangle$ as the ground state and $|e\rangle$ as the excited state of the Hamiltonian \hat{H}_0 . The energy difference between the corresponding two energy levels is ΔE .

The system interacts weakly with a heat bath with temperature T. Energy can flow both ways, with γ as the rate for emission of energy to the heat bath in the transition $|e\rangle \to |g\rangle$ and γ' as the rate for absorption of energy in the transition $|g\rangle \to |e\rangle$. The situation is illustrated in the figure.

The temperature T of the heat bath and the energy gap ΔE determine the ratio between γ' and γ ,

$$\gamma' = \gamma \, e^{-\Delta E/kT} \tag{9}$$

where k is the Boltzman constant. Both transitions, corresponding to γ and γ' , contribute to the time evolution of the density operator of the two-level system. This is expressed by the Lindblad equation in the following way,

$$\frac{d}{dt}\hat{\rho} = -\frac{i}{\hbar} \left[\hat{H}_0, \hat{\rho} \right] - \frac{1}{2} \gamma(|e\rangle\langle e|\hat{\rho} + \hat{\rho}|e\rangle\langle e| - 2|g\rangle\langle e|\hat{\rho}|e\rangle\langle g|)
- \frac{1}{2} \gamma'(|g\rangle\langle g|\hat{\rho} + \hat{\rho}|g\rangle\langle g| - 2|e\rangle\langle g|\hat{\rho}|g\rangle\langle e|)$$
(10)

The 2×2 matrix form of $\hat{\rho}$, in the basis $\{|g\rangle, |e\rangle\}$, we write as

$$\rho = \begin{pmatrix} p_e & b \\ b^* & p_a \end{pmatrix}$$
(11)

with p_e interpreted as the probability of occupation of the excited level and p_g as the probability of occupation of the ground state.

- a) Find from equation (10) expressions for the time derivatives of p_e , p_g and b, and check that they are consistent with preservation of total probability, $p_e + p_g$.
- b) The conditions for $\hat{\rho}$ to be a density operator give restrictions on the matrix elements in (11). What are these?
- c) Assume first that the two-level system and the heat bath are in thermal equilibrium, and the density matrix (11) therefore is time independent. Determine the values of variables p_e , p_g and b in this case.
- d) Consider next the situation with initial values $p_g = 1$, $p_e = 0$. Determine the time evolution of the occupation probabilities towards thermal equilibrium. What happens in the limits $T \to 0$ and $T \to \infty$?