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Preface

The course FYS 4110 gives an introduction to modern aspects of quantum physics, with
subjects such as coherent quantum states, density operators and entanglement, elements from
quantum information theory and the physics of photons and atoms. The focus is mainly on the
elementary aspects of these topics, and the familiar quantum two-level system and the harmonic
oscillator are used repeatedly and in different ways to illustrate the various aspects of quantum
physics that are discussed.

The course extends the knowledge of quantum physics from the bachelor program, and the
basics of quantum physics, in particular Dirac’s bra-ket formulation, is thus supposed to be
known from previous physics courses.

The lecture notes have been developed in parallel with my teaching of the course, and are
still open for further modifications and improvements.

Department of Physics, University of Oslo,
August 2016.
Jon Magne Leinaas
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Chapter 1

Quantum formalism

1.1 Summary of quantum states and observables

In this section we make a summary of the fundamental assumptions and postulates of quantum
theory. We stress the correspondence with classical theory, but at the same time focus on
the radically different way the quantum theory is interpreted. We summarize how an isolated
quantum system is described in terms of abstract vectors and operators in a Hilbert space.

1.1.1 Classical and quantum states

The description of a classical system that is most closely related to the standard description
of a quantum system is the phase space description. In this description the variables are the
generalized coordinates q = {qi ; i = 1, 2, ..., N}, each corresponding to a degree of freedom
of the system, and the corresponding canonical momenta p = {pi ; i = 1, 2, ..., N}. A com-
plete specification of the state of the system is given by the full set of coordinates and momenta
(q, p), which identifies a point in phase space.

There is a unique time evolution of the phase space coordinates (q(t), p(t)), with a given
initial condition (q0, p0) = (q(t0), p(t0)) at time t0. This is so, since the equations of mo-
tion, expressed in terms of the phase space coordinates are first order in time derivatives. For
a Hamiltonian system the dynamics can be expressed in terms of the classical Hamiltonian,
which is a function of the phase space variables, H = H(q, p, t), and is normally identical to
the energy function. The time evolution is expressed by Hamilton’s equations as

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, 2, ..., N (1.1)

where q̇i, in the usual way, means the time derivative of the coordinate qi.
If a complete specification of the system cannot be given, a statistical description may often

be used. The state of the system is then described in terms of a probability function ρ(q, p, t)
defined on the phase space. In statistical mechanics this function is a basic element of the
description, and the time evolution is described through the time derivative of ρ,

d

dt
ρ =

∑
i

(
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi) +

∂

∂t
ρ

5



6 CHAPTER 1. QUANTUM FORMALISM

= {ρ,H}PB +
∂

∂t
ρ (1.2)

where in this equation the Poisson bracket, defined by

{A,B}PB ≡
∑
i

(
∂A

∂qi

∂B

∂pi
− ∂B

∂qi

∂A

∂pi

)
(1.3)

has been introduced. One should note that in Eq.(1.2) ∂
∂t means the time derivative with fixed

phase space coordinates, whereas d
dt includes the time variation due to the motion in phase

space.
The time evolution of ρ (and any other phase space variable), when written as in Eq. (1.2),

shows a striking similarity with the Heisenberg equation of motion of the quantum system. The
commutator between the variables then takes the place of the Poisson bracket. The quantum
description of the system, like the classical description, involves the phase space variables
(q, p). But these dynamical variables are in the quantum theory re-interpreted as operators
that act on complex-valued wave functions ψ(q, t) of the system. To specify the variables as
operators they are often written q̂i and p̂i, and we shall also in most places use this notation. In
the standard way we refer to these as observables, and the fundamental relation between these
observables is the (Heisenberg) commutation relation

[q̂i, p̂j ] = ih̄δij (1.4)

with h̄ as (the “reduced”) Planck’s constant. A more general observable Â may be viewed as a
function of q̂i and p̂i, and two observables Â and B̂ will in general not commute. We usually
restrict observables to be Hermitian operators, which correspond to real-valued variables in the
classical description.

The close relation between the classical and quantum description of a mechanical system
is most clearly seen when the two descriptions are expressed in terms of the same phase space
variables. In fact there exists a simple scheme for quantizing the classical system, referred to
as canonical quantization, which defines a formal transition from the classical to the quantum
description of the same physical system. In its simplest form this transition is viewed as a
change from classical phase space variables to quantum observables

qi → q̂i, pi → p̂i (1.5)

where the quantum variables are assumed to satisfy the fundamental commutation relation
(1.4). For general variables the transition can be expressed in the form of a substitution between
Poisson brackets for the classical variables and commutators for the quantum variables

{A,B}PB →
1

ih̄

[
Â, B̂

]
(1.6)

Clearly this simple substitution rule gives the right commutator between q̂i and p̂j when used
on the Poisson brackets between qi and pj .1

1In general there will, however be an ambiguity in this substitution in the form of the so called operator ordering
problem. Since classical observables commute, a composite variable C = AB = BA can be written in several
ways. The corresponding quantum observables may be different due to non-commutativity, Ĉ = ÂB̂ 6= B̂Â =
Ĉ′. The Weyl ordering is one way to solve the ambiguity by replacing a product by its symmetrized version,
Ĉ = 1

2
(ÂB̂+ B̂Â). However, a natural interpretation of the ambiguity is that the quantum description of a system

is not fully determined by the classical description, without some additional specifications.
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For the dynamical equations the quantization rules (1.5) and (1.6) lead from the classical
Hamilton’s equations to the Heisenberg’s equation of motion for the quantum system. This
correspondence between the classical and quantum dynamical equations is directly related to
Ehrenfest’s theorem, which states that the classical dynamical equations keep their validity also
in the quantum theory, with the classical variables replaced by their corresponding quantum
expectation values. Thus, the quantum expectation value 〈q〉 in many respects behaves like a
classical variable q, and the time evolution of the expectation value follows a classical equation
of motion. As long as the wave function is well localized (in the q-variable), the system behaves
“almost classically”. However when the wave functions spread out or divide into separated
parts, then highly “non-classical effects” may arise.

The correspondence between the classical and quantum description of physical systems
was in the early days of quantum theory used actively by Bohr and others in the form of the
correspondence principle. Thus, even before quantum mechanics was fully developed the
classical theory gave information about the quantum theory in the form of the “classical limit”
of the theory, the limit where the effect of Planck’s constant becomes negligible. In particular,
for radiative transitions between atomic levels the correspondence principle would imply that
the radiation formula of the quantum theory should reproduce the classical one for highly
excited atoms, in the limit where the excitation energy approaches the ionization value. But
at the formal level the correspondence between the classical and the fully developed quantum
theory goes much further than simply to the requirement that the classical description should
be recovered in the limit h̄→ 0.

The close correspondence between the classical and quantum theory is in many respects
rather surprising, since the physical interpretation of the two theories are radically different.
The difference is linked to the statistical interpretation of the quantum theory, which is the sub-
ject of one of the later sections. Both classical and quantum descriptions of a system will often
be of statistical nature, since the full information (especially for systems with a large number
of degrees of freedom) may not be achievable. Often interactions with other systems (the sur-
roundings) disturb the system in such a way that only a statistical description is meaningful. If
such disturbances are negligible the system is referred to as an isolated or closed system and
for an isolated classical system all the dynamical variables can in principle be ascribed sharp
values.

For a quantum system that is not the case. The quantum state of an isolated system is
described by the wave function ψ(q), defined over the (classical) configuration space of the
system. This is interpreted as an probability amplitude, which means that the absolute value
|ψ(q)|2 defines a probability distribution in configuration space. For a general observable Â this
leads to an uncertainty with respect to the measured value, usually expressed by the statistical
variance

∆A2 =
〈

(Â−
〈
Â
〉

)2
〉

(1.7)

Even if such a probability distribution, in principle, can be sharp in the set of variables q, it can-
not at the same time be sharp in the conjugate variables p due to the fundamental commutation
relation (1.4). This is quantified in Heisenberg’s uncertainty relation

∆qi∆pj ≥
h̄

2
δij (1.8)
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The inherent probabilistic interpretation of the quantum theory in many respects makes it
more closely related to a statistical description of the classical system than to a detailed non-
statistical description. However, the standard description in terms of a wave function ψ(q)
defined on the configuration space seems rather different from a classical statistical descrip-
tion in terms of a phase space probability distribution ρ(q, p). Quantum descriptions in terms
of functions similar to ρ(q, p) are possible and in some cases they are also useful. They are
referred to as quasi-probability distributions, since they do not always satisfy the positivity
condition of probabilities.2 However, even if such a formulation brings the description closer
to the classical, statistical description of the system, there is one important property of the wave
functions that is hidden in such a reformulation. The superposition principle is a fundamen-
tal principle of quantum mechanics which implies that the theory is linear in the probability
amplitudes ψ(q). The quasi-probability distributions, derived from the standard quantum de-
scription, are quadratic in ψ(q), and therefore this linearity is lost. In the classical statistical
theory there is no counterpart to the quantum superposition principle.3

The description of quantum systems in terms of wave functions, defined as functions over
the classical configuration space, is only one of many equivalent “representations” of the quan-
tum theory. A more abstract formulation exists where the states are (abstract) vectors in a
Hilbert space, and where different representations of the theory correspond to different choices
of sets of basis vectors in this space. In the early days of quantum mechanics this represen-
tation theory of quantum physics was formulated and studied in a particular clear form by
P.A.M. Dirac. His ”bra-ket” formulation is still standard in quantum mechanics and will be
applied also here, with a general (abstract) state vector denoted by |ψ〉 and the scalar product
between two states as 〈φ|ψ〉.

In the following a summary of this abstract (and formal) description will be given, in terms
of what is often called the fundamental postulates of quantum theory.

1.1.2 The fundamental postulates

1. A quantum state of an isolated physical system is described by a vector with unit norm
in a Hilbert space. This is a complex vector space equipped with a scalar product.4

2The Wigner function is a particular example of a quasi-probability distribution. For a particle in one dimension
it is defined as W (x, p) = (1/2πh̄)

∫
dy ψ(x + y/2)∗ ψ(x − y/2) exp(iyp/h̄), with ψ(x) as the wave function

of the particle. It shares the property with the classical probability distribution in phase space, that integrated over
p it gives the probability distribution over x,

∫
dpW (x, p) = |ψ(x)|2. Similarly, when integrated over x, it gives

the probability distribution over p. However, W (x, p) is not a true probability distribution, since it may become
negative. These regions with negative W in phase space are often interpreted as signatures for the presence of
quantum effects.

3Note, however that the probabilities of the classical theory also describe a linear system, but this linearity is
different from that of the quantum theory, which is linear in the probability amplitudes. In a later section we shall
discuss an extension of quantum theory from description in terms of wave functions to a description in terms of
density operators. These operators are closely related to the quasi-probability distributions mentioned above. The
extended theory is linear in these new operators, but the original superposition principle of quantum wave functions
is no longer explicit in this extended formulation.

4A Hilbert space is more specifically a vector space with a scalar product (an inner product space) which is
complete in the norm. This means that any (Cauchy) sequence of vectors |n〉, n = 1, 2, ..., where the norm of the
relative vectors |n,m〉 = |n〉 − |m〉 goes to zero as n,m → ∞, will have a limit (vector) belonging to the space.
Usually the Hilbert space is assumed to be separable, which means that it is spanned by a countable orthonormal
basis. These specifications are of importance when the vector space is infinite dimensional, and they imply that
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In the Dirac notation a vector is represented by a “ket” |ψ〉, which can be expanded in
any complete set of basis vectors |i〉,

|ψ〉 =
∑
i

ci|i〉 (1.9)

where the coefficients ci are complex numbers. For an infinite dimensional Hilbert space
the basis may be a discrete or continuous set of vectors. We refer to the vectors (kets) as
state vectors and the vector space as the state space.

A “bra” 〈ψ| is regarded as vector in the dual vector space, and is related to |ψ〉 by an
anti-linear mapping (linear mapping + complex conjugation)

|ψ〉 → 〈ψ| =
∑
i

c∗i 〈i| (1.10)

The scalar product is a complex-valued composition of a bra and a ket, 〈φ|ψ〉 which is a
linear function of |ψ〉 and an antilinear function of |φ〉. The quantum states are associated
with the normalized vectors, so that 〈ψ|ψ〉 = 1.

2. Each physical observable of a system is associated with a hermitian operator acting on
the Hilbert space. The eigenstates of each such operator define a complete, orthonormal
set of vectors.

With Â as an observable, hermiticity means

〈φ|Âψ〉 = 〈Âφ|ψ〉 ≡ 〈φ|Â|ψ〉 (1.11)

If the observable has a discrete spectrum, the eigenstates are orthogonal and may be
normalized as

〈i|j〉 = δij (1.12)

Completeness means ∑
i

|i〉〈i| = 1̂ (1.13)

where 1̂ is the unit operator. In general a hermitian operator will have partly a dis-
crete and partly a continuous spectrum. For the continuous spectrum orthogonality is
expressed in terms of Dirac’s delta function.5

3. The time evolution of the state vector, |ψ〉 = |ψ(t)〉, is (in the Schrödinger picture)
defined by the Schrödinger equation, of the form

ih̄
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 (1.14)

many of the properties of finite dimensional vector spaces can be taken over almost directly.
5For an observable with a discrete spectrum the eigenstates are normalizable and belong to the Hilbert space. For

a continuous spectrum the eigenstates are non-normalizable and therefore fall outside the Hilbert space. However,
they can be included in an extension of the Hilbert space. Completeness holds within this extended space, but
orthonormality of the vectors has to be expressed in terms of Dirac’s delta function rather than the Kronecker delta.
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The equation is first order in the time derivative, which means that the time evolution
|ψ〉 = |ψ(t)〉 is uniquely determined by the initial condition |ψ0〉 = |ψ(t0)〉. Ĥ is the
Hamiltonian of the system which is a linear, hermitian operator. It gives rise to a time
evolution which is a unitary, time dependent mapping between quantum states.

4. The measurable (physical) values associated with an observable Â are defined by its
eigenvalues an. With the physical system in the state |ψ〉 before a measurement of the
observable, the probability pn for finding a particular eigenvalue an in the measurement
is

pn = |〈n|ψ〉|2 (1.15)

with |n〉 as the eigenvector corresponding to the eigenvalue an.

If the observable has a degeneracy, so that several (orthogonal) eigenvectors have the
same eigenvalue, the probability is given as a sum over all eigenvectors with the same
eigenvalue an.

The expectation value of an observable A in the state |ψ〉 is

〈A〉 = 〈ψ|Â|ψ〉 . (1.16)

It corresponds to the mean value obtained in an (infinite) series of identical measurements
of the variable A, where the system before each measurement is prepared in the same
state |ψ〉.

5. An ideal measurement of observable A resulting in a value an projects the state vector
from initial state |ψ > to the final state

|ψ >→ |ψ′ >= Pn|ψ > . (1.17)

where Pn is the projection on the eigenstate |an〉, or more generally on the subspace
spanned by the vectors with eigenvalue an.6

Note that since the projected state in general will not be normalized to unity, the state
should also be multiplied by a normalization factor in order to satisfy the standard nor-
malization condition for physical states.

The effect of the measurement, that it projects the original state into the eigenstate which
corresponds to the measured eigenvalue, is in a sense is a minimal disturbance of the
system caused by the quantum measurement. The projection is often referred to as the
“collapse of the wave function”, and it corresponds to the “collapse” of a probability
function of a classical system when additional information is introduced in the descrip-
tion without disturbing the system in any other way. But one should be aware of the
far-reaching difference of this “collapse by adding new information” in the classical and
quantum descriptions. In the classical case the ideal measurement corresponds to collect-
ing new information without disturbing the system. In the quantum case the Heisenberg
uncertainty principle implies that reducing the uncertainty of one observable by a mea-
surement means increasing the uncertainty for other observables. In this sense an ideal
measurement cannot be regarded as having no real influence on the quantum system.7

6Such idealized measurements are often referred to as projective measurements.
7There is an obvious question why elements of measurement theory are included in the fundamental postulates
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1.1.3 Matrix representations and wave functions

The state vectors |ψ〉 and observables Â, as they appear in Dirac’s bra-ket formalism, we often
refer to as abstract vectors and operators, as opposed to concrete representations of these in the
form of matrices, or wave functions and differential operators. A matrix representation is de-
fined by the expansion coefficients of the vectors and observables in a discrete basis that spans
the Hilbert space of the system. Usually this is a complete, orthogonal and normalized basis,
often composed by the eigenstates of a set of commuting observables. With the expansion
written as

|ψ〉 =
∑
i

ψi|i〉 , ψi = 〈i|ψ〉 (1.18)

the matrix representation of a state vector is

Ψ =


ψ1

ψ2

·
·

 (1.19)

The corresponding expansion of an observable is

Â =
∑
i,j

Aij |i〉〈j| , Aij = 〈i|Â|j〉 (1.20)

with the matrix representation

A =

A11 A12 · ·
A21 A22 · ·
· · · ·

 (1.21)

In the matrix representations the actions of the observables as well as the scalar products be-
tween state vectors are reduced to matrix multiplications.

For an infinite dimensional Hilbertspace, the corresponding matrix dimensions will also
be infinite. However, often truncation of the matrices to finite dimensional form can be done
without loosing essential (relevant) information about the system.

If the state vectors and observables are expanded in a continuous rather than a discrete basis,
this leads to a description of the quantum system in terms of wave functions and differential
operators. We briefly discuss how this works. Let us then consider a coordinate basis defined
by the continuous set of eigenvectors of the coordinate observables q̂i

q̂i |q〉 = qi |q〉 (1.22)

of quantum theory. In classical theory that is usually not done, since the classical variables can in most cases be
viewed as (in principle) measurable. Quantum theory is different since the basic elements (state vectors and ob-
servables) cannot be viewed (even in principle) as directly measurable. The postulates about (ideal) measurements
are meant to express the fundamental probabilistic interpretation of quantum theory rather than describing realistic
measurements. In a broader approach to quantum measurement theory other types of measurements than the ide-
alized (projective) measurements will usually be introduced. But this does not imply any essential change in the
(probabilistic) interpretation of the theory expressed by the above postulates.
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where q denotes the set of coordinates {qi}. For a Cartesian set of coordinates the standard
normalization is

〈q′|q〉 = δ(q′ − q) (1.23)

where δ(q′ − q) is the N -dimensional Dirac delta-function, with N as the dimension of the
configuration space. The wave functions defined over the configuration space of the system are
the components of the abstract state vector |ψ〉 on this basis,

ψ(q) = 〈q|ψ〉 (1.24)

A general observable is in the coordinate representation specified by its matrix elements

A(q′, q) ≡ 〈q′|Â|q〉 (1.25)

It acts on the wave function as an integral operator

〈q|Â|ψ〉 =

∫
dq′A(q, q′)ψ(q′) (1.26)

where dq′ represents the N -dimensional volume element.
A potential function is an example of a local observable,

V (q′, q) = V (q) δ(q′ − q) (1.27)

in which case the integral collapses to a simple multiplication

〈q|V̂ |ψ〉 = V (q)ψ(q) (1.28)

Similarly the momentum operator is quasi-local in the sense that it can be expressed as a
derivative rather than an integral

〈q|p̂i|ψ〉 = −ih̄ ∂

∂qi
〈q|ψ〉 (1.29)

Formally we can write the matrix elements of the momentum operator as the derivative of a
delta function

〈q|p̂i|q′〉 = −ih̄ ∂

∂qi
δ(q − q′) (1.30)

(Check this by use of the integration formula for observables in the coordinate representation.)
Since the interactions in a quantum system usually has a local character the Hamiltonian

will be (quasi-)local in the above sense, and can therefore be expressed as a differential operator
as in the standard Schrödinger’s (wave) equation. However, occasionally we may have to deal
with non-local operators, which have to be expressed as integrals rather than derivatives.

From the abstract formulation it is clear that the coordinate representation is only one of
many equivalent representations of quantum states and observables. The momentum represen-
tation is defined analogous to the coordinate representation, but now with the momentum states
|p〉 as basis vectors,

ψ(p) = 〈p|ψ〉 (1.31)
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The transition matrix elements between the two representations is (for Cartesian coordinates),

〈q|p〉 = (2πh̄)−N/2 exp(
i

h̄
q · p) (1.32)

with q · p =
∑
i qipi, which means that these two (conjugate) representations are related by a

Fourier transformation.
Note that often a set of continuous (generalized) coordinates is not sufficient to describe the

wave function. For example, the spin variable of a particle with spin has discrete eigenvalues
and does not have a direct counterpart in terms of a continuous classical coordinate. With
discrete variables present the wave function can be described as a multicomponent function

ψm(q) = 〈q,m|ψ〉 (1.33)

where m represents the discrete variable, e.g. the spin component in the z-direction.
The coordinate representation and the momentum representation are only two specific ex-

amples of unitarily equivalent representations of the quantum system. In general the transition
matrix elements between two representations, defined by orthonormal basis vectors {|an〉} and
{|bm〉},

Unm = 〈an|bm〉 (1.34)

will satisfiy the condition∑
m

Unm(Umn′)
∗ =

∑
m

〈an|bm〉〈bm|a′n〉 = δnn′ (1.35)

which means that U is a unitary matrix. In operator form this is expressed as

|bn〉 = Û |an〉 , Û Û † = 1 (1.36)

and the corresponding representations are referred to as unitarily equivalent.

1.1.4 Spin-half system and the Stern Gerlach experiment

The postulates of quantum mechanics have far reaching implications. We have earlier stressed
the close correspondence between the classical (phase space) theory and the quantum theory.
Now we will study a special representation of the simplest quantum system, the two-level
system, where some of the basic differences between the classical and quantum theory are
apparent.

The electron spin gives an example of a spin-half system, and when the (orbital) motion of
the electron is not taken into account the Hilbert space is reduced to a two-dimensional (com-
plex) vector space. This two-dimensionality is directly related to the demonstration of Stern
and Gerlach of the two spin states of silver atoms8. Their discovery is clearly incompatible
with a classical model of spin as due to the rotation of a small body.

8When Stern and Gerlach performed the experiment in 1922, they did not realize that the measured spin could
be identified as the intrinsic electron spin. However, a few years later the electron spin was discovered and a
re-interpretation of the Stern-Gerlach experiment could be done.
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Figure 1.1: The Stern-Gerlach experiment. Atoms with spin 1/2 are sent as a beam from a hot source.
When passing between two magnets, the atoms are deflected vertically, with an angle depending on
the vertical spin component. Classically a smooth distribution is expected, since there is no preferred
directions for the spin in the incoming beam. In reality only two directions are observed, consistent with
the prediction of quantization of spin.

We focus on the Stern-Gerlach experiment as shown schematically in Figure 1. A beam of
silver atoms is produced by a furnace with a small hole. Atoms with velocity sharply peaked
around a given value are selected and sent through a strong magnetic field (in the z-direction).
Due to a weak gradient in the magnetic field the particles in the beam are deflected, with a
deflection angle depending on the component of the magnetic moment in the direction of the
gradient. The degree of deflection is measured by registering the particles on a screen.

Let us first analyze the deflection from a classical point of view. We assume the atoms to
have a magnetic moment µ = (e/me)S, where S is the intrinsic electron spin, e is the charge
and me is the electron mass. (The main contribution to the magnetic moment comes from the
outermost electron.) Between the magnets the spin will rapidly precess around the magnetic
field and the average value will be in the direction of the magnetic field. Furthermore, the
gradient in the magnetic field will produce a force on the atom and change its momentum.
Assuming the field vector to be dominated by its z component, we have

ṗ = ∇(µ ·B) ≈ µz
∂Bz
∂z

k (1.37)

which shows that the deflection angle is proportional to the component of the magnetic moment
µz along the magnetic field. As a consequence we can regard the distribution of atoms on the
screen to directly represent the distribution of the z-component of the magnetic moment (and
spin) of the atoms in the incoming beam. Since we expect the spin direction of the emitted
atoms to be randomly distributed in space, a classical reasoning will indicate that one should
see a continuous distribution of atoms on the screen.

The experiment of Stern and Gerlach did not show such a continuous distribution. Instead
the position of the atoms were rather strongly restricted to two spots, which according to the
deflection formula would correspond to two possible measured values for the z-component of
the magnetic moment,

µz = ±µ . (1.38)

This result cannot easily be explained within classical theory. To demonstrate this more
directly, let us assume the y-component of the magnetic moment to be measured in a similar
way by rotating the magnets. Since there is no preferred direction orthogonal to the beam, the
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possible results of measuring the component of the magnetic moment the y- direction should
be the same as for the z-direction,

µy = ±µ . (1.39)

Let us further consider the component of the magnetic moment of µ in some rotated direction
in the y, z-plane. For this component we have

µφ = cosφµy + sinφµz (1.40)

with φ as the rotation angle relative to the y-axis. Again we may argue that due to rotational
symmetry, the possible measured values of µφ should be the same as for µy and µz ,

µφ = ±µ . (1.41)

This clearly leads to a contradiction. The condition of discrete values for the components
(1.38), (1.39) and (1.41) is not consistent with the decomposition (1.40) for a continuous set of
angles φ. Within the framework of classical theory the observation of the discreteness of the
components of the magnetic moment thus leads to a paradoxical situation.

However, the results of the Stern-Gerlach experiment are consistent with the postulates of
quantum mechanics. If we assume that the spin component in a given direction is an observable
with only two eigenvalues

Ŝx |±〉x = ± h̄
2
|±〉x (1.42)

and the components satisfy the spin algebra

[
Ŝx, Ŝy

]
= ih̄ Ŝz (+ cycl. perm.) (1.43)

then the component of the spin vector in any direction will have the two eigenvalues ±h̄/2. A
similar conclusion is valid for components of the magnetic moment operator µ̂ = (e/me)Ŝ,
so that Eqs.(1.38), (1.39) and (1.41) are valid if we interpret the equations as applying to the
eigenvalues of these components.

Since the components of the magnetic moment operator do not commute, i.e., they are
incompatible observables, they cannot in general be ascribed sharp values at the same time.
This incompatibility is directly related to the paradox discussed above when we in Eq.(1.40)
ascribe sharp values to components in several different directions. The equation is valid also
in the quantum description, but only if the components are interpreted as operators µ̂z , µ̂y and
µ̂φ. For the eigenvalues, which correspond to the measurable values of the components of the
magnetic moment, the equation is not valid. This resolves the paradox.

In the Stern-Gerlach experiment we meet a situation where a vector, which can be contin-
uously rotated, has components that nevertheless can take only discrete values. This cannot be
explained within the framework of classical theory, but it can be explained in quantum theory.
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1.2 Field quantization

The classical description of a physical system usually makes a clear distinction between parti-
cle and field variables. Quantum physics seems to blur this distinction due to what is known
as particle-wave duality. For a particle like the electron this is apparent when the quantum
dynamics is expressed in the form of a wave equation rather than a particle equation. However,
also systems, which in the classical description appear as fields, will have a dual, particle na-
ture. A well-known example is the photon description of the quantized electromagnetic field.
At the formal level the quantum description of the two types of systems, particles and fields,
is quite similar, with the physical variables expressed in the form of quantum states and ob-
servables. Also the transition from the classical to the quantum description, in the form of
canonical quantization, can be formulated in much the same way. In this section we will dis-
cuss how to quantize by this method a simple, one-dimensional field theory, with the physical
interpretation of a vibrating string. Even if this is a simple example of a field theory, it can be
viewed as a prototype for more general theories. Later, in Chapt. 4, we will apply the method
of canonical quantization to the electromagnetic field.

Let ξ(x, t) denote the time dependent displacement of a pointlike element of the the string,
with linear coordinate x. The displacement satisfies, for small deviations from equilibrium, the
one-dimensional wave equation

∂2ξ

∂t2
− v2 ∂

2ξ

∂x2
= 0 (1.44)

with v as the wave velocity of the string. It is determined by the mass density µ and the string
tension τ as v =

√
τ/µ. A general solution of the equation can be written as a combination of

right- and left-going waves, the two types of motion defined by

ξ±(x, t) = ξ±(x∓ vt) (1.45)

Assuming the string to have fixed endpoints at x = 0 and x = a, the field ξ(x, t) will
satisfy the boundary conditions

ξ(0, t) = ξ(a, t) = 0 (1.46)

with the general solution as a superposition of standing waves

ξ(x, t) =
∞∑
k=1

sin(kπ
x

a
)ξk(t) (1.47)

Thus k labels the independent vibrational modes, or normal modes, of the string. The field
equation (1.44) implies that ξk(t) satisfies

d2ξk
dt2

+ ω2
kξk = 0 , ωk ≡ k

vπ

a
(1.48)

which clearly defines an infinite set of independent harmonic oscillator equations, for k =
1, 2, ...,∞.

The variables ξk define a natural set of generalized coordinates for the system. To define
the corresponding generalized momenta the classical Lagrangian L of the system is needed.
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The field equation (1.44) can be identified with Lagrange’s equation, with L defined in the
standard way as L = T − V , where T is the kinetic and V is the potential energy of the
vibrating string. Expressing L in terms of ξk and its time derivative, we find

L =
1

2
m
∑
k

(ξ̇2
k − ω2

k ξ
2
k) (1.49)

with m = aµ/2. The generalized momentum conjugate to ξk is then given by

πk =
∂L

∂ξ̇k
= mξ̇k (1.50)

and the classical Hamiltonian is

H =
∑
k

ξ̇kπk − L =
1

2m

∑
k

(π2
k +m2ω2

k ξ
2
k) (1.51)

Quantizationis now strait forward. The classical variables ξm and πn are replaced by oper-
ators ξ̂k and π̂l, which satisfy Heisenber’s commutation rule[

ξ̂k, π̂l
]

= ih̄δkl (1.52)

and by introducing the following linear combinations of the field components and their hermi-
tian conjugate momenta

âk =
1√

2mh̄ωk
(mωkξ̂k + iπ̂k) , â†k =

1√
2mh̄ωk

(mωkξ̂k − iπ̂k) (1.53)

the operators âk and â†k can be identified as ladder operators of the harmonic oscillators, with
the standard commutation relations [

âk, â
†
l

]
= δkl (1.54)

The quantum Hamiltonian, derived from (1.49), gets the standard form for a set of uncoupled
harmonic oscillators

Ĥ =
∑
k

(
1

2m
π̂2
k +

1

2
mω2

k ξ̂
2
k

)
=
∑
k

h̄ωk(â
†
kâk +

1

2
) (1.55)

with the operators â†k interpreted as creation operators for field quanta and âk as annihilation
operators for the same quanta.

The quantization condition for the variables of the normal modes, as discussed above, can
be re-expressed more directly in terms of the field variable ξ(x, t). To show this we first write
the Lagrangian as L =

∫
dxL, with the Lagrangian density given by

L =
1

2
µ

ξ̇2 − v2

(
∂2ξ

∂x2

)2
 (1.56)
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and ξ̇ = ∂ξ
∂t , and define the conjugate field momentum as

π(x) =
∂L
∂ξ̇

= µ ξ̇(x) =
∞∑
k=1

sin(kπ
x

a
)πk (1.57)

It is straight forward to verify that the commutator relation (1.52) then implies the following
field commutator [

ξ̂(x), π̂(x′)
]

= ih̄δ(x− x′) (1.58)

Even if the field commutator (1.58) is here derived from (1.52), it is quite standard to con-
sider this as the fundamental commutation relation in the quantum description of the field.
Thus, field quantization implies first to establish the Lagrangian density of the field, and to
derive the conjugate field momentum. Quantization is then introduced in the form of the fun-
damental commutator between the field variable and its conjugate field momentum. Due to the
continuous character of the field variable the field commutator is expressed by a Dirac delta
function rather than a Kronecker delta, which is the case when the variables are discrete.

The Hilbert space can be constructed in the same manner as for a single harmonic oscillator.
This means that we first define the ground state, or vacuum state, |0〉, by

âk|0〉 = 0 , k = 1, 2, ... (1.59)

Excited states are produced by acting on this state with the creation operators, and the a general
energy eigenstate is thus characterized by a set of integers, which give the number of field
quanta for each field mode

|ψE〉 = |n1, n2, n3, ...〉 = N (â†1)n1(â†2)n2(â†3)n3 ...|0〉 (1.60)

with N as a normalization factor.
This way of quantizing the field, as a system of many non-interacting harmonic oscillators,

seems to work smoothly. However, the presence of an infinite number of field modes will in
fact introduce some problems which have to be handled. A particular problem has to do with
the ground state fluctuations of the fields. For a single harmonic oscillator these fluctuations
give rise to the non-zero ground state energy h̄ω/2. For the field theory the corresponding
vacuum energy is

E0 =
∞∑
k=1

1

2
h̄ωk (1.61)

but the problem is that the sum does not converge to a finite value. However, a simple solu-
tion to this problem is to modify slightly the definition of the Hamiltonian, by subtracting the
vacuum energy. The new, well-defined expression for the Hamiltonian is

Ĥ =
∑
k

h̄ωkâ
†
kâk (1.62)

and since the subtracted term is a constant, this redefinition will not affect other observables of
the system. All the observables of the theory can now be expressed in terms of the creation and
annihilation operators. This is also the case for the field operator, which takes the form

ξ̂(x, t) =
∞∑
k=1

√
2mωk
h̄

[sin(kπ
x

a
)e−iωktâk + sin(kπ

x

a
)eiωktâ†k] (1.63)
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with an annihilation and a creation part.
The linear momentum of the system is not conserved due to the presence of the boundaries,

but the squared operator P̂ 2 is well-defined and conserved and satisfies the energy momentum
relation

Ĥ2 − v2P̂ 2 = 0 (1.64)

as follows from the field equation (1.44). In the unbounded system this corresponds to a linear
relation between energy and momentum, similar to that of a massless relativistic particle, but
here with the velocity of light c replaced by the velocity of propagation v. In fact, the energy
quanta in many respects behave like a system of free, identical particles. In this particle-picture,
the single particle states are the states created from the vacuum state |0〉 by operators linear in
the creation operators â†k, the two-particle states are created by quadratic operators â†kâ

†
k′ etc.

Since the operator â†k can be applied repeatedly to create many field quanta in the same state,
this means that the corresponding particles should be classified as bosons.

The example discussed above shows a simple example of the general method used for
(canonical) field quantization. Thus, quite generally the method consists in first identifying the
free field part, which in the Lagangian include all terms quadratic in the fundamental fields.
This is used to identify the independent field modes, which then are quantized like a col-
lection of independent harmonic oscillators. Interaction terms in the Lagrangian, which are
non-quadratic in the fields, do not affect the quantization procedure, but are at the next step
expressed in terms of the creation and annihilation operators in order to give the full expression
for the quantum Hamiltonian. Later in the course we shall show how to apply this method to
electromagnetic fields interacting with electrons.

1.3 Quantum Dynamics

In this section we formulate the dynamical equation of a quantum system and discuss the rela-
tions between the unitarily equivalent descriptions known as the Schrödinger, Heisenberg and
interaction pictures. We then examine the rather different Feynman’s path integral formulation
of quantum dynamics.

1.3.1 The different pictures of the time evolution

The Schrödinger picture.
The time evolution of an isolated quantum system is defined by the Schrödinger equation.
Originally this was formulated as a wave equation, but it can be reformulated as a differential
equation in the (abstract) Hilbert space of ket-vectors as

ih̄
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 (1.65)

With the state vector given for an initial time t0, the equation will determine the state vector at
later times t (and also at earlier times) as long as the system stays isolated. The information
about the dynamics is contained in the Hamiltonian Ĥ , which usually can be identified with
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the energy observable of the system. The original Schrödinger equation, described as a wave
equation can be viewed as the coordinate representation of Eq.(1.65).

The dynamical evolution of the state vector can be expressed in terms of a time evolution
operator Û(t, t0), which is a unitary operator that relates the state vector of the system at time
t with that of time t0,

Û(t, t0)|ψ(t0)〉 = |ψ(t)〉 (1.66)

The time evolution operator is determined by the Hamiltonian through the equation

ih̄
∂

∂t
Û(t, t0) = Ĥ Û(t, t0) (1.67)

which follows from the Schrödinger equation (1.65).
When Ĥ is a time independent, a closed form for the time evolution operator can be given9

Û(t− t0) = e−
i
h̄
Ĥ(t−t0) (1.69)

If however Ĥ is time dependent, so that the operator at different times do not commute, we
may use a more general integral expression

Û(t, t0) =
∞∑
n=0

(−i
h̄

)n ∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtn Ĥ(t1)Ĥ(t2) · · · Ĥ(tn)

(1.70)

where the term corresponding to n = 0 is simply the unit operator 1̂. Note that the product of
the time dependent operators Ĥ(tk) is a time-ordered product.

The Heisenberg picture.
The description of the quantum dynamics given above is referred to as the Schrödinger picture.
From the discussion of different representations of the quantum system we know that a unitary
transformation of states and observables leads to a different, but equivalent representation of
the system. If we therefore denote the states of a system by |ψ〉 and the observables by Â and
make a unitary transformation Û on all states and all observables,

|ψ〉 → |ψ′〉 = Û |ψ〉 , Â→ Â′ = Û ÂÛ † , Û †Û = 1̂ , (1.71)

then all matrix elements are left unchanged,

〈φ′|Â′|ψ′〉 = 〈φ|Û †Û ÂÛ †Û |ψ〉 = 〈φ|Â|ψ〉 (1.72)

and since all measurable quantities can be expressed in terms of such matrix elements, the two
descriptions related by a unitary transformation can be viewed as equivalent. This is true also
when Û = Û(t) is a time dependent transformation.

9Note that a function of an observable Ĥ , like exp(− i
h̄
Ĥ(t− t0)) can be defined by its action on the eigenvec-

tors |E〉 of Ĥ ,

e−
i
h̄
Ĥ(t−t0)|E〉 = e−

i
h̄
E(t−t0)|E〉 . (1.68)

This follows since the eigenvectors form a complete set.
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The transition to the Heisenberg picture is defined by a special time-dependent unitary
transformation

Û(t) = Û†(t, t0) (1.73)

This is the inverse of the time-evolution operator, and when applied to the time-dependent state
vector of the Schrödinger picture it will simply cancel the time dependence

|ψ〉H = Û†(t, t0)|ψ(t)〉S = |ψ(t0)〉S (1.74)

Here we have introduced a subscript S for the vector in the Schrödinger picture and H for the
Heisenberg picture. (The initial time t0 is arbitrary and is often chosen as t0 = 0.) The time
evolution is now carried by the observables, rather than the state vectors,

ÂH(t) = Û†(t, t0) ÂS Û(t, t0) (1.75)

and the Schrödinger equation is replaced by the Heisenberg equation of motion

d

dt
ÂH =

i

h̄
[Ĥ, ÂH ] +

∂

∂t
ÂH (1.76)

(with the Hamiltonian here assumed to be time independent). The partial derivative in this
equation refers to a possible explicit time dependence of the observable in the Schrödinger
picture,

∂

∂t
ÂH = Û†(t, t0)

(
∂

∂t
ÂS

)
Û(t, t0) (1.77)

This time dependence may be caused by some time varying external influence on the system,
which in particular could also impose a time dependence on the Hamiltonian. The full time
evolution of the observable ÂH therefore may have two contributions, one is the dynamical
contribution from the non-commutativity with the Hamiltonian and the other is the contribution
from an explicit time dependence due to some external influence.

The interaction picture
A third representation of the unitary time evolution of a quantum system is the interaction
picture which is particularly useful in the context of time-dependent perturbation theory. The
Hamiltonian is of the form

Ĥ = Ĥ0 + Ĥ1 (1.78)

where Ĥ0 is the unperturbed Hamiltonian and Ĥ1 is the (possibly time dependent) perturbation.
We assume that the eigenvalue problem of Ĥ0 can be solved and that the corresponding time
evolution operator is

Û0(t− t0) = e−
i
h̄
Ĥ0(t−t0) (1.79)

The transition from the Schrödinger picture to the interaction picture is defined by acting with
the inverse of this on the state vectors

|ψI(t)〉 = Û†0(t, t0) |ψS(t)〉 (1.80)
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Note that the time variation of the state vector is only partly cancelled by this transformation,
since the effect of the perturbation Ĥ1 is not included. The time evolution of the observables is
given by

ÂI(t) = Û†0(t, t0) ÂS Û0(t, t0) (1.81)

This means that they satisfy the same Heisenberg equation of motion as for a system where
the Hamiltonian is simply Ĥ = Ĥ0. The remaining part of the dynamics is described by the
interaction Hamiltonian

ĤI(t) = Û†0(t, t0) Ĥ1 Û0(t, t0) (1.82)

which acts on the state vectors through the (modified) Schrödinger equation

ih̄
d

dt
|ψI(t)〉 = ĤI(t)|ψI(t)〉 (1.83)

The corresponding time evolution operator has the same form as (1.70),

ÛI(t, t0) =
∞∑
n=0

(−i
h̄

)n ∫ t

t0
dt1

∫ t1

t0
dt2 · · ·

∫ tn−1

t0
dtn ĤI(t1)ĤI(t2) · · · ĤI(tn)

(1.84)

but includes now only the interaction part of the Hamiltonian. This form of the time evolution
operator gives a convenient starting point for a perturbative treatment of the effect of ĤI . We
shall apply this method when studying the interaction between photons and atoms in a later
chapter.

We summarize the difference between the three pictures by the following table

States Observables
Schrödinger time dependent time independent
Heisenberg time independent time dependent
Interaction time dependent time dependent

where we here have excluded the possibility of explicit time dependence of the observables.

1.3.2 Path integrals

Feynman’s path integral method provides an approach to the dynamics of quantum systems that
is rather different from the methods outlined above. Instead of applying the standard descrip-
tion of states as vectors in a Hilbert space, it focusses directly on transition matrix elements
and describe these as integrals over classical trajectories of the system. The description has
an intuitive appeal, since it is less abstract than the Hilbert space description. It describes the
evolution of the system in terms of paths between the initial and final points of the evolution.
This makes the connection to the classical description rather close, but also shows the differ-
ence between the classical and quantum theories, since the system does not simply follow a
single path from the initial to the final point. Instead the transition amplitude gets contribution
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from all paths with the given end points, as if the system during the time evolution tries out all
possible trajectories.

The formal expression for the path integral is

G(qf tf , qiti) =

∫
D[q(t)] exp(

i

h̄
S[q(t)]) (1.85)

In this expression q denotes a set of generalized coordinates of the system and q(t) is a tra-
jectory in the (classical) configuration space. G(qf tf , qiti) is the propagator which defines the
transition amplitude from an initial configuration qi at time ti to a final configuration qf at time
tf . The integration, on the right hand side, is over all paths q(t) that connect the initial and
final configurations and S[q(t)] is the action integral for a given path, so that

S[q(t)] =

∫ tf

ti

L(q̇(t), q(t))dt (1.86)

with L(q̇, q) as the Lagrangian of the system. The integral in Eq.(1.85) is referred to as a
functional integral, since the integration variable is a function q(t) rather than a set of discrete
variables. The path integral is primarily a formal expression, since the conditions that the func-
tions (the paths) have to satisfy are not specified in any strict way, and neither is the integration
measure. In principle all curves included are equally important, since the weight factor of any
curve is a phase factor of modulus 1. However, there seems to be an implicit suppression in im-
portance of paths where the phase factor in (1.85) varies rapidly with changes in the path. For
these paths the contribution to the integral is reduced due to destructive interference between
contributions from nearby paths.

x

t

(x0,t0)

(x1,t1)

Figure 1.2: The path integral as a “sum over histories”. All possible paths between the initial point
(x0, t0) and the final point (x1, t1) contribute to the quantum transition amplitude between the points.
The paths close to the classical path, here shown in dark blue, tend to be most important since their
contributions interfere constructively.

Although intuitively attractive, it is well known that the path integral (1.85) is difficult to
make mathematically precise. Only in the simplest cases it is possible to give a precise meaning
to the the set of paths and to introduce a well defined integration measure on this set. Even so,
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the path integral method is an important method in physics and can often be used without a
rigorous definition of the integral. It is often used together with semiclassical approximations
and is particularly important in the study of non-perturbative effects. In quantum field theory
it is an important tool, in the form of generating functionals for the correlation functions of the
field, and it is also much used in the transformation between different sets of field variables for
the physical system. In any case, the path integral method should be viewed as an important
supplementary method, and not as a possible replacement of traditional quantum mechanical
methods. In the computation of quantum effects, in particular when using perturbation theory,
methods based on the Hilbert space formulation continue to be the most important ones.

Although the path integral method can be viewed as a fundamental approach to quantum
theory, i.e., a method that completely circumvents the standard description with state vectors
and observables, it is often instead derived from the Hamiltonian formulation, and that is the
approach we shall take also here. We will in this derivation meet some of the mathematical
problems of the path integral approach, but will only comment on these and not go into any
discussion of how to deal with these problems in a serious way.

Let us consider the time evolution of a quantum system as a wave function ψ(q, t) in con-
figuration space, where q = {q1, q2, ..., qN} is a set of continuous (generalized) coordinates.
In the “bra-ket” notation we write it as

ψ(q, t) = 〈q|ψ(t)〉
= 〈q|Û(t, t′)|ψ(t′)〉

=

∫
dq′〈q|Û(t, t′)|q′〉〈q′|ψ(t′)〉

≡
∫
dq′〈q t|q′ t′〉 ψ(t′) (1.87)

with dq′ denoting the N -dimensional volume element. The information about the dynamics of
the system is encoded in the matrix element of the time evolution operator, or transition matrix
element,

〈q|Û(t, t′)|q′〉 = 〈q t|q′ t′〉 ≡ G(q t, q′ t′) (1.88)

which we identify as the propagator previously expressed in the form of the path integral.
We will now see how a path integral representation of this propagator can be found in the

simple case for a system with a one-dimensional configuration space. As a concrete realization
we consider a particle moving on a line, with the set of coordinates q replaced by a single
variable x.

The propagation between an initial time ti and a final time tf can be viewed as composed
of the propagation between a series of intermediate times tk, k = 0, 1, ...n with t0 = ti and
tn = tf ,

G(xf tf , xi ti) =

∫
dxn−1...

∫
dx2

∫
dx1G(xf tf , xn−1 tn−1)...G(x2 t2, x1 t1)G(x1 t1, xi ti)

(1.89)

This follows from a repeated use of the composition rule satisfied by the time evolution operator

Û(tf , ti) = Û(tf , tm) Û(tm, ti) (1.90)
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where ti, tm and tf are arbitrary chosen times. In the expression (1.89) for G(xf tf , xi ti)
the intermediate times t1, t2... may also be arbitrarily distributed between ti and tf , but for
simplicity we think of them as having a fixed distance

tk+1 − tk = ∆t ≡ (tf − ti)/n (1.91)

The number n of time steps may be taken arbitrary large.
To proceed we assume a specific form for the Hamiltonian,

Ĥ =
1

2m
p̂2 + V (x̂) (1.92)

which is that of a particle of mass m moving in a one-dimensional potential V (x). The propa-
gator for a small time interval ∆t is

G(x t+ ∆t, x′ t) = 〈x|e−
i
h̄
Ĥ∆t|x′〉

≈ 〈x|e−
i
h̄

1
2m

p̂2∆te−
i
h̄
V (x̂)∆t|x′〉

= 〈x|e−
i
h̄

1
2m

p̂2∆t|x′〉e−
i
h̄
V (x′)∆t (1.93)

We have here made use of

ei(Â+B̂)∆t = eiÂ∆teiB̂∆t +O(∆t2) (1.94)

where Â and B̂ are two (non-commuting) operators and the O(∆t2) term comes from the
commutator between Â and B̂. In the present case Â = p̂2/(2mh̄), B̂ = V̂ /h̄, and these
clearly do not commute. However, we will take the limit ∆t→ 0 (n→∞) and this allows us
to neglect the correction term coming from the commutator, since this includes the factor ∆t2.
The x-space matrix element of the kinetic term can be evaluated

< x|e−
i
h̄

∆t p̂
2

2m |x′ > =

∫
dp < x|p > e−

i
h̄
p2

2m
∆t < p|x′ >

=

∫
dp

2πh̄
e
i
h̄
p(x−x′)e−

i
h̄
p2

2m
∆t

=

∫
dp

2πh̄
e−

i
h̄

∆t
2m

(p−mx−x′
∆t

)2
e
i
h̄

∆tm
2

(
x−x′
∆t

)2

= N∆t e
i
m(x−x′)2

2h̄∆t . (1.95)

where N∆t is an x-independent normalization constant,

N∆t =

∫
dp

2πh̄
e−i

∆t
2mh̄

(p−mx−x′
∆t

)2

=

∫
dp

2πh̄
e−i

∆t
2mh̄

p2

(1.96)

This last expression may look somewhat mysterious, since the integral does not converge for
large p. This is one of the places where we note that the path integral is not fully defined
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without some further specification. To make the expression well defined we focus on a related
convergent integral, the Gaussian integral

+∞∫
−∞

dpe−λ p
2

=

√
π

λ
(1.97)

where λ has a real, positive part. If we write the coefficient as

λ = i
∆t

2mh̄
+ ε (1.98)

the integral is convergent for an arbitrarily small real part ε. This means that we can take the
limit ε→ 0+, and obtain the expression

N∆t =

√
m

2πih̄∆t
(1.99)

For the matrix element of the time evolution operator we then get,

< x|e−
i
h̄

∆tH |x′ >= N∆t e
i
m(x−x′)2

2h̄∆t e−
i
h̄
V (x′)∆t (1.100)

and with x′ → xk and x → xk+1 this can be used for each term in the factorized expression
(1.89) for the propagator. The result is

G(xf tf , xi ti) = (N∆t)
n
∫
dxn−1...

∫
dx2

∫
dx1 e

i
h̄

∆t
n∑
k=0

[m
2

(
xk+1−xk

∆t
)2−V (xk)]

(1.101)

The exponent can be further simplified in the limit n→∞,

i

h̄
∆t

n∑
k=0

[
m

2
(
xk+1 − xk

∆t
)2 − V (xk)]→

i

h̄

t∫
t0

dt[
1

2
m(

dx

dt
)2 − V (x)] (1.102)

where we have now assumed that the sequence of intermediate positions xk (which we integrate
over) in the limit n → ∞ defines a differentiable curve. The expression we arrive at can be
identified as the (classical) action associated with the curve defined by the positions xk as
functions of time,

S[x(t)] =

t∫
t0

L(x, ẋ)dt =

t∫
t0

(
1

2
mẋ2 − V (x))dt (1.103)

In the continuum limit (n→∞) we therefore write the propagator as

G(xf tf , xi ti) =

∫
D[x(t)]e

i
h̄
S[x(t)] (1.104)

which has the form (1.85) originally written for the path integral. We may now simply take the
discretized form (1.101) as defining the path integral. This means that the formal expression
(1.104) is interpreted as being identical to the multiple integral (1.101) in the limit n → ∞.
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However, this is not completely satisfactorily since the independent integration over interme-
diate positions xk is not really consistent with the picture of the integral as being an integration
over continuous curves. So the derivation should rather be taken as suggestive for the idea that
the path integral may be made well defined with some further specifications and that it can be
related to the transition matrix element derived in the Schrödinger picture in the way outlined
above.

1.3.3 Continuous paths for a free particle

The discretization of time is convenient when we examine the connection between the Hamilto-
nian formulation and the path integral formulation of quantum mechanics. However, as pointed
out above, the discretization is a complication for the idea of regarding the path integral as a
sum over contributions from continuous paths. We will here examine another formulation
which respects more the idea of paths, and apply it to the example of a free particle.

We then consider a path as a continuous curve x(t) which connects an initial point xi =
x(ti) with a final point xf = x(tf ), and denote the time difference as T = tf − ti. With the
endpoints of the curve fixed, an arbitrary curve between these points can be written as

x(t) = xcl(t) +
∞∑
n=1

cn sin(nπ
t− ti
T

) (1.105)

where xcl(t) is a solution of the classical equation of motion with the given end points. The
deviation from the classical curve is expanded in a Fourier series. We shall now interpret the
path integral as an independent integration over each Fourier component cn. Note that even if
the variables cn form a discrete set, the curve (1.105) may be continuous.

The action for a free particle is given by

S[x(t)] =

tf∫
ti

dt
1

2
mẋ2

= S[xcl(t)] +
1

2
m

tf∫
ti

dt
∑
nn′

cncn′
nn′π2

T 2
cos(nπ

t− ti
T

) cos(n′π
t− ti
T

)

= S[xcl(t)] +
1

2
m

π∫
0

dφ
∑
nn′

cncn′
nn′π

T
cos(nφ) cos(n′φ)

= S[xcl(t)] +
mπ2

4T

∑
n

n2c2
n (1.106)

where the term linear in ẋcl is absent since the action is stationary under first order variations
in x(t) about the classical path xcl(t). (See the discussion in the next subsection.) For the
propagator this gives

G(xf tf , xi ti) =

∫
D[x(t)]e

i
h̄
S[x(t)]

= N e
i
h̄
S[xcl(t)]

∏
n

∫
dcn e

imπ
2

4Th̄
n2c2n (1.107)
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with N as an unspecified normalization constant. The integrals have to be made well-defined
by the same trick as before, by adding a small real part to the imaginary coefficient. This gives

G(xf tf , xi ti) = N e
i
h̄
S[xcl(t)]

∏
n

(
2

n

√
iT h̄

mπ
)

= N ′e
i
h̄
S[xcl(t)]

= N ′e
i
h̄

1
2
m

(xf−xi)
2

tf−ti (1.108)

Note that the product over n is not well-defined as a separate factor, but it has here been
absorbed in N to form a new normalization factor N ′. This factor will depend on the precise
definition of the path integral. The form of the product over n indicates that such a definition
should include a prescription for regularizing the contributions for large n.

In the simple case we consider here the propagator can be evaluated directly, and we use
the expression to check our result from the path integral formulation and to determine N ′,

G(xf tf , xi ti) = 〈xf |e−
i
h̄
p̂2

2m
T |xi〉

=

∫
dpe−

i
h̄
p2

2m
T 〈xf |p〉〈p|xi〉

=

∫
dp

2πh̄
e−

i
h̄

[ p
2

2m
T−p(xf−xi)]

=

√
m

2πih̄T
e
i
m(xf−xi)

2

2h̄(tf−ti) (1.109)

This agrees with the expression (1.108) and determinesN ′. We note that the exponential factor
is determined by the action of the classical path between the initial and final points while the
path integral only determines the prefactor. A similar expression for the propagator, in terms
of the action of the classical path, can be found when the action is quadratic in both q and q̇.

1.3.4 The classical theory as a limit of the path integral

One of the advantages of the Feynman path integral is its close relation to the classical theory.
This is clear already from the formulation in terms of the classical Lagrangian of the system.
Let us write the path integral in the general form

G(qf tf , qi ti) =

∫
D[q(t)]e

i
h̄
S[q(t)]

=

∫
D[q(t)] exp(

i

h̄

tf∫
ti

L(q, q̇)dt) (1.110)

where the Lagrangian L(q, q̇) depends on a set of generalized coordinates q and their deriva-
tives q̇. We note from this formulation that variations in the path q(t) that give rise to rapid
variations in the action S[q(t)] tend to give contributions to the path integral that add destruc-
tively. This is so because of the rapid change in the complex phase of the integrand.
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The classical limit of a quantum theory is often thought of as a formal limit h̄ → 0. From
the expression for the path integral we note that smaller h̄ means more rapid variation in the
complex phase. This indicates that in the classical limit most of the paths will not contribute to
the path integral, since variations in the action of the neighboring paths will tend to “wash out”
the contributions due to destructive interference. The only paths which retain their importance
are those where the action is stationary, i.e., where the action does not change under small
variations in the path.

The stationary paths are characterized by δS = 0, with

δS =
∑
k

tf∫
ti

(
∂L

∂qk
δqk +

∂L

∂q̇k
δq̇k)dt

=
∑
k

tf∫
ti

[ ∂L
∂qk
− d

dt
(
∂L

∂qk
)
]
δqkdt (1.111)

In this expression δqk denotes an (infinitesimal) variation in the path, and δq̇k the corre-
sponding variation in the time derivative. The last expression in (1.111) is found by a par-
tial integration and applying the constraint on the variation that it vanishes in the end points,
δqk(ti) = δqk(tf ) = 0. This constraint follows from the fact that the end points of the paths
are fixed by the coordinates of the propagator (1.110).

Thus, the important paths are those with stationary action, and these satisfy the Euler-
Lagrange equations,

∂L

∂qk
− d

dt
(
∂L

∂q̇k
) = 0 , k = 1, 2, ..., N (1.112)

since δS should be 0 for all (infinitesimal) variations. In a Lagrangian formulation of the
classical system, with dynamics determined byL(q, q̇), these are exactly the classical equations
of motion.

1.3.5 A semiclassical approximation

As discussed above, in the classical limit the relevant contributions to the path integral come
from paths in the immediate neighborhood of the solutions to the classical equation of motion.
We refer to these classical paths as qcl(t). This motivates a semiclassical approach, where we
make a lowest order expansion of the action around the stationary paths. The coordinates of
the paths in this neighborhood we write as

q(t) = qcl(t) + η(t) (1.113)

where q(t) represents the full set of coordinates {qk(t), k = 1, ..., N}. We assume the deviation
η(t) from the classical solution, qcl(t), which satisfies a given set of boundary conditions, to be
small. Since qcl(t) is supposed to satisfy the correct boundary conditions, η(t) should vanish
at the end points.

We introduce the approximation by assuming that the action can be expanded to second
order in η(t) and that higher orders can be neglected. Thus,

S[q(t)] = S[qcl(t)] + ∆S[q(t)] (1.114)
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with

∆S[q(t)] =
∑
ij

∫
dt

1

2

[
∂2L

∂q̇i∂q̇j
η̇iη̇j + 2

∂2L

∂qi∂q̇j
ηiη̇j +

∂2L

∂qi∂qj
ηiηj

]

≡
∑
ij

∫
dt

1

2
[Aij η̇iη̇j + 2Bijηiη̇j + Cijηiηj ] (1.115)

In this approximation, with η(t) as a new set of variables, the Lagrangian is quadratic in the co-
ordinates and velocities. The path integral for such a Lagrangian can (in principle) be evaluated
and the general form is

G(qf tf , qiti) = Ne
i
h̄
Scl(qf tf ,qiti) (1.116)

where N is the contribution from the integral over paths η(t), and Scl(qf tf , qiti) is the action
of the classical path with the given end points. If the coefficients Aij , Bij and Cij are time
independent along the path, N will only depend on the length of the time interval. As a special
case we have previously seen this in the evaluation of the propagator of a free particle.

In some cases there may be more than one classical path connecting the two points (qi, ti)
and (qf , tf ). In that case the path integral is given by a sum over the classical paths

G(qf tf , qiti) =
∑
cl

Ncle
i
h̄
Scl(qf tf ,qiti) (1.117)

and the strength of the transition amplitude depends on whether the contributions from different
paths interfere constructively or destructively. In its simplest form one assumes that the nor-
malization factors Ncl, which are determined by the integral over quadratic fluctuations around
the classical paths, are all equal,

G(qf tf , qiti) = N
∑
cl

e
i
h̄
Scl(qf tf ,qiti) (1.118)

and the propagator is then determined by the interference between the phase factors associated
with each classical path.

The normalization factor Ncl in (1.116) can, in the semiclassical approximation, be deter-
mined to have the following form

Ncl =

√√√√ 1

2πih̄

∣∣∣∣∣ ∂2Scl
∂xf∂xi

∣∣∣∣∣(−i)n (1.119)

where n is an integer, called the Morse index. It is identical to the number of sign changes
of ∂2S

∂xf∂xi
when xf is continuously changed from the initial to the final position. As shown

by the expressions (1.117) and (1.119) the semiclassical propagator is fully determined by the
classical action, that is, by the action integral restricted to classical paths.

We do not include a derivation of the expression (1.119) here, but we will check what it
gives for the that semiclassical propagator of a free particle in one dimension, and compare this
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with the exact propagator which we have earlier discussed. For this system the classical action
is

Scl(xf , tf , xi, ti) =
1

2
m

(xf − xi)2

tf − ti
(1.120)

This gives

∂2S

∂xf∂xi
= − m

tf − ti
(1.121)

which is independent of the initial and final positions of the particle. As a consequence the
morse index is n = 0, and the semiclassical expression for the propagator is

G(xf , tf ;xi, ti) =

√
m

2πih̄(tf − ti)
e
i

2h̄
m

(xf−xi)
2

tf−ti (1.122)

This expression coincides with the exact expression for the propagatator (1.109) of a free parti-
cle in one dimension. The lack of corrections to the semiclassical propagator is clearly related
to the quadratic form of the free particle action, which means that there are no higher order
corrections to the expansion of the action (1.114) around the classical solution.

1.3.6 The double slit experiment revisited

As a simple example let us apply the semiclassical approximation to the double slit experiment,
schematically shown in Fig.1.3, and compare with conditions for constructive interference as
derived in an elementary way from interference between partial waves.

We then consider a beam of electrons with sharply defined energy that impinge on a screen
with two holes, as shown in the figure. Those of the electrons that pass the holes are registered
on a second screen. When the experiment is running, an intensity distribution will gradually
build up, and this will show an interference pattern in accordance with the quantum mechanical
wave picture of the electrons.

When viewed as a propagating wave, the interference pattern is determined by the relative
phase of the partial waves emerging from the two holes. Since the phase of each wave is deter-
mined by the distance from the hole measured in wave lengths, the condition for constructive
interference at a given point is

∆L = nλ (1.123)

where ∆L is the difference in length of the two straight lines from the holes to the point
considered. λ is the de Broglie wave length of the electrons and n is an integer.

In the path integral description the conditions for constructive interference also depends
on length of paths, but now in a slightly different way. We consider paths beginning at the
electron source, with position xS , at time t = 0 and ending at a point P on the second screen,
with position xP at a later time t = T . In principle all paths passing through one of the two
holes contribute to the path integral, but in the semiclassical approximation we only include
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1

2

S
P

Figure 1.3: The double slit experiment. A beam of electrons is sent from the source S through a screen
with two holes. The intensity of electrons is then registered on a second screen behind the first one. The
intensity variations can be viewed as due to interference of the partial waves from the two slits. In the
path integral approach the intensity at a given point P is determined by the difference in action of two
(classical) paths from the source, passing through each of the openings, and and ending both in P .

contributions from the classical paths and those nearby. In this case there are two classical
paths to a given point. The first one describes a free particle moving to the upper hole where it
is scattered and sent as a free particle towards the point P . On the second path the electrons is
instead scattered in the lower hole and ends up in the same point P .

Note that all paths that contribute correspond to the same time T spent between the initial
and final point. This means that if one of the paths is longer, the particle has to move more
rapidly on that path. Therefore the situation is slightly different from when the particles have a
sharply defined energy. But the result concerning the interference effect is essentially the same.

With L1 as the length of the upper part and L2 as the length of the lower one, the corre-
sponding actions are

S1 =
1

2
mv2

1T =
1

2
m
L2

1

T
, S2 =

1

2
mv2

2T =
1

2
m
L2

2

T
(1.124)

where we have used the fact that the velocity is constant along the classical paths. In the
semiclassical approach the propagator between the the two points S and P can be expressed in
terms of actions as

G(xP T, xS 0) = N(e
i
h̄
S1 + e

i
h̄
S2) = Ne

i
h̄
S1(1 + e

i
h̄

∆S) (1.125)

where ∆S = S2 − S1 is the difference between the actions of the two paths. We introduce
the average length and the difference in length of the two paths, L̄ = (L1 + L2)/2 and ∆L =
L2 − L1. The difference in action is then

∆S = m
L̄

T
∆L = mv̄∆L (1.126)



1.4. THE TWO-LEVEL SYSTEM AND THE HARMONIC OSCILLATOR 33

where we have introduced the average velocity v̄ = L̄/T . The condition for constructive
interference is

1

h̄
∆S = 2πn ⇒ mv̄

h̄
∆L = 2πn (1.127)

and if we assume the following form for the de Broglie relation, mv̄ = 2πh̄/λ, the condi-
tion (1.127), derived from the path integral, agrees with (1.123), which is the condition for
constructive interference between the partial waves that pass through the two slits.

P
1

P
2

Figure 1.4: Huygens’ principle and the sum over paths. The dark blue circles represent the wave fronts
of an expanding wave. The smaller light blue circles represent the secondary waves that at each stage
of the wave propagation recreates the wave front. The green lines between the centers of the secondary
waves represent the different paths from the initial point P1 to a final point P2 on the largest wave front.

In this simple example we have demonstrated the close relation between the wave descrip-
tion of quantum mechanics and the path integral description. In fact, even if path integrals
are usually associated with quantum physics, they can be seen more generally as a particular
way to describe wave propagation. Viewed in this way the path integral formulation is like
a geometrical optics approach which in a sense is complimentary to Huygens’ principle. In
Huygens’ description wave propagation can be seen as continuous recreation of the wave front
through interference between secondary waves that are created at each point of the front. In a
ray representation each of these points is the source of rays that are sent in all directions, and
if we follow a particular ray through these intermediate points, it traces out one of the paths
between the initial and final points that enters into the path integral. This picture of wave prop-
agation is sketched in Fig. 1.4, where a multitude of secondary waves are shown together with
the rays between the points where these are emitted.

1.4 The two-level system and the harmonic oscillator

The (one-dimensional) harmonic oscillator is an important system to study, both in the con-
text of classical and quantum physics. One reason is that in many respects it is the simplest
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dynamical system, and physicists always like to reduce more complicated problems to har-
monic oscillators if possible. There are also many physical systems that are well described
as harmonic oscillators. All periodic motions close to a stable equilibrium can be viewed as
approximate harmonic oscillator motions, and both classically and quantum mechanically the
modes of a free field can be viewed as a collection of independent harmonic oscillators.

Even if the harmonic oscillator, in many respects, can be regarded as the simplest system
to study, there is a quantum mechanical system that in some respects is even simpler. That the
two-level system, where the state space is two-dimensional rather than infinite dimensional as
as in the case of the harmonic oscillator. A special realization of the two-level system is the
spin-half system already discussed. There are also other physical systems which, to a good
approximation, can be regarded as a two level system. Thus, for transitions between atomic
levels sometimes only two of the levels will be active in the transitions, and a two-level model
may be adequate. Atomic clocks are quantum systems of this type.

As opposed to the harmonic oscillator there is no classical analogue to the quantum two-
level system. Classical spin does of course exist, but that corresponds to quantum systems with
large spin (on the scale of h̄) rather than to the simple spin-half system. In recent years the
interest for two-level systems have increased with the interest for quantum information, since
the fundamental qubit is described by a two-level system.

In this section we will study some of the properties of these two fundamental systems,
which are of interest for the further discussion, first the two-level system.

1.4.1 The two-level system

The Hilbert space of this system is two-dimensional. Let us denote by {|k〉, k = 0, 1} the
basis vectors of an arbitrarily chosen orthonormal basis. Any state vector can be represented
as a two-component, complex matrix Ψ,

|ψ〉 =
2∑

k=1

ψk |k〉 ⇒ Ψ =

(
ψ1

ψ2

)
(1.128)

An operator Â acting in this space has four independent components and can be represented as
a 2× 2 matrix A,

Â|k〉 =
∑
l

Alk |l〉 ⇒ A =

(
A11 A12

A21 A22

)
(1.129)

It can be expressed in terms of the unit matrix and the Pauli spin matrices as,

A = a01+
∑
m

amσm (1.130)

with

a0 =
1

2
(A11 +A22) , a1 =

1

2
(A12 +A21) ,

a2 =
i

2
(A12 −A21) , a3 =

1

2
(A11 −A22) (1.131)
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When Â is hermitian, all the coefficients ak are real. The standard representation of the Pauli
matrices are

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(1.132)

They define the fundamental commutator relations of the observables of the two level sys-
tem,

[σi, σj ] = 2i
∑
k

εijkσk (1.133)

where εijk is the Levi-Civita symbol, which is totally antisymmetric in the indices ijk and
satisfy ε123 = 1 . The Pauli matrices also satisfy the anti-commutation relations

{σi, σj} = 2δij (1.134)

Let us consider a general, rotated Pauli matrix

σn = n · σ =

(
cos θ e−iφ sin θ
eiφ sin θ − cos θ

)
(1.135)

with n as a (three-component) unit vector and (θ, φ) as the corresponding polar angles. The
two eigenstates of this operator are

Ψn =

(
cos θ2
eiφ sin θ

2

)
, Ψ−n =

(−e−iφ sin θ
2

cos θ2

)
(1.136)

with Ψn as the “spin up” state in the n direction and Ψ−n as the “spin down” state.
It is interesting to note that an arbitrarily chosen, normalized vector in the state space,

Ψ =

(
u
v

)
, |u|2 + |v|2 = 1 (1.137)

can be written in the form of the spin state Ψn, with the polar angles of the unit vector deter-
mined by cos θ2 = u and eiφ sin θ

2 = v. This means, in particular, that the overall phase of the
state vector Ψ is chosen to make u real. As follows from this, the physically distinct states of
the two-level system can be identified uniquely by the three-dimensional unit vector n, and the
continuum of all physical states can therefore be represented by the two-dimensional surface
of a sphere. The redundancy in the Hilbert space description is removed in this representation,
since the rescaling of a Hilbert space vector by a complex factor, which represents no change
in the physical state, does not affect the unit vector n.

Note however that the points on the sphere do not correspond to independent configu-
rations. There are only two independent states, for example |1〉 (the“south pole”) and |2〉
(the“north pole”), corresponding to spin up and spin down in the z-direction. All other points
on the sphere correspond to linear superpositions of these two states.



36 CHAPTER 1. QUANTUM FORMALISM

1.4.2 Spin dynamics and magnetic resonance

The spin realization of the two-level system has already been briefly discussed in the context
of the Stern-Gerlach experiment. We here consider the spin dynamics in a constant magnetic
field in more detail and proceed to show how to solve a time-dependent problem, where the
spin is subject to a periodic field.10

The basic observables of the spin half-system are the three components of the spin vector

Ŝ = (h̄/2)σ (1.138)

where σ is a vector matrix with the three Pauli matrices as components. They correspond to
the three space components of the spin vector.

The observable Ŝ we will identify as the spin of an electron. The corresponding magnetic
moment is given by

µ =
e

me
Ŝ (1.139)

where e is the electron charge and me is the electron mass. The spin Hamiltonian is

Ĥ0 = − e

me
B0 · Ŝ. (1.140)

with B0 as a constant external magnetic field. The Heisenberg equation of motion for the spin,
which follows from (1.76) is

d

dt
ŜH = ω0 n× ŜH , (1.141)

where

ω0 = −eB0

me
. (1.142)

and n is a unit vector B0 = B0 n.11 Eq.(1.141) has exactly the same form as the classical
spin precession equation with ω0 as the precession frequency. A natural interpretation is then
that the quantum spin precesses in the magnetic field in the same way as the classical spin.
However, as our discussion of the Stern-Gerlach experiment has shown, the non-commutativity
of the different components of Ŝ makes the quantum spin variable qualitatively different from
a classical spin.

The expression for the Hamiltonian (1.140) can be simplified by the choice of coordinate
axes. If we choose the (1,2,3) components of the Pauli spin matrices to correspond to the
(x, y, z) directions in space, and eB to point in the positive z-direction, the Hamiltonian gets
the form

Ĥ0 = −eB0

me
Ŝz

=
1

2
h̄ω0 σz. (1.143)

10The effect of a magnetic field on the electron spin, with its corresponding changes in the atomic energy levels
is referred to as the Zeeman effect.

11ω0 may be chosen to be positive by choosing eB0 negative. For the electron, with e < 0 this means choosing
n in the direction of B0, so that B0 is positive. For a particle with positive charge e n is chosen in the opposite
direction of B0, so that B0 is negative.
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The corresponding time evolution operator is

Û0(t) = e−
i
h̄
Ĥ0t = e−

i
2
ω0σzt (1.144)

and it shows explicitly the spin rotation around the z-axis.
We now proceed to examine a two-state problem with a time-dependent Hamiltonian,

which is directly relevant for the effect of so-called spin magnetic resonance. The system
is the spin variable of a (bound) electron in a magnetic field B which now, in addition to a
constant part has an oscillating part,

B = B0 k +B1(cosωt i + sinωtj). (1.145)

Both B0 and B1 are constants. The oscillating field is due to a circularly polarized electromag-
netic field interacting with the electron.

The time variation of B gives rise to a time-dependent Hamiltonian. Usually a time-
dependent problem like this can only be solved numerically or within some approximation
scheme. But the present problem can be solved exactly. We show this by rewriting the Hamil-
tonian in the following form

Ĥ = − e

me
[B0 k +B1(cosωt i + sinωtj)] · Ŝ

= − e

me
[B0Ŝz +B1(cosωt Ŝx + sinωt Ŝy)]

= − e

me
e−

i
h̄
ωtŜz [B0Ŝz +B1Ŝx]e

i
h̄
ωtŜz (1.146)

where the last expression follows from the commutation relations between the components
of Ŝ. This expression for the Hamiltonian implies that it can be transformed to the time-
independent form (1.140) by a unitary transformation.

In order to show this we perform a time-dependent transformation

|ψ(t)〉 → |ψ(t)〉T = T̂ (t) |ψ(t)〉 (1.147)

with T̂ (t) as the unitary operator

T̂ (t) = e
i
h̄
ωtŜz (1.148)

The transformed state vector satisfies the modified Schrödinger equation

ih̄
d

dt
|ψ(t)〉T = [T̂ (t)ĤT̂ (t)† + ih̄

dT̂

dt
T̂ (t)†]|ψ(t)〉T (1.149)

where the right-hand side defines the Hamiltonian in the transformed picture

ĤT = e
i
h̄
ωtŜzĤe−

i
h̄
ωtŜz − ωŜz

= − e

me
[B0Ŝz +B1Ŝx]− ωŜz

=
1

2
h̄[(ω0 − ω)σz + ω1σx] (1.150)
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with ω0 = −eB0/me and ω1 = −eB1/me.
It is of interest to note that the new Hamiltonian ĤT is not simply identical to the unitary

transformation T̂ (t)ĤT̂ (t)†, but there is also a contribution from the time derivative of T̂ (t).
This is a consequence of the fact that the Hamiltonian is primarily defined as the operator that
generates the time evolution of the state vector. For time-dependent transformations in general
this means that the original and transformed Hamiltonians will not represent the same physical
observable.

The transformation above can be interpreted as changing to a rotating reference frame,
where the magnetic field looks time-independent, and where the Hamiltonian is therefore also
independent of time. To re-write the Hamiltonian in a more standard form we introduce the
parameters

Ω =
√

(ω0 − ω)2 + ω2
1 (1.151)

and

cos θ =
ω0 − ω√

(ω0 − ω)2 + ω2
1

, sin θ =
ω1√

(ω0 − ω)2 + ω2
1

(1.152)

This gives for the Hamiltonian

ĤT =
1

2
h̄Ω (cos θσz + sin θσx) (1.153)

which is the same expression as for a spin Hamiltonian in a constant magnetic field (see
(1.143)), except that the magnetic field is now rotated by an angle θ relative to the z-axis.
The time evolution in the transformed frame is then simply

ÛT (t) = e−
i
2

Ωt (cos θσz+sin θσx) (1.154)

The time evolution operator, in the original frame, can now be found by applying the time
dependent transformation in reverse,

Û(t) = T̂ (t)† ÛT (t) T̂ (0)

= e−
i
2
ωtσze−

i
2

Ωt(cos θσz+sin θσx) (1.155)

which in matrix form is

Û(t) =

(
e−

i
2
ωt 0

0 e
i
2
ωt

)(
cos Ωt

2 − i cos θ sin Ωt
2 −i sin θ sin Ωt

2
−i sin θ sin Ωt

2 cos Ωt
2 + i cos θ sin Ωt

2

)

=

(
(cos Ωt

2 − i cos θ sin Ωt
2 )e−

i
2
ωt −i sin θ sin Ωt

2 e
− i

2
ωt

−i sin θ sin Ωt
2 e

i
2
ωt (cos Ωt

2 + i cos θ sin Ωt
2 )e

i
2
ωt

)
(1.156)

The above result shows that the time-varying magnetic field B1 will induce oscillations
in the spin between the two eigenstates |0〉 and |1〉 of the time-independent spin Hamiltonian
Ĥ0 = −(h̄eB0/2me)σz ,

|ψ(t)〉 = c0(t)|0〉+ c1(t)|1〉 (1.157)
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Let us choose as initial conditions, c0(0) = 1, c1(0) = 0, which means that the spin starts in
the ground state of Ĥ0. This gives,

c0(t) = (cos
Ωt

2
+ i cos θ sin

Ωt

2
)e

i
2
ωt

c1(t) = −i sin θ sin
Ωt

2
e−

i
2
ωt (1.158)

The time-dependent occupation probability of the upper level is
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Figure 1.5: Rabi oscillations in a two-level system, caused by an oscillating field. The oscillation in the
occupation of the upper level is shown as a function of time. The oscillation is shown for three different
values of the detuning parameter (ω0 − ω)/ω1.

|c1(t)|2 = sin2 θ sin2 Ωt

2
(1.159)

The amplitude of the oscillations is

sin2 θ =
ω2

1

(ω0 − ω)2 + ω2
1

(1.160)

The expression shows a resonance effect, when the frequency of the oscillating field matches
the energy difference between the two levels, ω = ω0. For this frequency the maximum value
of |c1(t)|2 is 1, which means that there is a complete transitions between the two levels |0〉 and
|1〉 during the oscillations. The frequency of the oscillations is

Ω =
√

(ω0 − ω)2 + ω2
1 (1.161)

with a resonance value

Ωres = |ω1| =
|eB1|
me

(1.162)

The frequency thus depends on the amplitude of the oscillating field. In Fig.1.5 the oscillations
are shown as a function of time for different values of the frequency ω.
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The oscillations between the two spin levels caused by coupling to the electromagnetic
field, are called Rabi oscillations and the frequency of the oscillations is referred to as the
Rabi frequency. The effect studied here has important applications in the context of electron
spin resonance (ESR) and nuclear magnetic resonance (NMR). In particular has NMR become
important in the form of magnetic resonance imaging (MRI), which is now widely used as a
scanning technique to obtain high quality images of the human body.

1.4.3 The Jaynes-Cummings model

We shall in this section study a model, which describes a two-level system interacting with a
harmonic oscillator. It is called the Jaynes-Cummings model, and it has an important applica-
tion in the field of cavity QED. The physical situation it describes is an atom interacting with
the electromagnetic field within in a reflecting cavity. The assumption is that one of the atomic
transitions is resonant with one of the modes of the electromagnetic field, and the simplifica-
tion of the model is that only the two atomic levels involved in the transition is included in the
description, and all the electromagnetic modes are neglected except the one which is strongly
coupled to the resonant transition. Thus, the two-level system represents the atom and the har-
monic oscillator represents the quantized field mode, in a similar way as discussed in Sect. 1.2.
The model studied here is closely related to the one previously examined in Sect. 1.3.2, where
a spin half system was coupled to a rotating magnetic field. The difference is that the elec-
tromagnetic field now is treated quantum mechanically. As we shall see, the Rabi oscillations
observed in the previous case now is present in the form of energy oscillations between the
atom and the cavity mode.

The Hamiltonian of the model has the following form

Ĥ =
1

2
h̄ω0σz + h̄ωa†a+ ih̄λ(a†σ− − aσ+) ≡ Ĥ0 + Ĥ1 (1.163)

where the Pauli matrices act between the two atomic levels and the operators â and â† are pho-
ton annihilation and creation operators, h̄ω0 is the energy difference between the two atomic
levels, and h̄ω is the photon energy. (The zero point of the energy has been adjusted to absorb
the ground state energy of the harmonic oscillator and to place the energies of the two-level
system symmetrically about E = 0.) The parameter λ gives the strength of the interaction and
we use the notation σ± = (1/2)(σx ± iσy) for the raising and lowering operators between the
two atomic levels.

The Hamiltonian, in the above expression, has been separated in the non-interaction part
Ĥ0 and the interaction Ĥ1, which can be interpreted as representing either a magnetic or electric
dipole coupling between the atom and the electromagnetic field. This type of interaction we
shall discuss further in Chapt. 4. The expression for the interaction has been simplified in a
form referred to as the rotating wave approximation, by including only resonant terms. This
approximation, and the other simplifications which are based on resonance between the two-
level system and the harmonic oscillator, are valid when the two frequencies ω0 and ω are
sufficiently close in value.

The eigenvalue equation for Ĥ0 can be written in the following form

Ĥ0|±, n〉 = h̄(nω ± 1

2
ω0)|±, n〉 (1.164)
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with ± referring to the upper and lower atomic levels, and n referring to the number of photon
being present in the cavity mode. Except for the ground state, all the eigenstates of the non-
interacting Hamiltonian are doubly degenerate, with equal energy for |−, n + 1〉 and |+, n〉,
for n ≥ 0. As follows from (1.163) interaction H1 splits the degeneracy, but only couples
states within such a pair. The ground state |−, 0〉 is unaffected by Ĥ1, and therefore remains
the ground state of the full Hamiltonian.

In the |±, n〉 basis Ĥ thus has a simple block-diagonal form, where each block, except for
the ground state, is a 2× 2 matrix. This makes it easy to diagonalize the Hamiltonian, and we
focus on the subspace spanned by |−, n+ 1〉 and |+, n〉, n ≥ 0. The Hamiltonian restricted to
this subspace we denote by Ĥn. It has the matrix form

Ĥn =
1

2
h̄

(
∆ −ign
ign −∆

)
+ εn1 (1.165)

with ∆ = ω0 − ω, gn = 2λ
√
n and εn = (n − 1

2)h̄ω. The upper left matrix position has then
been chosen to correspond to the atom being in the upper evergy level (of Ĥ0) and the lower
right matrix position to correspond the atom being in the lower level. To simplify expressions it
may be convenient to write the matrix elements in terms of new parameters Ωn and θn defined
by

Ω =
√

∆2 + g2
n , cos θn =

∆

Ωn
, sin θn =

gn
Ωn

(1.166)

This gives

Ĥn =
1

2
h̄Ωn

(
cos θn −i sin θn
i sin θn − cos θn

)
+ εn1 (1.167)

We note that the matrix in the above expression has the form of a rotated Pauli matrix σn,
as written in (1.135), if we make the following identifications for the polar coordinates of n,
θ = θn and φ = −π/2. The matrix thus has eigenvalues ±1 and eigenstates

ψ+
n =

(
cos θ2
−i sin θ

2

)
, ψ−n =

(−i sin θ
2

cos θ2

)
(1.168)

The corresponding energies are

E±n = εn ±
1

2
h̄Ωn

= (n− 1

2
)h̄ω ±

√
(ω0 − ω)2 + 4nλ2 (1.169)

A general time dependent state can be written as

ψn(t) = d+
n (t)ψ+

n + d−n (t)ψ−n =

(
cn1(t)
cn2(t)

)
(1.170)

with the coefficients related by

cn1 = i(d+
n cos

θn
2

+ d−n sin
θn
2

)

cn2 = −d+
n sin

θn
2

+ d−n cos
θn
2

(1.171)
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We assume, for simplicity, the following initial condition

cn1(0) = 0 , cn2(0) = 1 (1.172)

which means that the atom starts in the lower level, with n + 1 photons present in the cavity
mode. Expressed in terms of the d coefficients this is

d+
n (0) = − sin

θn
2
, d−n (0) = cos

θn
2

(1.173)

which for the time dependent coefficients gives

d+
n (t) = e−

i
h̄
E+td+

n (0) = − sin
θn
2
e−

i
2

Ωnte
i
h̄
εnt

d−n (t) = e−
i
h̄
E−td−n (0) = cos

θn
2
e
i
2

Ωnte−
i
h̄
εnt (1.174)

For the c coefficients this implies

cn1(t) = −e−
i
h̄
εnt sin θn sin

Ωn

2
t

cn2(t) = −e−
i
h̄
εnt(cos

Ωn

2
t+ i cos θn sin

Ωn

2
t) (1.175)

The time dependent probabilities for the atom to be in the upper and lower levels thus are

|cn1|2 = sin2 θn sin2 Ωn

2
t , |cn2|2 = 1− |cn1|2 (1.176)

The occupation probabilities oscillates between the upper and lower atomic levels, and the
photon number at the same time oscillates between n and n + 1. The maximum oscillations
happens when cos θn = 0, which corresponds to ω = ω0. In this case the probabilities oscillate
between 0 and 1.

This situation should be compared with the oscillating occupation probabilities in Sect. 1.3.2,
where a two-level system is interacting with a classical oscillating electromagnetic field. Thus,
the expressions found here are very similar to the ones found in the previous case, and the
correspondance between the photon number here and the strength of the magnetic feld in the
other case is given by

gn ↔ ω1 ⇒ 2 λ
√
n↔ −eB1

mec
(1.177)

The magnetic field, in this correspondance, is proportional to the square root of the photon
number. We note that when n is large there is essentially no difference between n and n + 1,
and the variation in the field strengt then is very small when the atom oscillates between the
upper and lower level. The situation discussed in Sect. 1.3.2, with a classical oscillating field,
can therefore be viewed as the limit of the situation considered here with the photon number
being very large, n >> 1. In the opposite case, with n ≈ 1, however, both the atom and the
electromagnetic field have to be treated quantum mechanically, with the states of the two being
strongly coupled at resonance, ω = ω0.
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1.4.4 Harmonic oscillator and coherent states

The Hamiltonian of a one-dimensional (quantum) harmonic oscillator we write in the standard
way as

Ĥ =
1

2m
(p̂2 +m2ω2x̂2) (1.178)

which means that it is realized as the energy observable of a particle with mass m in the
oscillator potential V̂ = (1/2)mω2x̂2.

The most elegant way to solve the energy eigenvalue problem is the algebraic method
shown in all introductory text books on quantum mechanics. It is based on the closed commu-
tator algebra formed by the operators x̂, p̂ and Ĥ , 12

[x̂, p̂] = ih̄ ,
[
x̂, Ĥ

]
= i

h̄

m
p̂ ,

[
p̂, Ĥ

]
= −ih̄mω2x̂ (1.179)

This is conveniently reformulated in terms of the raising and lowering operators

â =
1√

2mh̄ω
(mωx̂+ ip̂) , â† =

1√
2mh̄ω

(mωx̂− ip̂) (1.180)

which gives

Ĥ =
1

2
h̄ω(ââ† + â†â)) (1.181)

The commutator algebra is now reformulated as[
â, â†

]
= 1 ,

[
Ĥ, â

]
= −â h̄ω ,

[
Ĥ, â†

]
= â† h̄ω (1.182)

We briefly summarize the construction of energy eigenstates. Since Ĥ is a positive definite
operator, there is a lowest energy state, which is annihilated by â,

â|0〉 = 0 (1.183)

The repeated application of â† on this state generates a series of states |n〉, n = 0, 1, 2, ...,
which according to the commutator with Ĥ all are energy eigenstates. These states form a
complete set of states in the Hilbert space. The explicit action of the operators on these states
follows from the algebraic relations and are here summarized as

â|n〉 =
√
n|n− 1〉

â†|n− 1〉 =
√
n|n〉 ,

Ĥ|n〉 = h̄ω(n+
1

2
)|n〉 (1.184)

12The commutators of the observables of a quantum system defines a Lie algebra. When the Hamiltonian belongs
to a finite-dimensional Lie algebra, the general methods for finding representations of Lie algebras can be used
to construct the eigenstates and find the eigenvalues of the Hamiltonian. The algebraic method of solving the
eigenvalue problem of a harmonic oscillator is a particular example of this more general algebraic approach.



44 CHAPTER 1. QUANTUM FORMALISM

Expansion of state vectors |ψ〉 in the orthonormal basis {|n〉} defines a representation
which we shall refer to as the energy (or n-) representation. The transition between this repre-
sentation and the standard coordinate (or x-) representation is defined by the matrix elements

〈x|n〉 ≡ ψn(x) (1.185)

For given n this corresponds to the energy eigenfunction in the coordinate representation. We
refer to standard treatments of the harmonic oscillator, where these eigenstates are expressed
in terms of Hermite polynomials.

After this brief reminder on standard treatments of the harmonic oscillator, we turn to the
main theme of this section, which is a discussion of the so-called coherent states. These are
defined as the eigenstates of the annihilation operator â,

â|z〉 = z|z〉 (1.186)

What is unusual about this definition of states is that â is not a hermitian operator (and therefore
not an observable in the usual sense). However, the states |z〉 defined in this way do form a
complete set, in fact an over-complete set, and they define a new representation, the coherent
state representation with many useful properties.

Note that, since â is non-hermitian, the eigenvalues z will in general be complex rather
than real. Based on the relation between â and x̂ and p̂ it is useful to write z as,

z =
1√

2mh̄ω
(mω xc + ipc) (1.187)

This indicates that z can be interpreted as a complex phase space variable, with Rez propor-
tional to x and Imz proportional to p. However, since the symbol x has already been used for
the eigenvalues of x̂ and p for the eigenvalues of p̂, we have introduced xc and pc for the two
phase-space components of z. Such a distinction is necessary, since |z〉 is not an eigenstate
for x̂ and p̂, although the probability distributions over the eigenvalues will be strongly peaked
around xc and pc, respectively. For the expectation values of â and â† we have have

〈z|â|z〉 = z , 〈z|â†|z〉 = z∗ (1.188)

which for the expectation values of position and momentum gives

〈x〉z = xc , 〈p〉z = pc (1.189)

To study the coherent states further we first focus on the ground state of the harmonic
oscillator. This is a particular coherent state, with z = 0, as follows from (1.183). For the
ground state we have the following expectation values for x and p,

〈x〉0 = 〈p〉0 = 0〈
x2
〉

0
=

h̄

2mω
〈0|(â+ â†)(â+ â†)|0〉 =

h̄

2mω〈
p2
〉

0
= −mωh̄

2
〈0|(â− â†)(â− â†)|0〉 =

mωh̄

2
(1.190)
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From this follows that the uncertainties in x and p for the ground state satisfy

∆x2
0 ∆p2

0 =
h̄

2mω

mωh̄

2
=
h̄2

4
(1.191)

This is the minimum value for the product allowed by Heisenberg’s uncertainty principle. Thus,
the ground state is a minimum uncertainty state. A similar calculation for the excited energy
states shows that they are not,

∆x2
n∆p2

n =
h̄2

4
(2n+ 1)2 (1.192)

We shall proceed to show that all coherent states are minimum uncertainty states. To show
this we introduce the unitary operator

D̂(z) = ezâ
†−z∗â

= e
i
h̄

(pcx̂−xcp̂) (1.193)

where z is a complex number, related to xc and pc as in (1.187). It is the quantum version of a
displacement operator in phase space. It transforms â and â† as

D̂(z)†âD̂(z) = â+ z , D̂(z)†â†D̂(z) = â† + z∗ (1.194)

which is shown by use of the operator identity

eB̂Âe−B̂ = A+
[
B̂, Â

]
+

1

2

[
B̂,
[
B̂, Â

]]
+ ... (1.195)

It acts on x and p in the following way

D̂(z)† x̂ D̂(z) = x̂+ xc , D̂(z)† p̂ D̂(z) = p̂+ pc (1.196)

which explains the interpretation of D̂ as a displacement operator in phase space.
With the displacement operator D̂ acting on the ground state a continuum of new states can

be generated,

|z〉 ≡ D̂(z)|0〉
= e−z

∗zezâ
† |0〉 (1.197)

and it follows directly that these new states are coherent states with eigenvalues z for â,

âD̂(z)|0〉 = D̂(z)D̂(z)†âD̂(z)|0〉 (1.198)

= D̂(z)(â+ z)|0〉 (1.199)

= zD̂(z)|0〉 (1.200)

Since D̂(z) simply adds a constant to observables x̂ and p̂, which means that x̂−〈x〉 and p̂−〈p〉
are unchanged by the displacements, the shifted state |z〉 has the same uncertainty in x and p
as the ground state. Thus, all coherent states |z〉 are minimum uncertainty states.
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The above discussion also shows that the parameter z can take any value in the complex
plane, which means that there is a coherent state associated with each point in the (two-
dimensional) phase space. Furthermore, since the coherent states are optimally focussed in
x and p they can be viewed as the quantum states that are closest to the classical states, which
are defined by sharply defined positions in phase space.

Coherent states in the coordinate representation
The coordinate representation of the coherent states are defined by

ψz(x) = 〈x|z〉 (1.201)

where the bra corresponds to a position eigenstate and the ket to a coherent state. The z = 0
state is the ground state of the harmonic oscillator and is known to have the gaussian form

ψ0(x) = (
mω

πh̄
)

1
4 e−

mω
2h̄
x2

(1.202)

This expression can readily be generalized to arbitrary coherent states, since they satisfy a
linear differential equation

1√
2mh̄ω

(mωx+ h̄
d

dx
)ψz(x) = zψz(x) (1.203)

or,

d

dx
ψz(x) = (−mω

h̄
x+

√
2mω

h̄
z) ψz(x) (1.204)

This differential equation follows directly from the definition (1.186) of the coherent states.
The equation has the solution

ψz(x) = Nze
−(mω

2h̄
x2−
√

2mω
h̄

zx) (1.205)

where Nz is a z-dependent normalization factor. We rewrite it in the form

ψz(x) = N ′ze
−(mω

2h̄
(x−xc)2− i

h̄
xpc) (1.206)

with N ′z as a new normalization factor, and with xc and pc as the phase space coordinates
corresponding to the real and imaginary parts of z, as given by (1.187). Normalization of the
wave function determinesN ′z to be, up to a phase factor, the same as the prefactor of the ground
state wave function (1.202), |N ′z| = (mω/πh̄)1/4 . The complex phase of N ′z is undetermined
by the normalization, and N ′z could simply be chosen to be real. However, implicitly the phase
has already been fixed by the definition (1.197). To show this we shall find the expression for
ψz(x) in alternative, more direct way. We have

ψz(x) = 〈x|D̂(z)|0〉
= 〈x|e

i
h̄

(pcx̂−xcp̂)|0〉
= e−

i
2h̄
xcpc〈x|e

i
h̄
pcx̂e−

i
h̄
xcp̂)|0〉

= e−
i

2h̄
xcpce

i
h̄
pcxe−xc

d
dxψ0(x) (1.207)
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where we have used that in the coordinate representation we have the following relations,
ψ0(x) = 〈x|0〉 and exp(− i

h̄xcp̂) = exp(−xc ddx). The latter is a translation operator in x-
space, which gives, when applied to the ground state,

e−xc
d
dxψ0(x) =

∞∑
n=0

(−xc)n

n!

dnψ0

dxn
(x) = ψ0(x− xc) (1.208)

With the ground state wave function ψ0(x) given by (1.202), the full expression for the coherent
state in the x-representation is then

ψz(x) = (
mω

πh̄
)

1
4 e−(mω

2h̄
(x−xc)2− i

h̄
xpc+

i
2h̄
xcpc) (1.209)

This expression agrees with (1.206) and also gives the expression for the x-independent phase
factor included in the normalization factor.

Time evolution of coherent states
In the Heisenberg picture the time evolution of the creation and annihilation operators are

â†(t) = Û(t, 0)† â† Û(t, 0)

= eiωt â
†ââ†e−iωt â

†â

= eiωtâ† (1.210)

and

â(t) = Û(t, 0)† â Û(t, 0)

= eiωt â
†ââe−iωt â

†â

= e−iωtâ (1.211)

From the last one follows,

â Û(t, 0)|z〉 = e−iωtÛ(t, 0) â|z〉 = e−iωtz Û(t, 0)|z〉 (1.212)

which gives the time evolution

Û(t, 0)|z〉 = eiα(t)|e−iωtz〉 (1.213)

where α(t) is an undetermined complex phase. The equation shows that a coherent state con-
tinues to be a coherent state during the time evolution. This means that it keeps its property of
maximal localization in the phase space variables. The motion is given by

z(t) = e−iωt z(0) (1.214)

which means for the phase space variables

xc(t) = cosωt xc(0) + sinωt
1

mω
pc(0)

pc(t) = cosωt pc(0)− sinωt mω xc(0) (1.215)
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This shows that the coherent state moves in such a way that xc and pc change in exactly the
same way as the phase space variables of a classical harmonic oscillator. This is consistent
with Ehrenfest’s theorem, since xc and pc coincide with the expectation values 〈x〉 and 〈p〉.
Since the coherent states keep their minimal uncertainty during the time evolution, they are as
close as we can get to the classical, time dependent states of the harmonic oscillator within the
quantum description.

The coherent state representation
The coherent states are expressed in the energy representation in the following way

〈n|z〉 = 〈n|D̂(z)|0〉
= 〈n|ezâ†−z∗â|0〉
= 〈n|e−

1
2
|z|2ezâ

†
e−z

∗â|0〉
= e−

1
2
|z|2〈n|ezâ† |0〉

= e−
1
2
|z|2〈n|

∞∑
m=0

zm

m!
(â†)m|0〉

= e−
1
2
|z|2 zn√

n!
(1.216)

From this follows that the overlap between two coherent states is

〈z|z′〉 =
∑
n

〈z|n〉〈n|z′〉

= e−
1
2

(|z|2+|z′|2)
∑
n

(z′z∗)n

n!

= e−
1
2

(|z|2+|z′|2)+z′z∗ (1.217)

and for the absolute value this gives

|〈z|z′〉|2 = e−|z−z
′|2 (1.218)

The coherent states corresponding to two different values of z are not orthogonal states, but
the overlap falls off exponentially fast with the distance between the two points. This overlap
gives a measure of the intrinsic uncertainty of the coherent state as a probability amplitude in
phase space.

An interesting property of the coherent states is that, even if they are not orthogonal, they
satisfy a completeness relation. To see this we calculate the following integral over the two-
dimensional complex plane∫

d2z|z〉〈z| =

∫
d2ze−|z|

2 ∑
n,m

znz∗m√
n!m!

|n〉〈m|

=

2π∫
0

dθ

∞∫
0

drre−r
2 ∑
n,m

r(n+m)

√
n!m!

eiθ(n−m)|n〉〈m|
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= 2π

∞∫
0

dre−r
2 ∑

n

r2n+1

n!
|n〉〈n|

= π
∑
n

|n〉〈n|

= π 1̂ (1.219)

where we have applied the identity

∞∫
0

drr2n+1e−r
2

=
1

2
n! (1.220)

We rewrite the result (1.219) as the following completeness relation∫
d2z

π
|z〉〈z| = 1̂ (1.221)

With the help of the completeness relation the coherent state representation can be defined
as an alternative to the coordinate representation and the momentum representation. The wave
function, which is a function of the complex phase space variable z, is defined by the state
vector |ψ〉 as

ψ(z) = 〈z|ψ〉 (1.222)

and the inverse relation is

|ψ〉 =

∫
d2z

π
|z〉〈z|ψ〉 =

∫
d2z

π
|z〉ψ(z) (1.223)

The two relations show that there is a 1-1 correspondence between abstract vectors |ψ〉 and
wave functions ψ(z), and the coherent state representation is therefore a well defined represen-
tation of the quantum theory.

One of the implications of the above relations is that the coherent states do not form a
linearly independent set of states. They form instead an over-complete set. Thus,

|z〉 =

∫
d2z′

π
|z′〉〈z′|z〉 =

∫
d2z′

π
|z′〉e−

1
2

(|z|2+|z′|2)+z′∗z (1.224)

and since the coherent state |z〉 can be expressed as a linear combination of other coherent
states, this demonstrates the lack of linear independence. A consequence of this is that an
expansion of a state vector |ψ〉 in terms of the set of coherent states is not uniquely defined.
Nevertheless, the expansion given by (1.223) is unique because of constraints that implicitly are
imposed on the wave functions ψ(z). To see this we rewrite it in terms of the n-representation

ψ(z) =
∑
n

〈z|n〉〈n|ψ〉

=
∑
n

〈n|ψ〉e−
1
2
|z|2 z

∗n
√
n!

≡ e−
1
2
|z|2f(z∗) (1.225)
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The function

f(z∗) =
∑
n

〈n|ψ〉 z
∗n
√
n!

(1.226)

is an analytic function of z∗ since it depends only on z∗ and not on z. This is the constraint
on the wave functions ψ(z) that makes the coherent state representation well-defined, the wave
functions are up to a common factor e−

1
2
|z|2 restricted to be analytic functions.

Thus, wave functions and observables of the originally one-dimensional problem can be
rewritten in terms of analytic functions defined on the two-dimensional phase space. One
should, however, be aware of the fact that several relations in this representation are unfamiliar,
because of the non-orthogonality between the basis states |z〉.

The coherent states are important in many respects because of their close relation to classi-
cal states. They were introduced in the context of the quantum description of light, where they
describe states of classical light within the quantum theory.

1.4.5 Fermionic and bosonic oscillators: an example of supersymmetry

There is a formal similarity between the two-level system and the harmonic oscillator which
we shall examine in this section. To make the similarity explicit, we write the Hamiltonian of
the two-level system as

ĤF =
1

2
h̄ωσz (1.227)

and introduce the raising and lowering operators

b̂† = σ+ =
1

2
(σx + iσy) , b̂ = σ− =

1

2
(σx − iσy) (1.228)

In matrix form the operators are

ĤF =
1

2
h̄ω

(
1 0
0 −1

)
, b̂† =

(
0 1
0 0

)
, b̂ =

(
0 0
1 0

)
We now have the algebraic relations{

b̂, b̂†
}

= 1 , ĤF =
1

2
h̄ω
[
b̂†, b̂

]
(1.229)

where
{
b̂, b̂†

}
is the anticommutator b̂b̂† + b̂†b̂. The corresponding relations for a harmonic

oscillator are [
â, â†

]
= 1 , ĤB =

1

2
h̄ω
{
â†, â

}
(1.230)

We note that the (formal) transition between the two systems corresponds to interchanging
commutators with anticommutators.

There are many physical realizations of these two systems. We will now focus on a simple
many-particle realization. Let us assume that a single state is available for many identical
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particles. The state may be considered to be one of the field modes of a free field. The identical
particles may be either fermions or bosons.

In the fermion case the state space will contain only two states. |0〉 is the vacuum state
with no particle present and |1〉 is the excited state with one particle present. Due to the Pauli
exclusion principle the single-particle state cannot be occupied by more than one particle. The
occupation energy of this state is h̄ω. With this interpretation of the two-level system the oper-
ator b̂† is a creation operator for a fermion and b̂ is an annihilation operator. The Hamiltonian
is defined so that the vacuum energy is −1

2 h̄ω.
In the boson case there is an infinite number of states, since the single-particle state can

be occupied by an arbitrary number of particles. The states |n〉 now are interpreted as states
with n bosons present. The operator â† is a creation operator for bosons and â an annihilation
operator. The boson vacuum state has a vacuum energy +1

2 h̄ω which is the ground state energy
of the harmonic oscillator.

With the interpretation above in mind we may refer to the two-level system as a fermionic
oscillator and the standard harmonic oscillator as a bosonic oscillator.

In recent years the idea has been extensively developed that nature has a (hidden) symmetry
between fermions and bosons called supersymmetry. There is at this stage no physical evidence
for the presence of this symmetry as a fundamental symmetry of nature. Nevertheless the idea
has been pursued, with supersymmetry as an important input in string theories and supergravity
theories.

We discuss here a simple realization of supersymmetry (or Fermi-Bose symmetry) as a
symmetry for the two-level model and the quantum harmonic oscillator.

The symmetrized model has a Hamiltonian that can be written as a sum of the two Hamil-
tonians

Ĥ = ĤF + ĤB =
1

2
h̄ω[

{
â†, â

}
+
[
b̂†, b̂

]
] (1.231)

where the operators of the two subsystems are assumed to commute. Since the level spacing
of the two Hamiltonians have been chosen to be equal there is a double degeneracy of all the
excited levels, while the ground state is non-degenerate, as shown in Fig.1.4.5.

The supersymmetry is made explicit in terms of a supercharge, defined as

Q̂ =
√
h̄ω â†b̂ , Q̂† =

√
h̄ω âb̂† (1.232)

Together with the Hamiltonian it defines a supersymmetry algebra{
Q̂, Q̂†

}
= Ĥ[

Q̂, Ĥ
]

=
[
Q̂†, Ĥ

]
= 0{

Q̂, Q̂
}

= 2Q̂2 = 0{
Q̂†, Q̂†

}
= 2Q̂†2 = 0 (1.233)

This is not a commutator algebra (or Lie algebra), since it involves both commutators and
anticommutators. It is referred to as a graded (Lie) algebra. Q̂ and Q̂† are the fermionic (or
odd) elements and Ĥ is the bosonic (or even) element of this graded algebra.



52 CHAPTER 1. QUANTUM FORMALISM

a+

Q

b+

E

hω

0

1

2

3

4

5

Figure 1.6: The energy spectrum of a supersymmetric oscillator. The bosonic creation operator â† acts
vertically, while the fermionic creation operator b̂† acts in the diagonal direction. The supercharge Q̂ is
a symmetry operator that maps between pairs of degenerate excited states. The ground state which is
non-degenerate is annihilated by Q̂ and Q̂†.

The supersymmetry gives, as a general feature, a ground state energy (vacuum energy)
which is 0, due to cancellation of the contributions from the bosonic and fermionic variables.
This type of cancellation is important in supersymmetric quantum field theories, where the
divergent contributions to the vacuum energy are avoided.



Chapter 2

Quantum mechanics and probability

2.1 Classical and quantum probabilities

In this section we extend the quantum description to states that include “classical” uncertainties
in addition to quantum probabilities. Such additional uncertainties may be due to lack of a full
knowledge of the state vector of a system or due to a description of the system as member of a
statistical ensemble. But it may also be due to entanglement, when the system is the part of a
larger quantum system.

2.1.1 Pure and mixed states, the density operator

The state of a quantum system, described either as a wave function or an abstract vector in
the state space, has a probability interpretation. Thus, the wave function is referred to as a
probability amplitude and it predicts the result of a measurement performed on the system only
in a statistical sense. The state vector therefore characterizes the state of the quantum system
in a way that seems closer to the statistical description of a classical system than to a detailed,
non-statistical description. However, in the standard interpretation, this uncertainty about the
result of a measurement performed on the system is not ascribed to lack of information about
the system. We refer to the quantum state described by a (single) state vector, as a pure state and
consider this to contain maximum available information about the system. Thus, if we intend
to acquire further information about the state of the system by performing measurements on
the system, this will in general lead to a change of the state vector which we interpret as a
real modification of the physical state due to the action of the measuring device. It cannot be
interpreted simply as a (passive) collection of additional information.1

In reality we will often have less information about a quantum system than the maximally
possible information contained in the state vector. Let us for example consider the spin state
of the silver atoms emerging from the furnace of the Stern-Gerlach experiment. In principle

1An interesting question concerns the interpretation of a quantum state vector |ψ〉 as being the objective state
associated with a single system. An alternative understanding, as stressed by Einstein, claims that the probability
interpretation implies that the state vector can only be understood as an ensemble variable, it describes the state of
an ensemble of identically prepared systems. From Einstein’s point of view this means that additional information,
beyond that included in the wave function, should in principle be possible to acquire when we consider single
systems rather than ensembles.

53
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each atom could be in a pure spin state |n〉 with a quantized spin component in the n-direction.
However, the collection of atoms in the beam clearly have spins that are isotropically oriented in
space and they cannot be described by a single spin vector. Instead they can be associated with
a statistical ensemble of vectors. Since the spins are isotropically distributed, this indicates
that the ensemble of spin vectors |n〉 should have a uniform distribution over all directions
n. However, since the vectors of this ensemble are not linearly independent, the isotropic
ensemble is equivalent to another ensemble with only two states, spin up and spin down in any
fixed direction n, with equal probability for the two states.

We therefore proceed to consider situations where a system is described not by a single state
vector, but by an ensemble of state vectors, {|ψ〉1, |ψ〉2, ..., |ψ〉n}with a probability distribution
{p1, p2, ..., pn} defined over the ensemble. We may consider this ensemble to contain both
quantum probabilities carried by the state vectors {|ψ〉k} and classical probabilities carried by
the distribution {pk}. A system described by such an ensemble of states is said to be in a mixed
state. There seems to be a clear distinction between the two types of probabilities, but as we
shall see this is not fully correct. There are interesting examples of mixed states with no clear
division between the quantum and classical probabilities.

The expectation value of a quantum observable in a state described by an ensemble of state
vectors is

〈A〉 =
n∑
k=1

pk 〈A〉k =
n∑
k=1

pk〈ψk|Â|ψk〉 (2.1)

This expression motivates the introduction of the density operator associated with the mixed
state,

ρ̂ =
n∑
k=1

pk |ψk〉〈ψk| (2.2)

The corresponding matrix, defined by reference to an (orthogonal) basis {|φi〉}, is called the
density matrix,

ρij =
n∑
k=1

pk 〈φi|ψk〉〈ψk|φj〉 (2.3)

The important point to note is that all measurable information about the mixed state is con-
tained in the density operator of the state, in the sense that the expectation value of any observ-
able can be expressed in terms of ρ̂,

〈A〉 =
n∑
k=1

pk
∑
i

〈ψk|Â|φi〉〈φi|ψk〉

=
∑
i

n∑
k=1

pk〈φi|ψk〉〈ψk|Â|φi〉

= Tr(ρ̂Â) (2.4)

There are certain general properties that any density operator has to satisfy,

a) Hermiticity : pk = p∗k ⇒ ρ̂ = ρ̂†
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b) Positivity : pk ≥ 0 ⇒ 〈χ|ρ̂|χ〉 ≥ 0 for all |χ〉
c) Normalization :

∑
k

pk = 1 ⇒ Tr ρ̂ = 1 (2.5)

Thus, the eigenvalues are real and non-negative with a sum that equals one2. These conditions
follow from (2.2) with the coefficients pk interpreted as probabilities. We also note that

Tr ρ̂2 =
∑
k

p2
k ⇒ 0 < Tr ρ̂2 ≤ 1 (2.6)

This inequality follows from the fact that for all eigenvalues pk ≤ 1, which means that Tr ρ̂2 ≤
Tr ρ̂.

The pure states are the special case where one of the probabilities pk is equal to 1 and the
others are 0. In this case the density operator is the projection operator on a single state,

ρ̂ = |ψ〉〈ψ| ⇒ ρ̂2 = ρ̂ (2.7)

Therefore Tr(ρ̂2) = 1 for a pure state, while for all the (truly) mixed states Tr(ρ̂2) < 1.
A general density matrix can be written in the form

ρ̂ =
∑
k

pk|ψk〉〈ψk| (2.8)

where the states |ψk〉 may be identified as members of a statistical ensemble of state vectors
associated with the mixed state. Note, however, that this expansion is not unique. There are
many different ensembles that give rise to the same density matrix. This means that even if all
relevant information about the mixed state is contained in the density operator, in order for this
to specify the expectation value of an arbitrary observable, there may in principle be additional
information available that specifies the physical ensemble to which the system belongs.

An especially useful expansion of a density operator is the expansion in terms of its eigen-
states. In this case the states |ψk〉 are orthogonal and the eigenvalues are the probabilities pk
associated with the eigenstates. This expansion is unique unless there are eigenvalues with
degeneracies.

As opposed to the pure states, the mixed states are not providing the maximal possible
information about the system. This is due to the classical probabilities contained in the mixed
state, which to some degree makes it similar to a statistical state of a classical system. Thus,
additional information may in principle be obtainable without interacting with the system. For
example, two different observers may have different degrees of information about the system
and therefore associate different density matrices to the system. By exchanging information
they may increase their knowledge about the system without interacting with it. If, on the other
hand, two observers have maximal information about the system, which means that they both
describe it by a pure state, they have to associate the same state vector with the system in order
to have a consistent description.

A mixed state described by the density operator (2.8) is sometimes referred to as an inco-
herent mixture of the states |ψk〉. A coherent mixture is instead a superposition of the states,

|ψ〉 =
∑
k

ck|ψk〉 (2.9)

2The positivity condition we often write in a simple form as ρ̂ ≥ 0. It means that the operator is positive
semi-definite, i.e., it has only non-negative eigenvalues
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which then represents a pure state. The corresponding density matrix can be written as

ρ̂ =
∑
k

|ck|2|ψk〉〈ψk|+
∑
k 6=l

ckc
∗
l |ψk〉〈ψl| (2.10)

Comparing this with (2.8) we note that the first sum in (2.10) can be identified with the in-
coherent mixture of the states (with pk = |ck|2). The second sum involves the interference
terms of the superposition and these are essential for the coherence effect. Consequently, if the
off-diagonal matrix elements of the density matrix (2.10) are erased, the pure state is reduced
to a mixed state with the same probability pk for the states |ψk〉.

The time evolution of the density operator for an isolated (closed) system is determined by
the Schrödinger equation. As follows from the expression (2.8) the density operator satisfies
the dynamical equation

ih̄
∂

∂t
ρ̂ =

[
Ĥ, ρ̂

]
(2.11)

This looks similar to the Heisenberg equation of motion for an observable (except for a sign
change), but one should note that Eq.(2.11) is valid in the Schrödinger picture. In the Heisen-
berg picture, the density operator, like the state vector is time independent.

One should note the close similarity between Eq.(2.11) and Liouville’s equation for the
classical probability density ρ(q, p) in phase space

∂

∂t
ρ = {ρ,H}PB (2.12)

where {, }PB is the Poisson bracket.

2.1.2 Entropy

In the same way as one associates entropy with statistical states of a classical system, one
associates entropy with mixed quantum states as a measure of the lack of (optimal) information
about the state. The von Neuman entropy is defined as

S = −Tr(ρ̂ log ρ̂) (2.13)

Rewritten in terms of the eigenvalues of ρ̂ it has the form

S = −
∑
k

pk log pk (2.14)

which shows that it is closely related to the entropy defined in statistical mechanics and in
information theory. 3

The pure states are states with zero entropy. For mixed states the entropy measures how
far the state is from being pure. The entropy increases when the probabilities get distributed

3In statistical mechanics the natural logarithm is usually used in the definition of entropy, but in information
theory the base 2 logarithm is more common. There is no basic difference between these choices, since the differ-
ence is only a state independent, constant factor. To make a specific choice we may consider log in the following
to mean the base 2 logarithm.
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over many states. In particular we note that for a finite dimensional Hilbert space, a maximal
entropy state exists where all states are equally probable. The corresponding density operator
is

ρ̂max =
1

n

∑
k

|k〉〈k| = 1

n
1̂ (2.15)

where n is the dimension of the Hilbert space and {|k〉} is an orthonormal set of basis vectors.
Thus, the density operator is proportional to a projection operator that projects on the full
Hilbert space. The corresponding maximal value of the entropy is

Smax = log n (2.16)

A thermal state is a special case of a mixed state, with a (statistical) Boltzmann distribution
over the energy levels. It is described by a temperature dependent density operator of the form

ρ̂ = Ne−βĤ = N
∑
k

e−βEk |ψk〉〈ψk| (2.17)

with Ek as the energy eigenvalues, |ψk〉 as the energy eigenvectors, and β = 1/(kBT ), with
kB as the Boltzmann constant. N is the normalization factor,

N−1 = Tr e−βĤ =
∑
k

e−βEk (2.18)

which gives ρ̂ the correct normalization (2.5), consistent with the probability interpretation.
The close relation between the normalization factor and the partition function in (classical)
statistical mechanics is apparent.

Quantum statistical mechanics is based on definitions of density matrices associated with
different statistical ensembles. Thus, the density matrix (2.17) is associated with a canonical
ensemble of quantum states. Furthermore the thermodynamic entropy is, in the quantum statis-
tical mechanics, identical to the von Neuman entropy (2.13) apart from a factor proportional to
the Boltzmann constant kB . We will in the following make some further study of the entropy,
but focus mainly on its information content rather than thermodynamic relevance. Whereas the
thermodynamic entropy is most relevant for systems with a large number of degrees of free-
dom, the von Neuman entropy (2.13) is also highly relevant for small systems in the context of
quantum information.

2.1.3 Mixed states for a two-level system

For the two-level system we can give an explicit (geometrical) representation of the density
operators of mixed (and pure) states. Since the density operators are hermitian, with trace 1,
they may be written as 2x2 matrices in the form

ρ̂ =
1

2
(1+ r · σ) (2.19)
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with r as a real, three-component vector, 1 is the unit matrix and σ as the vector form of the
Pauli matrices. The condition for the density operator to represent a pure state is

ρ̂2 = ρ̂

⇒ 1

4
(1+ r2 + 2r · σ) =

1

2
(1+ r · σ)

⇒ r2 = 1 (2.20)

Thus, a pure state can be written as

ρ̂ =
1

2
(1+ n · σ) (2.21)

with n as a unit vector. This matrix represents the projection operator that projects on the one-
dimensional space spanned by the spin up eigenvector of n · σ. We note that this is consistent
with the discussion of section 1.3.1, where it was shown that any state in the two-dimensional
space would be the spin up eigenstate of the operator n · σ for some unit vector n.

For a general, mixed state we can write the density matrix as

ρ =
1

2
(1+ rn · σ)

=
1

2
(1 + r)

1+ n · σ
2

+
1

2
(1− r)1− n · σ

2

=
1

2
(1 + r)P+(n) +

1

2
(1− r)P−(n) (2.22)

with r = rn and P±(n) as the matrices that project on spin up (+) or spin down (-). This means
that the eigenvectors of ρ, also in this case are the eigenvectors of n · σ, but the eigenvalue p+

of the spin up state and the eigenvalue p− of the spin down state are given by

p± =
1

2
(1± r) (2.23)

The interpretation of p± as probabilities means that they have to be positive (and less than
one). This is satisfied if 0 ≤ r ≤ 1. This result shows that all the physical states, both pure
and mixed can be represented by points in a three dimensional sphere of radius r = 1. The
points on the surface (r = 1) correspond to the pure states. As r decreases the states gets less
pure and for r = 0 we find the state of maximal entropy. The entropy, defined by (2.14), is a
monotonic function of r, with maximum (log 2) for r = 0 and minimum (0) for r = 1. The
explicit expression for the entropy is

S = −(
1

2
(1 + r) log

1

2
(1 + r) +

1

2
(1− r) log

1

2
(1− r))

= −1

2
log[(1 + r)1+r(1− r)1−r] + log 2 (2.24)

The sphere of states for the two-level system is called the Bloch sphere4.
4The Bloch sphere is a special case of a convex set, since all matrices on a line between two density matrices is
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Figure 2.1: The entropy of mixed states for a two level system. The entropy S is shown as a function
of the radial variable r for the Bloch sphere representation of the states.

2.2 Entanglement

In this section we consider composite systems, which can be considered as consisting of two or
more subsystems. These subsystems will in general be correlated, often caused by (previous)
interactions between the two parts. In quantum systems the correlations may in some sense
be stronger than what is possible in a classical system. We refer to this as due to quantum
entanglement between the subsystems. Entanglement is considered as one of the clearest marks
of the difference between classical and quantum physics.

2.2.1 Composite systems

Up to this point we have mainly considered isolated quantum systems, with the systems re-
stricted to pure states. Only the variables of the isolated system then enters in the quantum
description, in the form of state vectors and observables, while the dynamical variables of other
systems are irrelevant. As long as the system stays isolated, i.e., with interactions with other
systems being negligible, the system will continue to be in a pure state, with the time evolution
described by the Schrödinger equation. For a mixed state, however, the degree of “non-purity”
measured by the entropy will stay constant as long as the system is isolated. This follows from
the fact that the time evolution is unitary and the eigenvalues of the density operator therefore
do not change with time.

Clearly an isolated system is an abstraction, since interactions with other systems (gener-
ally referred to as the environment) can never be totally absent. However, in some cases this
idealization works perfectly well. If interactions with the environments cannot be neglected,
also variables associated with the environment have to be taken into account. If these act ran-

also a density matrix. This property is generally valid, as follows from the original definition (2.2), which expresses
a general density operator as a convex combination of pure states. The pure states define the extreme points of
the convex set of density matrices, which generate all other points (matrices) of the convex set through convex
combinations, but which cannot themselves be expressed as convex combinations of other points in the set. For
a two-level system the pure states define the boundary of the set of density operators. This does not happen for
quantum systems of higher dimensions, where the boundary includes density matrices that are not pure.
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domly on the system they tend to introduce decoherence in the system. This means that the
state develops in the direction of being less pure, i.e., the entropy increases. On the other hand,
a systematic manipulation of the system may change the state in the direction of being more
pure. Thus, a measurement performed on the system will usually be of this kind.

Even if a systemA cannot be considered as isolated, sometimes it will be a part of a larger
isolated system S. We will consider this situation and assume that the total system S can be
described in terms of a set of variables for system A and a set of variables for the rest of the
system, which we denote B. We assume that these two sets of variables can be regarded as
independent (they are associated with independent degrees of freedom for the two subsystems
A and B), and that the interactions betweenA and B do not destroy this relative independence.
We further assume that the totality of dynamical variables forA and B provides a complete set
of variables for the full system S.

Correlations is a typical feature of interacting systems, both at the classical and quantum
level. Thus, the interactions between the two parts of a composite system will in general cor-
relate their behavior. Such correlations will persist after the two subsystems have ceased to
interact, and when that is the case they bring information about interactions in the past. For
a classical system the correlations are often expressed in terms of statistical correlation func-
tions, which can be expressed in terms of mean values of products of variables belonging to the
two systems. In quantum mechanics the corresponding correlation functions are expectation
values of products of observables for the subsystems. In the following we focus on such corre-
lations with the aim of studying the difference between quantum and classical correlations. We
first give a brief resumé of classical statistical correlations.

2.2.2 Classical statistical correlations

We consider a physical system S with two clearly distinguishable subsystems A and B. Let
us assume A to be a variable (observable) of system A, and for simplicity assume this to have
a discrete set of possible values a1, a2, .... Similarly B is a variable of subsystem B, with
possible values b1, b2, ... . In a classical statistical description the variables A and B may each
be associated with a probability distribution, so that pAk is the probability for the variable A to
take the value ak and pBl is the probability for the variable B to take the value bl. To study
correlations between the subsystems we introduce joint probabilities, where pkl measures the
probability for the variable A to take the value ak and the variable B (at the same time) to take
the value bl. Clearly we have the relations

pAk =
∑
l

pkl , pBl =
∑
k

pkl (2.25)

The statistical mean values for each subsystem then are given by

〈A〉 =
∑
k

pAk ak , 〈B〉 =
∑
l

pBl bl (2.26)

And for the composite system the mean value of the product variable AB is

〈AB〉 =
∑
kl

pklakbl (2.27)
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The subsystems of the composite system are uncorrelated when all the information about
the statistical mean values are contained in the probability distributions {pAk } and {pBl }. This
means that the joint probability has the product form

pkl = pAk p
B
l (2.28)

and the mean value of the product AB therefore also factorizes,

〈AB〉 = 〈A〉 〈B〉 (2.29)

If the probability distribution, and thereby the mean values, do not factorize in this way,
that expresses the presence of statistical correlations between the subsystems. The correlations
can then be studied in the form of correlation functions defined by

C(A,B) = 〈AB〉 − 〈A〉 〈B〉 (2.30)

We note that if we, in the classical setting, have full information about the composite system
S, and thereby full information about the subsystems A and B, then the value of the product
AB will trivially factorize. In this sense there are no correlations between the subsystems.
Thus, for correlations between the subsystems to be a meaningful concept, the state of the full
system, as well as of its parts, have to be described by statistical ensembles. For a quantum
system this is different. Even if we have maximal information about the composite system,
in the sense that it is in a pure state, we do not necessarily have maximal information about
its parts. In this case there are correlations between the subsystems, and since the full system
is in a pure state, these correlations are of non-classical nature. The systems A and B are
entanglement.

2.2.3 States of a composite quantum system

In mathematical terms we describe the Hilbert space H of a composite quantum system as a
tensor product of two Hilbert spaces HA and HB associated with the two subsystems, and
write this as

H = HA ⊗HB (2.31)

With {|α〉} as a basis for HA and {|β〉} as a basis for HB, a combination of vectors from the
two sets, which we refer to as the tensor product of the vectors, forms a basis forH,

|αβ〉 = |α〉 ⊗ |β〉 (2.32)

and a general vector inH is then a linear combination of these tensor product vectors,

|χ〉 =
∑
α,β

cαβ|α〉 ⊗ |β〉 (2.33)

Note that a vector in H is generally not a tensor product of vectors from HA and HB. For a
tensor product vector the coefficients of the superposition factorizes, cαβ = cAα c

B
β , so that,

|χ〉 = (
∑
α

cAα |α〉)⊗ (
∑
β

cBβ |β〉) ≡ |χA〉 ⊗ |χB〉 (2.34)
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With nA as the dimension of HA and nB as the dimension of HB the dimension of the full
Hilbert spaceH is clearly n = nAnB.

The observables of subsystems A and B are built into the Hilbert space description of the
full system in the form of commuting observables. Thus the action of these observables are
defined by the action on the product basis vectors as

Â|αβ〉 =
∑
α′

Aα′α|α′β〉 , B̂|αβ〉 =
∑
β′

Bβ′β|αβ′〉 (2.35)

and the commutativity then readily follows

ÂB̂|αβ〉 =
∑
α′β′

Aα′αBβ′β|α′β′〉 = B̂Â|αβ〉 (2.36)

We note that in the product basis, matrices have a double set of indices, with reference to
basis vectors of both subsystem A and B. This is in particular the case for the density matrix
of the full system,

ρα′β′,αβ = 〈α′β′| ρ̂ |αβ〉 (2.37)

The expectation values of observables acting only on subsystem A are determined by the re-
duced density matrix of system A. This matrix is obtained by taking the partial trace with
respect to the coordinates of system B,

ρ̂A = TrB(ρ̂) ⇔ ρAαα′ =
∑
β

ραβ,α′β (2.38)

In the same way we define the reduced density matrix for system B

ρ̂B = TrA(ρ̂) ⇔ ρBββ′ =
∑
α

ραβ,αβ′ (2.39)

In general the reduced density matrices will correspond to mixed states for the subsystems A
and B, even if the full system is in a pure state.

For a composite system there exist certain general relations between the entropy of the full
system and the entropies of the subsystems. These relations are not identical for a (classical)
statistical description and a quantum description of the composite system. Thus, for a bipartite
system, consisting of the two parts A and B as discussed above, the following inequalities are
satisfied in the classical description

a) S ≤ SA + SB , b) S ≥ max{SA, SB} (classical) (2.40)

whereas the corresponding constraints in the quantum description are

a) S ≤ SA + SB , b) S ≥ |SA − SB| (quantum) (2.41)

The inequality a) is the same in the two cases. Equality here means that the two subsytems are
uncorrelated, and if the entropy S of the full system is smaller than the sum SA+SB that indi-
cates the presence of correlations between the two subsystems. More interesting is inequality
b). For the classical system it states that the entropy of the full system cannot be smaller than
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the entropy of any of its parts. This seems quite natural in the sense that it can be interpreted
as “the full system cannot be less ordered than any of its parts”. However, in the quantum
case the entropy of the full system can be lower than the entropy of its parts. A corresponding
situation for a classical system would be rather paradoxical, but for a quantum system that can
happen. The extreme situation appears when the full system is in a pure quantum state, with
S = 0, while both entropies SA and SB of the subsystems are non-vanishing and positive. We
interpret this as telling us that quantum correlations are different from, and can be stronger than
correlations allowed in a classical statistical description.

2.2.4 Correlations and entanglement

In a quantum system we distinguish between different levels of correlations. We begin with
product states

ρ̂ = ρ̂A ⊗ ρ̂B (2.42)

which are states with no correlations between the subsystems A and B. For any observable Â
acting on A and B̂ acting on B the expectation value of the product operator ÂB̂, for such a
state is simply the product of the expectation values

〈AB〉 = 〈A〉A 〈B〉B (2.43)

Written in terms of the density operators,

Tr(ρ̂ÂB̂) = TrA(ρ̂AÂ)TrB(ρ̂BB̂) . (2.44)

Conversely, if the product relation (2.43) is correct for all observables Â acting on A and all
observables B̂ acting on B, the two subsystems are uncorrelated and the density operator can
be written in the product form (2.42).

We next consider mixed states of the form

ρ̂ =
∑
kl

pkl ρ̂
A
k ⊗ ρ̂Bl . (2.45)

With {pkl} as a probability distribution, this density matrix can be viewed as describing a
statistical ensemble of product states, i.e., of states which, when regarded separately, do not
contain correlations between the two subsytems. Such a state we refer to as separable. The
correlations contained in a density operator of this form we may refer to as classical correla-
tions, since these are of the same form that we find in a classical, statistical description of a
composite system (see Eq. (2.27)). The expectation value of a product of observables for A
and B in this case is

〈AB〉 =
∑
kl

pkl 〈A〉k 〈B〉l

=
∑
kl

pkl TrA(ρ̂Ak Â) TrB(ρ̂Bl B̂) (2.46)
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and with pAk =
∑
l pkl and pBl =

∑
k pkl the product of expectation values is

〈A〉 〈B〉 =
∑
k

pAk 〈A〉k
∑
l

pBl 〈B〉l

=
∑
k l

pAk p
B
l TrA(ρ̂Ak Â)TrB(ρ̂Bl B̂) . (2.47)

In general 〈AB〉 6= 〈A〉 〈B〉, and only when the probability distribution factorizes, pkl =
pAk p

B
l , the correlations between the two subsystems disappear. The situation is completely

analogous to the situation with classical statistical correlations between the subsystem.
However, for a quantum system there is a next level of correlations. Such correlations

are present for states described by density operators that are not of the product form (2.42) or
of the separable form (2.45). Correlations of this kind is what we refer to as entanglement.
In recent years there has been much effort devoted to give a concise quantitative meaning to
entanglement in composite systems. However, for bipartite systems in mixed states and for
multipartite systems in general, it is not obvious how to quantify deviations from classical
correlations. But for a bipartite system in a pure state a unique definition of entanglement can
be given, in terms of the entropy of the reduced density matrices of the subsystems. We focus
on this case.

We consider then a general pure state of the total system S = A+B. The entropy of such a
state clearly vanishes. The state has the general form

|χ〉 =
∑
α,β

cαβ|α〉A ⊗ |β〉B (2.48)

but can also be written in the diagonal form

|χ〉 =
∑
n

dn|n〉A ⊗ |n〉B (2.49)

where {|n〉A} is a set of orthonormal states for theA system and {|n〉B} is a set of orthonormal
states for the B system. This form of the state vector as a simple sum over product vectors,
rather than a double sum, is referred to as the Schmidt decomposition of |χ〉. It will be shown
below that such an expansion is generally valid for a composite bipartite system.

The form of the state vector |χ〉 is similar to that of density operator (2.45) for the correlated
state. In the same way as for the density operator the system is uncorrelated if the sum includes
only one term, i.e., if the state has a product form. However, the correlations implied by the
general form of the state vector (2.49) are different from those of the (classically) correlated
state (2.45). From the Schmidt decomposition follows that the density matrix of the full system
corresponding to the pure state |χ〉 is

ρ̂ =
∑
nm

dnd
∗
m |n〉A〈m|A ⊗ |n〉B〈m|B (2.50)

This is not of the form (2.45). The state (2.49) is a linear combination (superposition) of
products of state vectors of the two subsystems. But the corresponding density operator is not
separable, i.e., it cannot be written as a linear combination of products of density matrices.
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From (2.50) also follows that the reduced density operators of the two subsystems have the
form

ρ̂A =
∑
n

|dn|2|n〉A〈n|A , ρ̂B =
∑
n

|dn|2|n〉B〈n|B (2.51)

The expressions show that all the eigenvalues of the two reduced density matrices are the same.
This implies that the von Neuman entropy of the two subsystems is the same,

SA = SB = −
∑
n

|dn|2 log |dn|2 (2.52)

In this case, with the full system A+B in a pure state, the entropy of one of the subsystems
(A or B) is taken as a quantitative measure of the entanglement between the subsystems. It is
referred to as the entanglement entropy of the composite system.

The Schmidt decomposition
We show here that a general state of the composite system can be written in the form (2.49).
The starting point is the general expression (2.48). We introduce a unitary transformation U
for the basis of system A,

|α〉A =
∑
n

Unα |n〉A (2.53)

and rewrite the state vector as

|χ〉 =
∑
α,β

∑
n

cαβ Unα|n〉A ⊗ |β〉B

=
∑
n

|n〉A ⊗ (
∑
α,β

cαβ Unα|β〉B)

≡
∑
n

|n〉A ⊗ |ñ〉B (2.54)

If the unitary transformation can be chosen to make the set of states {|ñ〉} an orthogonal set of
states, then (2.49) follows. The scalar product between two of the states is

〈ñ|m̃〉B =
∑
α,α′

∑
β,β′

c∗αβU
∗
nαcα′β′Umα′〈β|β′〉B

=
∑
α,α′

∑
β

c∗αβU
∗
nαcα′βUmα′

= (UCC†U †)mn (2.55)

In the last expression the coefficients cαβ have been treated as the matrix elements of the matrix
C. We note that the matrix M = CC† is hermitian and positive definite, and the unitary matrix
U can therefore be chosen to diagonalize M . With the (non-negative) eigenvalues written as
|dn|2 we have

〈ñ|m̃〉B = |dn|2δmn (2.56)
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and if the normalized vectors |m〉 are introduced by

|m̃〉 = dm|m〉 (2.57)

then the Schmidt form (2.49) of the vector |χ〉 is reproduced with the basis sets of both systems
A and B as orthonormal vectors.5

2.2.5 Entanglement in a two-spin system

As an example, we consider entanglement in the simplest possible composite system, which is
a system that consists of two two-level subsystems (for example two spin-half systems). We
shall consider several sets of vectors with different degrees of entanglement.

An orthogonal basis of product states is given by the four vectors

| ↑ ↑〉 = | ↑〉A ⊗ | ↑〉B
| ↑ ↓〉 = | ↑〉A ⊗ | ↓〉B
| ↓ ↑〉 = | ↓〉A ⊗ | ↑〉B
| ↓ ↓〉 = | ↓〉A ⊗ | ↓〉B (2.58)

where {| ↑〉, | ↓〉} is an orthonormal basis set for the spin-half system.
Another basis is given by states with well-defined total spin. As is well-known by the rules

of addition of angular momentum, two spin half systems will have states of total spin 0 or 1.
The spin 0 state is the antisymmetric (spin singlet) state

|0〉 =
1√
2

(| ↑ ↓〉 − | ↓ ↑〉) (2.59)

while spin 1 is described by the symmetric (spin triplet) states

|1, 1〉 = | ↑ ↑〉 , |1, 0〉 =
1√
2

(| ↑ ↓〉+ | ↓ ↑〉) , |1,−1〉 = | ↓ ↓〉 (2.60)

Clearly the two states |1, 1〉 = | ↑ ↑〉 and |1,−1〉 = | ↓ ↓〉 are product states with no correlation
between the two spin systems. However, the two remaining states |0〉 and |1, 0〉 are entangled.
These states may be included as two of the states of a third basis of orthonormal states, called
the Bell states. They are defined by

|a,±〉 =
1√
2

(| ↑ ↓〉 ± | ↓ ↑〉)

|c,±〉 =
1√
2

(| ↑ ↑〉 ± | ↓ ↓〉) (2.61)

and are all states of maximal entanglement between the two subsystems. We note that the two
spins are strictly anti-correlated for the first two states (|a,±〉) and strictly correlated for the
two other states (|c,±〉).

5In mathematical terminology the Schmidt decomposition is usually referred to as singular value decomposition.
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Let us focus on the spin singlet state |a,−〉. It is a pure state (of systemA+B) with density
matrix

ρ̂(a,−) = |a,−〉〈a,−|

=
1

2
(| ↑ ↓〉〈↑ ↓ |+ | ↓ ↑〉〈↓ ↑ | − | ↑ ↓〉〈↓ ↑ | − | ↓ ↑〉〈↑ ↓ |)

(2.62)

The corresponding reduced density matrices of both systems A and B are of the same form

ρ̂A = ρ̂B =
1

2
(| ↑〉〈↑ |+ | ↓〉〈↓ |) (2.63)

The symmetric state ρ̂(a,+) has the same reduced density matrices as ρ̂(a,−). In fact this is
true for all the four Bell states. Thus, the information contained in the density matrices of the
subsystems do not distinguish between these four states of the total system.

The loss of information when we consider the reduced density matrices is demonstrated
explicitly in taking the partial trace of (2.62) with respect to subsystemA or subsystem B. The
two last terms in (2.62) simply do not contribute. If we leave out the two last terms of (2.62)
we have the following density matrix, which also have the same reduced density matrices,

ρ̂(a) =
1

2
(| ↑ ↓〉〈↑ ↓ |+ | ↓ ↑〉〈↓ ↑ |) (2.64)

This is still strictly anti-correlated in the spin of the two particles, but the correlation is now
classical in the sense that the full density matrix is written in the form (2.45). Thus, the terms
that are important for the quantum entanglement between the two subsystems are the ones that
are left out when we take the partial trace. These terms are the off-diagonal interference terms
of the full density matrix, and this means that we can view the entanglement as a special type
of interference effect associated with the composite system.

When the reduced density operators are written as 2× 2 matrices they have the form

ρ̂A = ρ̂B =
1

2

(
1 0
0 1

)
(2.65)

Since they are proportional to the 2 × 2 unit operator they correspond to states with maximal
entropy SA = SB = log 2. With the entropy of the subsystems taken as a measure of entangle-
ment this means that the spin singlet state is a state of maximal entanglement. This is true for
all the Bell states, as already has been mentioned.

Finally, note that the reduced density matrix (2.63) is rotationally invariant. This is how-
ever not the case for the “classical” density matrix (2.64) of the full system. It describes a state
where the spins of the two particles along one particular direction is strictly anti-correlated. It
is interesting to note that we cannot define a density matrix of this form which predicts strict
anti-correlation for the spin in any direction. Also note that neither is the pure state |a,+〉
rotationally invariant. In fact the state |a,−〉 is the only Bell state that is rotationally invariant,
since it corresponds to spin 0. This makes the spin singlet state particularly interesting, since it
describes a situation where the spins are strictly anti-correlated along any direction in space.
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2.3 Quantum states and physical reality

In 1935 Einstein, Podolsky and Rosen published a paper where they focussed on a central ques-
tion in quantum mechanics. This question has to do with the relation between the formalism of
quantum mechanics, with its probability interpretation, and the underlying physical reality that
quantum mechanics describes. They pointed out, by way of a simple thought experiment, that
one of the implications of quantum physics is that it blurs the distinction between the objective
reality of nature and the subjective description used by the physicist. Their thought experiment
has been referred to as the EPR paradox, and it has challenged physicists in their understanding
of the relation between physics and the reality of natural phenomena up to this day. As conclu-
sion drawn from the paradox Einstein, Podolsky and Rosen suggested that quantum mechanics
is an incomplete theory of nature. Later, in 1964 John Bell showed that the conflict between
quantum mechanics and intuitive notions of reality goes deeper. Quantum theory allows types
of correlations that cannot be found in classical theories that obey the basic assumptions of
locality and reality.

In this section we examine the EPR paradox in a form introduced by David Bohm and
proceed to examine how the limitations of classical theory is broken in the form of Bell in-
equalities. As first emphasized by Erwin Schrödinger the basic element of quantum physics
involved in these considerations is that of entanglement.

2.3.1 EPR-paradox

We consider a thought experiment, where two spin half particles (particle A and particle B) are
produced in a spin singlet state (with total spin zero). The two particles move apart, but since
they are considered to be well separated from any disturbance, they keep their correlations so
that the spin state is left unchanged. The full wave function of the two-particle system can be
viewed as the product of a spin state and a position state, but for our purpose only the spin state
is of interest. Concerning the position state it is sufficient to know that after some time the
particles are separated by a large distance.

At a point in time when the two particles are well separated, a spin measurement is per-
formed on particle A. This will modify the spin state of this particle, but since particle B is
far away, the measurement cannot affect particle B in any real sense. However, and this is
the paradox, the change in the spin state caused by the measurement will also influence the
possible outcomes of spin measurements performed on particle B.

The experiment is schematically shown in Fig.(2.3.1). From the time when the particles
are emitted and until the time when the spin experiment is performed the two particles are in
the entangled state

|a,−〉 =
1√
2

(| ↑ ↓〉 − | ↓ ↑〉) (2.66)

In this state the spin of the two particles are strictly anti-correlated. This means that if particle
A is measured to be in a spin up state, particle B is necessarily in a spin down state. But each
particle, when viewed separately, is with equal probability found with spin up and spin down.

The reference to spin up (↑) and spin down (↓) in the state vector (2.66) seems to indicate
that we have given preference to some particular direction in space. However, the singlet state
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A B

entangled pairs

spin measurement

S

Figure 2.2: The set-up of an EPR experiment. Pairs of entangled particles are prepared in a singlet
spin state and sent in opposite directions from a source S. ( In the figure the entangled pairs are shown
connected with dashed red curves.) The spin direction of each particle is, in this initial state, totally
undetermined. At some distance from the source, one particle (A) from each pair passes a measuring
device (shown by the green window) which measures the spin component in the z- direction. After
passing the measuring apparatus the particle appears with quantized spin in the z-direction, either spin up
as shown in the figure or with spin down. Due to the strict anti-correlation between the spin orientation
of particle A and particle B in a pair, at the same time as particle A appears with spin up in the z-direction
particle B will appear with spin down along the z-axis. In this way the measuring of the spin of particle A
effectively acts as a measurement of the spin of particle B (indicated by the dashed green window) even
if no measuring device acts on this particle. Following EPR we make the following deduction. Since
particle B has been subject to no physical action, spin down along the z-axis for particle B after the
measurement on A implies that B had spin down along the z-action also before the measurement (even
if that was not known prior to the measurement). But before the measurement was performed we could
in principle have decided to measure the spin in the x-direction. If that was done the spin of particle B
in the x-direction (red arrow) would have been quantized. In this way, by choosing how to perform the
measurement on A, we can decide whether to quantize the spin of B in the z- or the x-direction. Again,
since no physical interaction with B has taken place, this implies that the spin components both in the
z- and the x-directions must have had quantized, sharp (but unknown) values before the measurement.
This conclusion is not consistent with quantum mechanics, since the two components of the spin are
incompatible observables, hence the paradox.

is rotationally invariant. Therefore the state is left unchanged if we redefine this direction in
space. Thus, we do not have to specify whether the z-axis, the x-axis or any other direction has
been chosen, they all give rise to the same (spin 0) state.

We now consider, in this hypothetical experiment, that the spin of particle A is measured
along the z-axis. If the result is spin up, we know with certainty that the spin of particle B in the
z-direction is spin down. Likewise, if the result of measurement on A is spin down the spin of
particle B in the z-direction is spin up. In both cases, a measurement of the z spin component
of particle A will with necessity project particle B into a state with well defined (quantized) z-
component of the spin. Since no real change can have been introduced in the state of particle B
(it is far away) it seems natural to conclude that the spin component along the z-axis must have
had a sharp (although unknown value) also before the measurement was actually performed on
particle A.

This conclusion is on the other hand in conflict with the standard interpretation of quantum
mechanics. Thus, if the z-component of the spin of particle B has a sharp value before the
measurement, it will have a sharp value even if the measurement along the z-axis is not per-
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formed at all, and even if we choose to measure the spin along the x-axis instead. But now the
argument can be repeated for the x-component of the spin. This will in the same way lead to
the conclusion that the x-component of the spin of particle B has a sharp value before the mea-
surement. Consequently, both the z-component and the x-component of the spin must have a
sharp (but unknown) values before the measurement is performed on particle A. But this is not
in accordance with the standard interpretation of quantum mechanics. The z-component and
the x-component of the spin operator are incompatible observables, since they do not commute
as operators. Therefore they cannot simultaneously be assigned sharp values.

The conclusion Einstein, Podolsky and Rosen drew from the thought experiment is that
both observables will in reality have sharp values, but since quantum mechanics is not able
to predict these values with certainty (only with probabilities) quantum theory cannot be a
complete theory of nature. From their point of view there seems to be some missing variables
in the theory. If such variables are introduced in the quantum description, we refer to the theory
as a “hidden variable” theory.

Note the two elements that enter into the above argument:
Locality — Since particle B is far away from where the measurement takes place we conclude
that no real change can take place concerning the state of particle B.
Reality — When the measurement on particle A makes it possible to predict with certainty the
outcome of a measurement performed on particle B, we draw the conclusion that this represents
a property of B which is there even without actually performing a measurement on B.

From later studies we know that the idea of Einstein, Podolsky and Rosen that quantum the-
ory is an incomplete theory does not really resolve the EPR paradox. Hidden variable theories
can in principle be introduced, but to be consistent with the predictions of quantum mechanics,
they cannot satisfy the conditions of locality and reality used by EPR. Thus, there is a real
conflict between quantum mechanics and basic principles of classical theories of nature.

From the discussion above it is clear that entanglement between the two particles is the
source of the (apparent) problem. It seems natural to draw the conclusion that if a measurement
is performed on one of the partners of an entangled system there will be (immediately) a change
in the state also of the other partner. But if we phrase the effect in this way, one should be
aware of the fact that the effect of entanglement is always hidden in correlations between
measurements performed on the two parts. The measurement performed on particle A does
not lead to any local change at particle B that can be seen without consulting the result of the
measurement performed on A. Thus, no change that can be interpreted as a signal sent from A
to B has taken place. This means that the immediate change that is affecting the total system
A+B due to the measurement on A does not introduce results that are in conflict with causality.

2.3.2 Bell’s inequality

Correlation functions
The EPR paradox shows that quantum mechanics is radically different from classical statisti-
cal theories, when entanglement between systems is involved. In the original presentation of
Einstein, Podolsky and Rosen it was left open as a possibility that a more complete description
of nature could replace quantum mechanics. However, by studying correlations between spin
systems, John Bell concluded in 1964 that the predictions of quantum mechanics is in direct
conflict with what can be deduced from a “more complete” theory with hidden variables, when
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this satisfy what is known as Einstein locality. This was expressed in terms of a certain in-
equality (Bell inequality), that had to be satisfied by a modified spin theory, if this should have
the form of a local and realistic theory. Quantum theory was shown not to satisfy, in general,
this inequality, and the Bell inequality therefore set a borderline between classical and quantum
correlations in this system.

To examine this difference between classical and quantum correlations, we follow John
Bell and reconsider the EPR experiment, but focus on correlations between measurements of
spin components performed on both particles A and B. Let us assume that the particles move in
the y-direction. The spin component in a rotated direction in the x, z-plane will have the form

Ŝθ = cos θŜz + sin θŜx (2.67)

We consider now the following correlation function between spin measurements on the two
particles,

E(θA, θB) ≡ 4

h̄2 〈SθASθB 〉 (2.68)

Thus, we are interested in correlations between spin directions that are rotated by arbitrary
angles θA and θB in the x, z-plane. The factor h̄2/4 is included to make E(θA, θB) a dimen-
sionless function, normalized to take values in the interval (−1,+1).

For the spin singlet state it is easy to calculate this correlation function. It is

E(θA, θB) = − cos(θA − θB) (2.69)

With the two spin measurements oriented in the same direction, θA = θB ≡ θ, we have

E(θ, θ) = −1 (2.70)

which shows the anti-correlation between the two spin vectors.
Let us now leave the predictions of quantum mechanics and look at the limitations of a

local, realistic hidden variable theory. We write the measured spin values as SA = h̄
2σA

and SB = h̄
2σB so that σA and σB are normalized to unity in absolute value. We make the

following assumptions, which build in the requirements of a local and realistic hidden variable
theory together with the facts that are known about spin half systems6,

1. Hidden variables. The measured spin values SA of particle A and SB of particle B are
determined (before the measurement) by one or more unknown variables, denoted λ. Thus
σA = σA(λ) and σB = σB(λ).

2. Einstein locality. The spin value SA will depend on the orientation θA, but not on the
orientation θB , when the two measuring devices are separated by a large distance. Similarly
SB will be independent of θA. We write this as

6Bell’s analysis focusses on the conflict between the possible correlations in a quantum and a classical system.
But to assume sharp values for the components of the particle spin in different directions creates a problem even
without making reference to correlations. As discussed in the context of the Stein-Gerlach experiment, the fact that
only spin up and spin down can be measured for a spin component seems incompatible with rotational invariance
when spin is treated as a classical variable. This means that the classical spin theory considered by Bell is uncon-
ventional, in the sense that the measured spin values in different directions cannot be regarded as the components
of a spin vector that can be continuously rotated in space.
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σA = σA(θA, λ) σB = σB(θB, λ)

3. Spin quantization. We assume the possible outcome of measurements are consistent
with spin quantization,

σA = ±1 σB = ±1

4. Anti-correlation. We assume that the measured values are consistent with the known
anti-correlation of the singlet state

σA(θ, λ) = −σB(θ, λ) ≡ σ(θ, λ)

Since the variable λ is unknown we assume that particles are emitted from the source S
with some probability distribution ρ(λ) over λ. Thus, the expectation value (2.68) can be
written as

E(θA, θB) =

∫
dλ ρ(λ) σA(θA, λ) σB(θB, λ)

= −
∫
dλ ρ(λ) σ(θA, λ) σ(θB, λ) (2.71)

We now consider the difference between correlation function E for two different sets of
angles

E(θ1, θ2)− E(θ1, θ3) = −
∫
dλ ρ(λ)(σ(θ1, λ)σ(θ2, λ)− σ(θ1, λ)σ(θ3, λ))

=

∫
dλ ρ(λ)σ(θ1, λ)σ(θ2, λ) (σ(θ2, λ)σ(θ3, λ)− 1)

(2.72)

In the last expression we have used σ(θ, λ)2 = 1, which follows from assumption 3. From this
we deduce the following inequality

|E(θ1, θ2)− E(θ1, θ3)| ≤
∫
dλ ρ(λ) (1− σ(θ2, λ)σ(θ3, λ))

= 1 + E(θ2, θ3) (2.73)

which is one of the forms of the Bell inequality.
Let us make the further assumption that the correlation function only depends on the rela-

tive angle (rotational invariance),

E(θ1, θ2) = E(θ1 − θ2) (2.74)

Let us also assume that E(θ) increases monotonically with θ in the interval (0, π). (Both these
assumptions are true for the quantum mechanical correlation function (2.69).) We introduce
the probability function

P (θ) =
1

2
(E(θ) + 1) (2.75)

This function gives the probability for measuring either spin up or spin down on both spin
measurements (see the discussion below). It satisfies the simplified inequality

P (2θ) ≤ 2P (θ) , 0 ≤ θ ≤ π

2
(2.76)
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Due to strict anti-correlation between the spin measurements for θ = 0, which means strict
correlation for θ = π, the function satisfies the boundary conditions

P (0) = 0 , P (π) = 1 (2.77)

We further note that the inequality (2.76) is satisfied if P (θ) is a concave function of θ (func-
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Figure 2.3: The probability P (θ) for measuring two spin ups or two spin downs as a function of
the relative angle θ between the spin directions. Curve A satisfies the Bell inequality, Curve B is the
limiting case where the Bell inequality is replaced by equality and Curve C is the probability predicted
by quantum mechanics. Curve C is not consistent with the Bell inequality, but it is the curve confirmed
by experiments.

tion with a negative second derivative), with the given boundary values. This is illustrated in
Fig.(2.3.2), where P (θ) = θ/π is a limiting function which satisfies (2.76) with equality rather
than inequality.

We now turn to the predictions of quantum theory. As follows from (2.69) the function
P (θ) is given by

P (θ) = sin2 θ

2
(2.78)

This function does not satisfy the Bell inequality. This is clear from taking a special value
θ = π/3. We have

P (2π/3) = sin2 π

3
=

3

4

2P (π/3) = 2 sin2 π

6
=

1

2
(2.79)

Thus, P (2π/3) > 2P (π/3) in clear contradiction to Bell’s inequality. This breaking of the
inequality is seen also in Fig.(2.3.2).

Measured frequencies
To get a better understanding of the physical content of the Bell inequality we will discuss its
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meaning in the context of spin measurements performed on the two particles, where a series of
results, either spin up or spin down, is registered for each particle. We are particularly interested
in correlations between the results of pairs of entangled particles.

Let us therefore consider a spin measurement experiment where the orientations of the two
measurement devices are set to fixed directions. We assume N pairs of entangled particles are
used for the experiment. The results are registered for each pair, and we denote by n+ the
number of times where the two particles are registered both with spin up or both with spin
down. The number of times where one of the particles are registered with spin up and the other
with spin down we denote by n−. Clearly n+ + n− = N .

SA   +  -  +  +  -  +  -  -  +  +  -  +

SB   -  +  -  -  +  -  +  +  -  -  +  -

Series I:    ΘA=ΘB=0,    n+=0

Spin measurements

SA   +  -  +  +  -  +  -  -  +  +  -  +

SB   -  +  +  -  +  -  -  +  +  -  +  -

Series II:   ΘA=0, ΘB=π/3,   n+=3

SA   -  -  +  -  -  +  -  -  -  +  -  +

SB   -  +  -  -  +  -  +  +  -  -  +  -

Series III:  ΘA=-π/3, ΘB=0,  n+=3

SA   -  -  +  -  -  +  -  -  -  -  -  +

SB   -  +  +  -  +  -  -  +  +  -  +  -

Series IV:  ΘA=-π/3, ΘB=π/3,  n+=4

Figure 2.4: Four series with results of spin measurement on pairs of entangled particles (SA and SB).
Spin up is represented by + and spin down by - . Series I is considered as the result of a real experiment
with alignment of the directions of the measuring devicesMA andMB . A strict anti-correlation between
the result is observed for each pair. Series II gives the hypothetical results that would have been obtained
in the same experiment if the direction of MB were tilted relative to MA. About 1/4 of the spins SB

would be flipped. These are indicated by red circles. This would lead to four pairs with correlated spins,
indicated by green lines. Series III is a similar hypothetical situation with MA rotated. Finally Series IV
gives the results if both MA and MB were rotated. In one of the pairs both spins are flipped relative to
Series I. This reduces the number of correlated spins relative to the sum of correlated pairs for Series II
and Series III.
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The functions E(θ) and P (θ) are for large N approximated by the frequencies

E(θ)exp =
n+ − n−

N

P (θ)exp =
1

2
(E(θ)exp + 1) =

n+

N
(2.80)

Thus P (θ) represents the probability for having the same result (both spin up or both spin
down) for an entangled pair, as already mentioned.

Let us first focus at the list of results called Series I in Fig.(2.3.2). We consider this list as
the outcome of a series of measurements for a setup where the directions of the two measuring
devices are aligned (θA = θB = 0). Each pair of entangled particles is separated in a particle
A whose spin is measured in MA and a particle B whose spin is measured in MB .

The list indicates, as we should expect, that the results of measurements at MA, when
considered separately, correspond to spin up and spin down with equal probability. The same
is the case for the measurements atMB . The list also reveals the strict anti-correlation between
measurements on each entangled pair. We write the result as

P (I)exp =
n+(I)

N
= 0 (2.81)

Instead of performing a new series of measurements we next make some theoretical consid-
erations based on the assumption of locality. We ask the question: What would have happened
if in the experiment performed the spin detector MB had been rotated to another direction
θB = π/3. Locality is now interpreted as meaning that if MB were rotated, that could in no
way have influenced the results at MA. The series of measurements SA would therefore have
been unchanged. The results SB would, however, have to change since the results for θ 6= 0
are not strictly anti-correlated. Thus, some of the results would be different compared to those
listed in Series I. Quantum mechanics in this case predicts P (π/3) = 1/4. In the list of Series
II we have indicated a possible outcome consistent with this, where

P (II)exp =
n+(II)

N
=

3

12
(2.82)

Since we have a symmetric situation between MA and MB we clearly could have used the
same argument if MA were rotated instead of MB . This situation is shown in Series III, where
the series of measurements SB is left unchanged, but some of the results of SA are changed. In
this case we have chosen θA = −π/3. We also in this list have

P (III)exp =
n+(III)

N
=

3

12
(2.83)

consistent with the predictions of quantum mechanics.
Finally, we combine these two results to a two-step argument for what would have hap-

pened if both measurement devices had been rotated, to the directions θA = −π/3 and θB =
π/3. We can start with either Series II or Series III. Rotation of the second measuring device
would then lead to a change of about 1/4 of the results in the series that was not changed in the
first step. The total number of correlated pairs would now be

n(IV ) = n(II) + n(III)−∆ (2.84)
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In this expression n(II) is the number of flips in the result of SB and n(III) the number of
flips in the results of SA. Such flips would change the result from anti-correlated to correlated.
However that would be true only if only one of the spin results of an entangled pair were flipped.
If both spins were flipped we would be back to the situation with anti-correlations. Thus the
number of correlated pairs would be equal to the sum of the number of flips in each series
minus the number where two flips is applied to the same pair. The last number is represented
by ∆ in the formula (2.84). In the result of Series IV this is represented by the result

P (IV )exp =
n+(IV )

N
=

4

12

< P (II)exp + P (III)exp =
6

12
(2.85)

The subtraction of ∆ in (2.84) explains the Bell inequality, which here takes the form

P (2π/3) ≤ 2P (π/3) (2.86)

The results extracted from the series of spin measurements listed in Fig.(2.3.2) gives (2.85) in
accordance with the Bell inequality (2.86).

The arguments given above, which reproduce Bell’s inequality, may seem to implement the
assumption of locality in a very straight forward way: Changes in the set up of the measure-
ments atMA cannot influence the result of measurements performed atMB when these devices
are separated by a large distance. The predictions of quantum mechanics, on the other hand,
are not consistent with the results of these hypothetical experiments, and real experiments have
confirmed quantum mechanics rather than the Bell inequality.

So is there anything about the arguments given for the hypothetical experiments that indi-
cates that they may be wrong? We note at least one disturbing fact. Only one of the four series
of results in Fig.(2.3.2) can be associated with a real experiment. The others must be based
on assumptions of what would have happened if the same series of measurements would have
been performed under somewhat different conditions. This is essential for the result. If the
four series of measurements should instead correspond to four different (real) experiments the
situation would be different. We then would have no reason to believe that the series of results
SA would be preserved when going from I to II or SB when going from I to II. Each series
would in this case rather give a new (random) distribution of results for particle A (or particle
B).

In any case the conclusion seems inevitable, that quantum mechanics are in conflict with
Einstein locality, i.e., with the basic assumptions that lead to the Bell inequality. Does this
mean that some kind of influence is transmitted from A to B when measuring on particle A,
even when the two particles are very far apart?



Chapter 3

Quantum physics and information

In recent years there has been an increasing interest in questions concerning the relation be-
tween quantum physics and information theory. The present understanding is that the character-
istic features of quantum physics that distinguishes it from classical physics, namely quantum
interference in general and quantum entanglement in particular, creates the physical founda-
tion for an approach to communication and to processing of information that is qualitatively
different from the traditional one. At present there is only a partial understanding of this new
approach, but the belief of many physicists is that a new type of quantum information theory
should be developed as an alternative to classical information theory. This belief is supported
by the discovery of algorithms that could speed up the computation of certain types of math-
ematical problems in a quantum computer and by the development of methods for secure and
efficient communication by use of entangled qubits.

The development of this new approach to information and communication poses important
challenges to the manipulation of quantum systems. This is so since quantum coherence is
important for the methods to work, and in a system with many degrees of freedom decoherence
will under normal conditions rapidly destroy the important quantum correlations. The very
difficult challenge is to create a quantum system where, on one side, the quantum states are
effectively protected from outside disturbances and, on the other side, the variables can rapidly
be addressed and manipulated in a controlled way in order for the system to perform the task
in question.

In this chapter we focus on some basic theoretical elements in this new approach to physics
and information, while for the discussion of the present status of implementations of the ideas
on physical systems we refer to several recent books on the subject. We first focus on an
example of how quantum physics admits the possibility of acquiring information in a radically
new way through an interaction-free measurement. We then proceed to study how qubits can
replace bits as the fundamental unit of information.

3.1 An interaction-free measurement

The usual picture of measurements performed on a quantum system is that they involve a non-
negligible, minimal disturbance quantified by Planck’s constant. If photons are used to examine
a physical object, the minimal disturbance corresponds to letting a single photon interact with

77
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the system. The energy of the photon may be made small, but since this means making the
corresponding wave length long, one will thereby loose resolution. Thus if a certain resolution
is required, a minimal energy has to be carried by the photon and this gives rise to a finite
perturbation of the object. The picture of measurements in classical theory is different. There
the energy that is carried by light of a given frequency can be made arbitrarily small by reducing
the amplitude, and therefore there is no lower limit to how much an (idealized) measurement
will have to disturb the object studied.

However, this is not the complete picture. Quantum mechanics opens up the possibility for
other types of more “intelligent” interactions than the direct “mechanical” interaction between
the object and the measuring apparatus. With the use of quantum superposition (or interference)
certain types of measurements can be performed which involve no mechanical interaction with
the object. A particular example is discussed here.1

Let us assume that a measurement should be performed in order to examine whether or
not an object is present within a small transparent box. If the object is not present the box
is transparent to light, while if it is present the box is not transparent, since the object will
absorb or scatter the photon. Let us further assume that measurements are performed with
single photons.

A direct measurement would be to send a photon through the box, and to register whether or
not the photon is transmitted through the box. This would clearly give the information required.
If the object is present, the information about this situation is achieved by a direct (mechanical)
interaction between the photon and the object. Apparently this is the least interaction with
the object that can be made in order to detect its presence. However, this is not the correct
conclusion to draw, as is outlined in Fig.3.1. The figure shows a Mach-Zehnder interferometer
where an incoming photon can follow two different paths and eventually be registered in of
the two detectors. We first consider the case where both paths are open. The photon will first
meet a beam splitter, that with equal probability will direct the photon horizontally into the
lower path or vertically into the upper part. On both paths the photon will meet a mirror that
redirects it towards a second (50/50) beam splitter. Here the two components of the photon
wave functions will meet and form a superposition that can either direct it in the horizontal
direction towards a detector A or vertically towards a detector B.

If we neglect the coherence effect and assume an incoherent scattering of the photon by the
beam splitters, with equal probability in the two directions, then we expect that the probability
for detecting the photon by detector A to be 50%. With the same probability the photon will be
detected by B. However, the quantum description of the transmission of the photon through the
apparatus implies that the photon at intermediate times is not located (with a certain probability)
on one of the paths, but is rather in a superposition of being on each of the two paths. This
means that the two signals following the upper and lower paths will interfere when they meet
at the second beam splitter. In the following we will assume the experimental setup to be
adjusted to a situation where the interference acts constructively for a photon directed towards
detector A and destructively for a photon directed towards detector B. Thus, the probability for
detecting the photon by A is 1 and the probability for detecting the photon by B is 0. This will
be the case as long as both paths are open. Clearly, if one of the paths is closed, the photons

1This example is taken from A.C. Elitzur and L. Vaidman, Found. Phys. 23 (1993) 987.
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detector B

detector A

photon

alternative I: 

box empty

alternative II: 

object present

mirror

beam splitter

Figure 3.1: The set up of a single-photon measurement to detect the presence of an object in a transpar-
ent box by use of a Mach-Zehnder interferometer. A photon is sent through a beam splitter that directs
it, in a superposition, either in the horizontal or vertical direction. On the lower path the box is placed.
Therefore, if the object is present, the lower path is blocked, while if it is not present both paths are
open. The two paths meet again at a second beam splitter and then the photon is directed towards one
out of two possible detectors. The interferometer is arranged so that if both paths are open, destructive
interference prevents the photon from reaching detector B. Thus, if the photon is registered in B this
provides the information that the lower path is blocked and that the object is present in the box.

that get through are instead detected with equal probability by A and B.
To describe the situation more formally let us denote the state of a photon moving in the

horizontal direction by |0〉 and a photon moving in the vertical direction by |1〉. (With this
notation we do not make any distinction between where in the apparatus the photon is.) The
action of the beam splitters on a photon is described by the mapping

|0〉 → 1√
2

(|0〉+ i|1〉)

|1〉 → 1√
2

(|1〉+ i|0〉) (3.1)

while the action of the mirrors is given by

|0〉 → i|1〉 , (lower mirror)

|1〉 → i|0〉 , (upper mirror) (3.2)

The lengths of the paths are assumed to be the same, so that the difference in phase acquired
by the photon on the two paths is only due to the phase shifts produced at the mirrors and beam
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splitters. The photon is subject to a series of transformations of the form (3.1) and (3.2) in the
interferometer.

Let us consider the mapping from the incoming state to the outgoing state (before detection)
when only the upper path is open,

|0〉 → i|1〉 → −|0〉 → − 1√
2

(|0〉+ i|1〉) (3.3)

where the changes in the state take place at the mirror and at beam splitters on the path. Since
we are interested in the state of a photon that exits from the last beam splitter, the intermediate
states have been normalized to 1, thus neglecting the probability that the photon is absorbed on
the lower path. The interesting point to note is that the final state is a superposition with equal
probability for exit in the horizontal and vertical direction.

If both paths are open the mapping from the initial to the final state is instead

|0〉 → 1√
2

(|0〉+ i|1〉)→ 1√
2

(−|0〉+ i|1〉)→ −|0〉 (3.4)

and we note that only one component survives. The photon will exit (with probability 1) in the
horizontal direction.

We will now turn to the original problem and consider the the situation where the box,
which either is empty or not empty, is placed on one of the paths of the photon. The intention
is to send one photon through the interferometer in order to investigate whether the box is
empty or not. We note that if the box is empty we have the situation where both photon paths
are open. If the box is not empty only one of the paths will be open.

Let us consider the possible outcomes of the experiment where a photon is sent through the
interferometer:

1. There is no photon registered in any of the two detectors.
We conclude that the object is present, the photon has interacted with the object and has
not got through to the detectors.

2. The photon is registered by detector A.
The result is inconclusive. Whether the object is there or not there is always a chance for
the photon to be detected by A. The experiment has to be repeated.

3. The photon is registered by detector B.
We conclude that the object is present, since the probability of detecting the photon by
B with both paths open is 0.

Of the possible outcomes we focus on 3, which is the interesting one. In this case the
presence of the object has been detected without any interaction with it. This is so since the
detection of the photon implies that no interaction has taken place. A natural explanation seems
to be that the photon has followed the upper (open) path, but that the detection of the photon
provides information about the lower path (that it is closed). This result depends crucially on
the possibility of quantum superposition. In a classical theory this would not happen. Note
however, the curious fact that when the object blocks the path, in reality no superposition takes
place. The result of the measurement will be the same as in a classical theory with a certain
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probability for the photon to follow the upper path. It is our knowledge of the possible outcomes
when both paths are open that allows us to draw the conclusion that one path is closed.

In conclusion this thought experiment shows that a direct interaction in a measurement
is not always needed. But there has to be a possibility for the interaction to take place. A
superposition between two states, where one of them interacts (when the object is there) and
the other does not, is an important ingredient in the set up.

The example discussed here shows that alternative ways to collect information with quan-
tum mechanical methods is a possibility. Quantum coherence or superposition is important
for such methods to work. Also the importance of using “intelligent ways” to address the
measuring problem, instead of a (naive) direct measurement is emphasized.

3.2 The No-Cloning Theorem

In classical physics there is no theoretical lower limit to how much the extraction of information
about the system will disturb the system. Thus, the information can be aquired with measure-
ments that in principle introduce only arbitrarily small changes in the state of the system. As a
consequence of this, the state of a classical system can, in principle, be copied with arbitrarily
good precission to another classical system. We may refer to this as cloning of the classical
state.

However, in quantum physics such a faithful copying is not possible, and this impossibility
is expressed in what is known as the No-Cloning Theorem. We shall now look at why this is
impossible, but before doing so, let us first note that in some special situations quantum states
can in fact be duplicated. Thus, in the following two cases we can, in principle, produce or
aquire a multitude of copies of the same quantum state.

a) When we know how the original state has been prepared and can repeat this operation on
other quantum systems.

b) When nature offers a number of identical systems, such as for example the hydrogen atom,
where the energy eigenstates of the different systems are the the same.

These cases do not contradict the No-Cloning Theorem, which we may phrase in the following
way

Assume a physical system A is in an unknown quantum state ψ. It is impossible to reproduce
the same state ψ in a second system B, while preserving in system A the state ψ.

To make the situation somewhat more specific, let us assume that we have two identical
systems A and B available, which for simplicity may be two two-level systems. Let us assume
that system A has been prepared in an unknown linear superposition of two basis states, |ψ〉 =
α|1〉 + β|2〉. For simplicity we also assume the the basis states to be degenerate in energy,
so there is no time evolution of the state. The challenge is now to prepare the second system
B in the same state |ψ〉, without knowing the coefficients α and β, while leaving the state of
A unchanged. This could possibly be done by letting the two systems interact directly, or by
letting them interact indirectly through an additional third system. However, the theorem states
that this is impossible to do.

To show this is in fact rather simple, the result follows from the linearity of quantum theory.
Thus let us consider the two systems initially to be disconnected and to be in a tensor product
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state |ψ〉 ⊗ |φ〉. To change the state of system B we assume that there follows an intermedi-
ate, interacting phase where the two systems, possibly together with an auxillary third system,
forms an interacting composite system. After this intermediate interacting period the two sys-
temsA andB should end up in a new product state |ψ〉⊗|ψ〉 if the cloning has been successful.
From general quantum theory we know that there will be a linear, unitary transformation Û that
relates the final state to the initial state,

|ψ〉 ⊗ |ψ〉 = Û |ψ〉 ⊗ |φ〉 (3.5)

The form of this equation is however non-linear, as a direct consequence of the state |ψ〉 in the
final state of the composite system. To show this explicitly, let us duplicate two different states
|ψ〉1 and |ψ2〉,

|ψ1〉 ⊗ |ψ1〉 = Û |ψ1〉 ⊗ |φ〉
|ψ2〉 ⊗ |ψ2〉 = Û |ψ2〉 ⊗ |φ〉 (3.6)

Linearity of the operator Û can now applied in two different ways, first simply by adding the
two equations, which gives

Û (|ψ1〉 ⊗ |φ〉+ |ψ2〉 ⊗ |φ〉) = |ψ1〉 ⊗ |ψ1〉+ |ψ2〉 ⊗ |ψ2〉 (3.7)

and then by applying it to the superposition

Û (|ψ1〉+ |ψ2〉)⊗ |φ〉) = (|ψ1〉+ |ψ2〉)⊗ (|ψ1〉+ |ψ2〉)
= |ψ1〉 ⊗ |ψ1〉+ |ψ2〉 ⊗ |ψ2〉|ψ2〉 ⊗ |ψ2〉

+|ψ1〉 ⊗ |ψ2〉+ |ψ1〉 ⊗ |ψ2〉 (3.8)

Since the left-hand sides in the two equations above are identical, the right-hand sides should
also be identical, but they are not. The reason for this contradiction is that the the original
equation (3.5) is intrinsically non-linear.

We therefore have to conclude that the No-Cloning Theorem follows from one of the basic
principles of quantum theory.

3.3 Quantum teleportation

Is it possible to transfer, in a faithful way, an unknown quantum state from one physical system
to another? The answer to this question is affirmative, but to avoid conflict with the No-Cloning
theorem, this can only happen provided that the quantum state of the first system is changed.
We will show that this can be done, not in the form of a general proof, but by way of a simple
example.

Consider the following situation. A personA is in the possession of two two-level systems,
which we label 1 and 2, while a second person B is in possession of a third two-level system,
denoted 3. System 1 is in an unknown state

|χ〉1 = a|+〉1 + b|−〉1 (3.9)
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where the state has been expanded in the two basis state |+〉 and |−〉. Person A now wants
to transfer this state from system 1 to system 3. A and B have in advance prepared the two
systems 2 and 3 in a maximally entangled Bell state,

|ψ−〉23 =
1√
2

(|+−〉23 − | −+〉23) , |+−〉 ≡ |+〉 ⊗ |−〉 (3.10)

This state, of course, does not contain any information about the unknown state |χ〉. The state
of the full system, consisting of systems 1, 2 and 3, then is

|ψ〉123 = |χ〉1 ⊗ |ψ−〉23 (3.11)

This state may be re-expressed in terms of the Bell states of the composite system 12. These
states are

|ψ±〉12 =
1√
2

(|+−〉12 ± | −+〉12)

|φ±〉12 =
1√
2

(|+ +〉12 ± | − −〉12) (3.12)

The inverted expressions are

| ± ∓〉12 =
1√
2

(|ψ+〉12 ± |ψ−〉12)

| ± ±〉12 =
1√
2

(|φ+〉12 ± |φ−〉12) (3.13)

Inserted in the expression (3.11), we find

|ψ〉123 =
1√
2

(a|+〉1 + b|−〉1)⊗ (|+−〉23 − | −+〉23)

=
1√
2

(a|+ +−〉123 − b| − −+〉123 − a|+−+〉123 − b| −+−〉123)

=
1

2
(a(|φ+〉12 + |φ−〉12)⊗ |−〉3 − b(|φ+〉12 − |φ−〉12)⊗ |+〉3

−a(|ψ+〉12 + |ψ−〉12)⊗ |+〉3 + b(|ψ+〉12 − |ψ−〉12)⊗ |−〉3

=
1

2
(|φ+〉12 ⊗ (a|−〉3 − b|+〉3) + |φ−〉12 ⊗ (a|−〉3 + b|+〉3))

+|ψ+〉12 ⊗ (a|+〉3 − b|−〉3)− |ψ−〉12 ⊗ (a|+〉3 + b|−〉3)) (3.14)

Let us now define operators that act on a two-level system in the following way

V1|±〉 = −|±〉
V2|±〉 = ∓|±〉
V3|±〉 = ∓|∓〉
V4|±〉 = |∓〉

(3.15)



84 CHAPTER 3. QUANTUM PHYSICS AND INFORMATION

With the help of these the state of the full system can be written

|ψ〉123 =
1

2
(|φ+〉12 ⊗ (V̂3|χ〉3) + |φ−〉12 ⊗ (V̂4|χ〉3))

+|ψ+〉12 ⊗ (V̂2|χ〉3)− |ψ−〉12 ⊗ (V̂1|χ〉3)) (3.16)

which gives the state vector expressed in the Bell basis of the subsystem 12. The four Bell
states are orthogonal and may be distinguished by measurement of an observable with these
as eigenvectors and with different eigenvalues for the four states. Assume A is performing
such a measurement on subsystem 12. The state of system 12 is then projected to one of
the Bell states, and the measurement result gives A the information about which state. The
entanglement with system 3 implies that in the measurement this subsystem is projected to one
of the states V̂k|+〉3 where the value of k (= 1, , 2, 3, 4) is linked to the surviving Bell state.

A knows the value of k from the result of the measurement and conveys this information to
B, who performs the transformation V̂k on system 3. Since V̂ 2

k = 1 for any k, this means that
the state of system 3 is changed to |χ〉3. The final state of the full system 123 therefore is

|ψfin〉123 = |ψBell〉12 ⊗ |χ〉3 (3.17)

where |ψBell〉12 is one of the four Bell states. This shows that the unknown state |χ〉 which was
initially in system 1 has now been transferred to system 3. At the same time the entanglement
between systems 2 and 3 has been replaced by entanglement between systems 1 and 3.

It is interesting to note that only classical information has been sent from A to B, but this
information allowsB to reconstruct in system 3 the quantum state that was originally in system
1.

3.4 From bits to qubits

In the classical information theory, developed by C. Shannon, information is quantified in
terms of discrete units of information. Thus, the elementary information unit is a bit, and this
is viewed as a function which can take two possible values, normally the numerical values 0
and 1. The information lies in specifying which of the two values to assign to the bit. The idea
is that a general message, to an arbitrary good precision, can be expressed in terms of a finite
sequence of bits.

The idea of discretizing information creates the basis for the general theory of informa-
tion. But, as we all know, it also creates the basis for a practical approach to information and
communication in the form of digital signals. Whereas communication (by telephone, radio or
TV) used to be in the form of analog signals, presently the use of digital signals are preferred
because this admits a more precise determination (and correction) of the information content
of the signal.

Information theory can be viewed (and is normally so) as a mathematical discipline. How-
ever, from a physics point of view, it is natural to focus on the implementation of the theoretical
ideas in terms of physical signals. Thus, the information will normally be coded into signals
that are created and manipulated in physical (electronic) devices. They are transmitted by
physical mediators (electromagnetic waves or electric signals) and are again manipulated and
decoded in (electronic) receivers.
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A message consisting of a certain number of bits can be viewed as a state of a physical
system. With N bits there are 2N states, which represent all the different messages that can be
encoded in N bits. In this picture the factorization of the message into single bits corresponds
to a separation of the physical system into N two-state subsystems. Thus, the information unit
bit corresponds to the two-state system as a physical unit. Such a system can be realized in
many ways, as a physical system that can easily be switched between two stable states, or an
electric signal with two values (”on” or ”off”), etc.

The important point to note is that the two-state system considered in this way is a classi-
cal system. And the interesting question, which has been addressed in recent years, is whether
quantum physics should introduce a new picture of the (physical) unit of information. The clas-
sical two-state system has its counterpart in the quantum two-state or two-level system, and for
the quantum system a new feature is that coherent superpositions between states are possible.
In the same way as the classical two-state system is associated with a bit of information, the
quantum two-level system is now associated with a new information unit, a qubit. While the
possible values of a bit is restricted to 0 and 1, the qubit takes values in a two-dimensional
Hilbert space spanned by two vectors |0〉 and |1〉. Thus a general qubit state is

|q〉 = α|0〉+ β|1〉 (3.18)

with α and β as complex coefficients.
Let us therefore assume that a message in this new picture is encoded not in a classical

state of a system, but in a quantum state of a finite-dimensional Hilbert space. Such a Hilbert
space is unitarily equivalent to a tensor product of N two-level systems, provided we restrict
the dimension of the Hilbert space to M = 2N . In this sense we can view the qubit as the
elementary building block of information. Note however that the general state is not a product
state of the qubits, since also superpositions should be included. This means that the general
state involves entanglement between the qubits.

Apparently there is much more than one bit of information contained in each qubit, since
the qubit states form a continuum that interpolates between the “classical” states |0〉 and |1〉.
However, one should be aware of the fact that even if more information is contained in the
specification of the qubit state, all this information cannot be read out by making a measurement
on the qubit. This is due to the probabilistic interpretation of the state. One may compare this
to a situation with a (classical) probability distribution over the two states 0 and 1. Since
the probability distribution depends on a continuous parameter, much more than one bit of
information is needed to specify the value of this parameter. However, since each classical
two-state system can only be in the states 0 or 1, an ensemble of these systems is needed to
provide the information about the probability distribution.

In the case of qubits the situation is somewhat similar, but not completely so. Unlike a
classical probability distribution, the superposition of states is a resource that can be exploited
for certain types of information processing. This has been demonstrated by specific examples.

3.5 Communication with qubits

New possibilities open up in communication when we can exploit quantum interference and
quantum entanglement. We show here a simple example of dense coding of information with
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q 

Figure 3.2: The physical states of a qubit can be viewed as points on a sphere. The poles of the sphere
correspond to the two classical one-bit states 0 and 1

the help of entangled qubits.
Let us assume that a sender A (often referred to as Alice) wants to send a two-bit message

to a receiver B (referred to as Bob). The question that is posed is whether this can be done by
transmitting a single qubit, since the claim is that a qubit carries more information than a bit.
The apparent answer is no: If Alice prepares the qubit in a pure state and sends it to Bob, he can
read out the information by measuring the state in a given basis (corresponding to measuring
the spin component in some direction). The result is 0 or 1, where the probability for getting
these two results is determined by the decomposition of the prepared state on the two basis
states |0〉 and |1〉. It seems that the best they can do in order to send the message is to agree on
what basis to use. Then Alice can choose between two possible states |0〉 and |1〉 and Bob can
determine which of the states is chosen by making a measurement in the same basis as used by
Alice. But in this way a qubit can communicate only one bit of information.

However, more intelligent ways to do it exist. Let us assume that Alice and Bob in advance
have shared a pair of qubits with maximum entanglement. They may for example be in the
state

|c,+〉 =
1√
2

(|00〉+ |11〉) (3.19)

We assume the qubits are kept in a safe way so that the entanglement is kept unchanged until
the qubits are used for communicating the message.

The are four different two-bit messages, which written in the standard digital form are
denoted 00, 01, 10 and 11. Let us assume that these four messages are associated with four
orthogonal states of the two-qubit system in the following way,

00 → 1⊗ 1 |c,+〉 = |c,+〉
01 → iσz ⊗ 1 |c,+〉 = i |c,−〉
10 → iσx ⊗ 1 |c,+〉 = i |a,+〉
11 → iσy ⊗ 1 |c,+〉 = |a,−〉 (3.20)

The important point is that all these four states can be created from the original state (3.19) by
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transforming only on one of the qubits, as indicated in (3.20). We assume this to be Alice’s
qubit.

We consider then the following situation: Alice wants to submit one of the four messages
00, 01, 10 or 11. She then performs one of the unitary transformations on her qubit which
brings the two-qubit system into the corresponding state, shown in the list (3.20). In the first
case (message 00) no change is made to her qubit, in the second case (01) a rotation of π around
the z-axis is performed, in the subsequent cases ((10) and (11)) rotations around the y-axis and
z-axis are performed. (We here envisage the qubit states as spin states.) We note that in all
cases no change is done to the B-qubit (which is not available for Alice), and in all cases the
maximal entanglement is kept by transforming the original state into another Bell state.

Alice now transmits her qubit to Bob, who is free to make measurements on both entangled
qubits. At this point one of the four different (two-bit) messages has been encoded in the two-
qubit system, in the form of one of the four orthogonal Bell states. Bob knows that the system
is in one of these states, and since he now has both qubits at his disposal, he can perform an
measurement that distinguishes between the four states. We do not specify how this should
be done, but in principle he can identify an observable with different eigenvalues for the four
states, and measure which of the eigenvalues that is realized in the two-qubit system. From the
measurement he identifies which of the messages 00, 01, 10 or 11 that Alice is transmitting,
and in this way he has obtained the full two-bit message from the measurement.

In this way Alice has managed to transfer the two-bit message to Bob, by encoding the
message into a single qubit which, is afterwards transmitted to Bob. There is also a second qubit
involved, the qubit belonging to Bob, but this is not affected by the manipulations performed by
Alice. Through the entanglement with Alice’s qubit it plays an important role, as a resource for
transmitting the message, but it is passive in this process until the final stage when Bob makes
the measurement to identify which of the four Bell state that is realized in the transmission.

The entanglement is essential for being able to transmit the full message by a single qubit.
In fact, if we consider the two qubits separately, they are at all time in the same, maximally
mixed state, described by the density matrix

ρ̂A =
1

2
(|0〉〈0|+ |1〉〈1|) = ρ̂B , (3.21)

which contains no information about the message that is transferred. This means that all the
information is contained in the entanglement between the two qubits, since no information
lies in the reduced states of the two qubits. From this we also note the important point: The
message can only be read by the receiver who has the second qubit of the entangled pair. In this
way the message is protected from others than Bob. This principle of protecting information by
encoding the information into entangled pairs of qubits is the basis for quantum cryptography,
which is a field of research that has been rapidly developed in recent years.

3.6 Principles for a quantum computer

The probably most interesting suggestion for applications of quantum physics to information
technology is in the form of quantum computers. The idea is that a computer built on quantum
principles will manipulate information in a qualitatively different way than a classical com-
puter, and thereby will be able to solve certain types of problems much more efficiently.
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A specific type of computational problem that is interesting for physicists is the simulation
of quantum systems. Today numerical solutions of physics problems are important for research
in almost any field of physics, but the capacity of present day computers gives a clear limitation
to the size of the problem that can be handled. This has to do with how the complexity of the
computation scales with the size of the system. For a quantum system with N degrees of
freedom, the Hilbert space dimension is mN , if each degree of freedom is described by an m-
dimensional space. This means that mN complex parameters are needed to specify a Hilbert
space vector, and the number of computational variables therefore grows exponentially withN .
This gives a strong limitation for the simulations of quantum systems on a classical computer.

The idea is that a quantum computer should work as a quantum mechanical system, with
the computation performed by unitary transformations on superpositions of qubit states. For
the simulation of quantum systems there is an obvious gain, since the number of qubits needed
to represent the wave function grows linearly with the number of degrees of freedom N rather
than exponentially. In addition to the simulation of quantum systems there are also certain
other types of mathematical problems that can be solved more efficiently with the use of quan-
tum superposition. Two algorithms that have gained much interest are the Shor algorithm for
factorizing large numbers and the Grover algorithm for making efficient search through data
bases.

The typical feature of a quantum computer is to work with superpositions of (qubit) states.
From a computational point of view this can be seen as new type of (quantum) parallel comput-
ing. In the picture of path integrals we may view a classical computation as a (classical) path,
where each logical operation corresponds to making a (new) direction for the path. Parallel pro-
cessing in this picture corresponds to working simultaneously with several paths in the “space
of logical operations”. In the quantum computer many paths are, in a natural way, involved
at the same time in the form of a superposition of states, and the final result is obtained by
quantum mechanical interference between contributions from all the (classical) paths. Clearly,
if a problem should be solved much more efficiently on a quantum computer than on a classical
computer, superposition of states has to be used extensively in the computation. This means
that the qubits will be highly entangled during the computation. The serious challenge for con-
structing a quantum computer is therefore to be able to preserve and operate on such highly
entangled states.

3.6.1 A universal quantum computer

The idea of a universal quantum computer is similar to that of a universal classical computer.
Thus, a universal quantum computer is designed to solve general types of problems by reducing
the computation to elementary qubit operations. This means that the input wave function is
encoded in a set of (input) qubits, and the computational program acts on these by performing
logical operations in the form of unitary transformations on the qubits. A standard set of
unitary one-qubit and two-qubit operations is used, where each operation is performed at a
logical gate. Together the logical gates form a computational network of gates.

In Fig. 3.6.1 a schematic picture of a universal quantum computer is shown. The input
data are encoded by preparation of an input quantum state. The computer program acts on
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Figure 3.3: A schematic picture of a universal quantum computer. An input state is prepared as a
quantum state of a set of qubits. A network of logical gates, that perform one-qubit and two-qubit
transformations, operates on the input qubits (and a set of additional work qubits) to produce an output
state. The result of the computation is read out by measuring the state of each output qubit. In the
diagram the horizontal lines represent the qubits and the boxes represent the gates or logical operations
performed on the qubits.

the input state and by a unitary transformation produces an output state where the result of the
computation is read out in a quantum measurement. The computational task is specified partly
by the unitary transformation performed on the input state and partly on how the measurement
is performed on the output state.

This picture of a quantum computer is quite analogous to that of a classical computer,
where bits of information are processed at logical gates that together form a logical network.
The main difference is that in the quantum computer the information is processed as quantum
superposition between states. And the computation is reversible since the unitary transforma-
tions are all invertible. This is different from a (standard) classical computer where some of
the standard logical operations are irreversible in the sense that the mapping between the input
state and the output state is not one-to-one.

A universal set of logical gates
The idea of a universal quantum computer is based on the possibility of reducing any unitary
transformation that acts on the quantum states of an N qubit system to a repeated operation of
a small number of standard one-qubit and two-qubit transformations. We will here only outline
how such a reduction can be performed. It involves the following steps,

1. A unitary transformation acting on a finite-dimensional Hilbert space can be factorized
in terms of two-level unitary transformations. These transformations act on two-level
subsystems spanned by two orthonormalized vectors of a chosen basis in the full Hilbert
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space,

Û =
∏
n

Û(in, jn) (3.22)

where in and jn denotes the basis states affected by the nth transformation

2. A two-level unitary transformation acting between basis states of the N-qubit Hilbert
space can be factorized in terms of a set of one-qubit and two-qubit operations. With
the number of terms in the factorization restricted to a finite number, a general unitary
transformation can only be represented in an approximate form. Thus, the continuous
parameters of the unitary transformation are replaced by a set of discrete parameter val-
ues.

H S T

Hadamard Phase π/8

CNOT

Figure 3.4: Symbolic representation of logical gates. In the representation of the CNOT gate the upper
line corresponds to the control qubit and the lower line to the target qubit

The following one-qubit and two-qubit transformations give an example of a universal set
of qubit operations,

1. The Hadamard transformation.
This is a single-qubit transformation defined by the operations on the qubit states in the
following way,

Ĥ |0〉 =
1√
2

(|0〉+ |1〉)

Ĥ |1〉 =
1√
2

( |0〉 − |1〉) (3.23)

In matrix form this is,

H =
1√
2

(
1 1
1 −1

)
(3.24)

with |0〉 corresponding to the to the upper place and |1〉 to the lower place of the matrix.
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2. The Phase transformation.
This is also a single-qubit transformation, defined by

Ŝ |0〉 = |0〉
Ŝ |1〉 = i |1〉 (3.25)

which in matrix form is

S =

(
1 0
0 i

)
(3.26)

3. The π/8 transformation.
This is the third single-qubit transformation. It is defined by

T̂ |0〉 = |0〉
T̂ |1〉 = eiπ/4|1〉 (3.27)

with the matrix form

T =

(
1 0
0 eiπ/4

)
(3.28)

4. The CNOT transformation.
This is a two-qubit transformation, which is a quantum version of a controlled not oper-
ation. It is defined by

ĈNOT |0〉 ⊗ |0〉 = |0〉 ⊗ |0〉
ĈNOT |0〉 ⊗ |1〉 = |0〉 ⊗ |1〉
ĈNOT |1〉 ⊗ |0〉 = |1〉 ⊗ |1〉
ĈNOT |1〉 ⊗ |1〉 = |1〉 ⊗ |0〉 (3.29)

We note that the state of the first qubit is left unchanged. It acts as a control qubit on the
second qubit: If the first qubit is in the state |0〉 the second qubit is left unchanged. If the
first qubit is in the state |1〉 the second qubit switches states, |0〉 ↔ |1〉. With the basis
vectors of the product space written in matrix form,

|0〉 ⊗ |0〉 →


1
0
0
0

 , |0〉 ⊗ |1〉 →


0
1
0
0



|1〉 ⊗ |0〉 →


0
0
1
0

 , |1〉 ⊗ |1〉 →


0
0
0
1

 (3.30)

the CNOT operation corresponds to the following 4× 4 matrix,

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.31)
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The definitions above give the action of qubit operations on a set of basis vectors for the
single-qubit and-two qubit spaces. With specification of the qubits involved, the action of these
operators on a complete set of basis vectors for the full N - qubit space is determined, and
thereby the action of the operators on any state vector, by the principle of linear superposition.

3.6.2 A simple algorithm for a quantum computation

As already mentioned, certain algorithms have been designed for solving mathematical prob-
lems more efficiently on a quantum computer than can be done on a classical computer. A
famous example is Shor’s algorithm, that addresses the question of how to factorize large num-
bers. This is a hard problem on a classical computer, since the computational time used to
factorize large numbers will in general increase exponentially with the number of digits. (This
fact is the basis for making use of factorization of large numbers as keys in cryptographic
schemes.) The demonstration by P. Shor that the factorization can be done more efficiently on
a quantum computer is one of the reasons for the boost of interest for quantum computing over
the last decade.

In this section we will focus on a simpler algorithm introduced by D. Deutsch some time
ago. The intention is to use this algorithm as a simple demonstration of how superposition
makes it possible to address certain types of problems more efficiently.

The problem addressed is to study one-bit functions. Such a function gives a mapping

f(x) : {0, 1} → {0, 1} (3.32)

We will need to add these functions, and note that addition between one-bit numbers can be
deduced from ordinary addition if the result is defined modulo 2. Thus, the explicit addition
rule is

0 + 0 = 0 , 0 + 1 = 1 + 0 = 1 , 1 + 1 = 0 (3.33)

We also note that there exist four different one-bit functions (3.32),

fa : {0, 1} → {0, 1} , fb : {0, 1} → {1, 0}
fc : {0, 1} → {0, 0} , fd : {0, 1} → {1, 1} (3.34)

where the sets of input values and output values are here considered as ordered sets. We
distinguish between two types of functions, the set A = {fa, fb} are the invertible functions,
while the set B = {fc, fd} are constant functions.

Let us assume that a function f(x) is known only operationally, i.e., in a classical compu-
tation one assigns to the input variable x one of the two possible values 0 and 1, from which one
of the two possible output values f(0) and f(1) are produced. (We may think of the function as
a simple computational program that produces the output result from a given input.) Initially
the function f(x) is not known, and as a concrete problem we want to determine whether the
function belongs to set A or set B. Thus, we do not seek a detailed knowledge of the function.
However, by classical computations, as explained above, we clearly have to use two input val-
ues x = 0 and x = 1 in order to determine which set the function belongs to, which means that
a complete determination of the function has to be done.
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The intention is to show that a quantum computation, which makes use of superpositions,
can distinguish between set A and set B in one operation. We first have to discuss how such a
quantum computation can be implemented. Let us consider the possibility of simple extension
of the classical operation to a linear transformation, that acts on a qubit in the following way,

Tf : |q〉 = α|0〉+ β|1〉 → α|f(0)〉+ β|(f(1)〉 (3.35)

This is considered as a single (qubit) operation even if both results f(0) and f(1) are present
in the output state. However, for the non-invertible functions (fc and fd) the operation Tf is
non-invertible and therefore non-unitary. In order to represent f as a unitary transformation we
therefore modify the one-bit operation Tf to a unitary two-qubit operation Uf in the following
way

Uf : |x〉 ⊗ |y〉 → |x〉 ⊗ |y + f(x)〉 (3.36)

where |x〉 and |y〉 denote standard qubit basis states (|0〉 and |1〉). We note that the first qubit
(|x〉) is left unchanged by the transformation; it acts as a control qubit on the second qubit.
Thus, if f(x) = 0 the state of the second qubit is left unchanged, if f(x) = 1 the state of the
second qubit is flipped (0 ↔ 1). It is straight forward to check that (3.36) defines a unitary
transformation.

0

1

H

H

H

Uf

Figure 3.5: Schematic representation of qubit transformations for Deutsch’s algorithm. The first qubit
is prepared in the |0〉 state and the second qubit in the |1〉 state. They are both transformed by a
Hadamard operation before a two-qubit operation is performed. This operation, Uf , is determined
by the (unknown) one-bit function f(x). Finally a second Hadamard transformation is performed on
the first qubit before a measurement is performed.

We now consider the computation is performed that is shown in diagrammatic form in
Fig. 3.5. It corresponds to the following sequence of unitary transformations

|0〉 ⊗ |1〉 → 1√
2

(|0〉+ |1〉)⊗ 1√
2

(|0〉 − |1〉)

→ 1√
2

((−1)f(0)|0〉+ (−1)f(1)|1〉)⊗ 1√
2

(|0〉 − |1〉)

→ 1

2

[
((−1)f(0) + (−1)f(1))|0〉

+((−1)f(0) − (−1)f(1))|1〉
]
⊗ 1√

2
(|0〉 − |1〉)

≡ |q1〉 ⊗ |q2〉 (3.37)
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We note that the for the first qubit there are two possible final states depending on whether f(0)
and f(1) are equal or different. Thus,

f(0) + f(1) = 0 ⇒ |q1〉 = (−1)f(0)|1〉
f(0) + f(1) = 1 ⇒ |q1〉 = (−1)f(0)|0〉 (3.38)

This implies that by making a measurement on this qubit, which projects it either to the state |0〉
or |1〉, we can decide the value of f(0)+f(1). This does not fully determine the function f(x),
but it determines whether it belongs to set A (with f(0)+f(1) = 1) or set B (with f(0)+f(1) =
0). This demonstrates the point that the use of quantum superpositions makes it possible to
perform in one operation what would normally correspond to two classical computations.

This use of superposition is what we have referred to as quantum parallel processing. There
is a close relation between the evaluation discussed here, where the quantum state contains
information about both functional values f(0) and f(1), and the interaction-free measurement
discussed earlier, where the state vector contains information about both the paths that the
photon may follow.

The example given by Deutsch’s algorithm is too simple to convincingly justify the claim
that the quantum computation is more efficient than the classical computation. Obviously the
unitary transformation Uf corresponding to the function f(x) has to be supplemented by other
qubit operations and this does not make it completely clear that there is a net gain. The im-
portant point to make is that only one evaluation which involves f(x) has been done rather
than two. For the other algorithms mentioned one can demonstrate more explicitly the gain
by showing that the number of qubit operations scales in a different way than the number of
operations in a classical computation. This makes it clear that quantum parallelism may indeed
speed up certain types of calculations.

3.6.3 Can a quantum computer be constructed?

The considerations on how a quantum computer may more efficiently solve certain types of
problems makes it a very interesting idea. But is it feasible that this idea can be implemented
in the form of a real physical computer? The difficulties to overcome are extremely demanding.
At present qubit operations with a small number of qubits can be performed, but the idea that
thousands and thousands of qubits work coherently together at the quantum level is at this
stage an attractive dream. Some hysicists are rather pessimistic that the necessary control
of the quantum states can in reality be made. In particular the problem of decoherence is
extremely demanding, although algorithms for correcting quantum states that are modified due
to decoherence have been suggested. However, other physicists, who work in this field, remain
optimistic, and at the level of making controlled quantum operations on a few qubits there has
been an impressive progress.

There is in fact a competition between different types of realizations of physical qubits. In
the context of electronic systems interesting developments are based on the use of electronic
spin as the two-level variable. In the context of quantum optics the use of trapped two-level
atoms or ions has been extensively studied. One particularly interesting application is in the
form of optical lattices, where a collection of laser beams are used to trap atoms in a periodic
potential. A pair of atomic levels may define a qubit, and one-qubit operations on this atom



3.6. PRINCIPLES FOR A QUANTUM COMPUTER 95

may be be performed in a controlled way by manipulating the atom with a laser beam. The
two-qubit operations are similarly obtained by manipulating pairs of atoms in such a way that
interactions between the atoms will induce the relevant qubit operations.

One should note that even if the construction of a universal quantum computer at this
stage may seem to be far into the future, there may be partial goals that can be more readily
achieved. Ideas of quantum cryptography have already been implemented, and in the field of
computation a quantum simulator may be a much closer goal than a universal computer. Recent
developments suggests that the use of optical lattices may give a realistic approach towards this
goal, and for example the simulation in this way of quantum spin lattices (which are important
systems to study in condensed matter theory) may be possible in a not too distant future.
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Chapter 4

Photons and atoms

In this chapter we study the quantum theory of light and its interaction with matter. Historically
the understanding of how light is created and absorbed by atoms was central for development
of quantum theory, starting with Planck’s revolutionary idea of energy quanta in the description
of black body radiation. Today a more complete description exists, with the theory of quantum
electrodynamics (QED) as a part of a more complete relativistic quantum field theory, which
describes the electro-weak physics of the elementary particles. Even so the non-relativistic
theory of photons and atoms has continued to be important, and has been developed further,
in directions that are referred to as quantum optics. We will study here the basics of the non-
relativistic description of interactions between photons and atoms, in particular with respect to
the processes of spontaneous and stimulated emission. As a particular application we study a
simple model of a laser as a source of coherent light.

4.1 Classical electromagnetism

Maxwell’s theory of electromagnetism is the basis for the classical as well as the quantum
description of radiation. With some modifications the quantum theory can be derived from the
classical theory by a similar quantization method as previously used to quantize the simple field
theory of the vibrating string. In the present case the natural choice of generalized coordinates
are the field amplitudes of the electromagnetic potentials, but in order to secure that these
correspond to independent degrees of freedom, we have to sort out some problems related to
the gauge invariance of the electromagnetic theory. We also have to take into account the
additional degrees of freedom related to polarization.

We first, in this section, make a brief summary of the classical theory and show how a La-
grangian and Hamiltonian formulation of electromagnetic fields interacting with point charges
can be given. At the next step this forms the basis for the quantization of the free field and
for the formulation of the complete quantum theory of interacting fields and charges. We make
use of the non-covariant form of Maxwell’s equations, which is convenient when only coupling
to non-relativistic electrons are considered. When relativistic electrons interact with the elec-
tromagnetic field the covariant formulation is often better, even if the treatment of the gauge
invariance then is more cumbersome.

97
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4.1.1 Maxwell’s equations

Maxwell’s equations in non-covariant form are

∇ ·E =
ρ

ε0

∇×B− 1

c2

∂E

∂t
= µ0j

∇ ·B = 0

∇×E +
∂B

∂t
= 0 (4.1)

with E and B as the electric and magnetic fields and ρ and j as the charge and current densities.
The constant ε0 is the vacuum permittivity and µ0 is the vacuum permeability. They are related
to the speed of light through the equation ε0µ0 = 1/c2, with c, as usual, representing the speed
of light.

The electric and magnetic fields, when expressed in terms of the scalar potential φ and the
vector potential A, take the form

E = −∇φ− ∂

∂t
A , B = ∇×A (4.2)

Expressed in this way, the two homogeneous equations in (4.1) are satisfied as identities, while
the remaining two equations take the form

∇2φ+
∂

∂t
∇ ·A = − ρ

ε0

∇2A−∇(∇ ·A)− 1

c2

∂2

∂t2
A− 1

c2

∂

∂t
∇φ = −µ0j (4.3)

The potentials are however not uniquely determined by the electromagnetic fields. A gauge
transformation of the electromagnetic potentials has the following form,

A→ A′ = A + ∇χ , φ→ φ′ = φ+
1

c

∂

∂t
χ (4.4)

with χ as a (scalar) function of space and time. It is straight forward to show that such a trans-
formation leaves both the electric and the magnetic field, E and B, invariant. The usual way
to view the invariance of the fields under this transformation is that it reflects the presence of
non-physical degrees of freedom in the potentials. Thus, the potentials define an overcomplete
set of variables for the electromagnetic field.

For the Hamiltonian formulation to work it is necessary to identify the independent, phys-
ical degrees of freedom. This can be done by introducing a constraint, or gauge conditions,
which removes the unphysical degrees of freedom associated with gauge invariance. In the
non-covariant formulation of the theory this is usually done in the form of the Coulomb (or
radiation) gauge condition,

∇ ·A = 0 (4.5)
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This condition will not constrain the physical fields E and B, but it simplifies the two remaining
field equations (4.2)

∇2φ = − ρ
ε0

(4.6)

(
1

c2

∂2

∂t2
−∇2)A = µ0jT (4.7)

where

jT ≡ j− ε0
∂

∂t
∇φ (4.8)

is the transverse component of the current density.1 It satisfies the transversality condition as a
consequence of the continuity equation for charge,

∇ · jT = ∇ · j− ε0
∂

∂t
∇2φ

= ∇ · j +
∂

∂t
ρ

= 0 (4.9)

We note that the equation (4.6) for the scalar field φ contains no time derivatives, and can be
solved in terms of the charge distribution,

φ(r, t) =

∫
d3r′

ρ(r′, t)

4πε0|r− r′|
(4.10)

This is the same as the electrostatic (Coulomb) potential of a stationary charge distribution
which coincides with the true charge distribution ρ(r, t) at time t. Since the φ-field, in this
formulation, is fully determined by the position of the charges, the dynamics of the Maxwell
field is determined solely by the vector potential A. In the quantum description this means that
the photons are associated only with the vector potential A and not with φ.

4.1.2 Lagrange formulation

The field equation (5.42) of the vector potential can be derived from the following Lagrangian
density,

L =
ε0
2

Ȧ2 − 1

2µ0
(∇×A)2 + j ·A (4.11)

where we have used the freedom to replace, in the Lagrangian, the transverse current jT with
the full current j. This can be done since the difference gives rise to an irrelevant derivative
term.2

1Any vector field j(r) can be written as j = jT + jL, where ∇ · jT = 0 and ∇ × jL = 0. jT is referred to
as the transverse or solenoidal part of the field and jL as the longitudinal or irrotational part of the field. In the
present case, with jL = −∇φ̇ the irrotational form of jL follows directly, while the transversality of jT follows
from charge conservation.

2Note, however, that when the full current is used, the transversality condition ∇ · A has to be imposed as
a constraint to derive the correct field equation from the Lagrangian. When the A-field is coupled only to the
transverse part, that is not needed.
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So far we have not worried about the degrees of freedom associated with the charges.
We will now include them in the description by assuming the charges to be carried by point
particles. This means that we express the charge density and current as

ρ(r, t) =
∑
i

eiδ(r− ri(t))

j(r, t) =
∑
i

eivi(t)δ(r− ri(t)) (4.12)

where the sum is over all the particles with ri(t) and vi(t) as the position and velocity of
particle i as functions of time. The full Lagrangian of the interacting system we write as

L = Lfield + Lint + Lpart (4.13)

where Lfield is the part of L which depends only on the field variable A, Lint is the part
which depends both on the field and particle variables, and Lpart depends only on the particle
variables. The Lagrangian is defined as the space integral of the Lagrangian density. Thus, the
two first terms of (4.13) is derived from the integral of the Lagrangian density (4.11), while
the last term includes the contributions from the charged particles, in the form of kinetic and
potential (Coulomb) energy. This gives the following expression for the full Lagrangian L,

L =

∫
d3r
[ε0

2
Ȧ2 − 1

2µ0
(∇×A)

]
+
∑
i

eivi ·A(ri)

+
∑
i

1

2
miv

2
i −

1

2

∑
i 6=j

eiej
4πε0|ri − rj |

(4.14)

To find the corresponding Hamiltonian we make use of the standard relation between the
Lagrangian and Hamiltonian of a system,

H =

∫
d3r Π · Ȧ +

∑
i

pi · vi − L (4.15)

where

Π = ε0Ȧ ≡ −ε0ET (4.16)

is the canonical conjugate field momentum density and

pi =
1

m
(vi −

ei
c

A(ri)) (4.17)

is the canonical conjugate particle momentum. The full expression for the Hamiltonian then is

H =

∫
d3r

1

2
(ε0E

2
T +

1

µ0
B2) +

∑
i

1

2mi
(pi −

ei
c

A(ri))
2 +

∑
i<j

eiej
4πε0|ri − rj |

(4.18)

This expression for the Hamiltonian is derived for the classical system of interacting fields and
particles, but it has the same form as the Hamiltonian operator that is used to describe the
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quantum system of non-relativistic electrons interacting with the electromagnetic field. How-
ever, for spinning particles there is an additional term to include, which is coupling term of the
magnetic dipole moment of the charged particles and the magnetic field. The standard form of
this magnetic dipole term is

Hspin = −
∑
i

giei
2mi

Si ·B(ri) (4.19)

where gi is the g-factor of particle i, which is close to 2 for electrons. Often the spin term is
small corresponding to the other interaction terms and can be neglected.

4.2 Photons – the quanta of light

We consider now the quantum description of the system of particles and fields. With the degrees
of freedom of the electromagnetic field and of the electrons disentangled, we may assume the
space of states of the full quantum system to be the product space of a field-state space and a
particle-state space,

H = Hfield ⊗Hparticle (4.20)

The quantization of the electromagnetic field is then independent of the quantization of the
particle degrees of freedom. Since the interaction is not important for the the field quantiza-
tion, we may simply focus on the quantum description of the free electromagnetic field, which
defines the space Hfield and the operators (observables) acting there. The energy eigenstates
of the free field are the photon states. When we as a next step include interactions, these will
introduce processes where photons are emitted and absorbed. The method we use to make
the transition from the classical to the quantum description of the free electromagnetic field is
the essentially the same as earlier used in Sect. 1.2 to quantize the vibrating string, however
here taking into account the effects of the Coulomb gauge condition and the presence of the
polarization degrees of freedom.

4.2.1 The quantized field

To deal with the transversality condition ∇ ·A = 0 it is convenient to expand A(r) in a Fourier
series, with the wave vector k as the Fourier variable conjugate to r. It is also convenient to
confine the fields to a finite, but large box with linear dimensions L, and to assume periodic
conditions for the fields. The components of k then take discrete values, ki = 2πni/L, with ni
as a set of integers, and the field amplitude can be written as a discrete Fourier sum

A(r, t) =
1√
V

∑
k

2∑
a=1

Aka(t)εkae
ik·r (4.21)

where the V = L3 is the normalization volume, and the vectors εka are unit vectors which
satisfy k · εka = 0 as a consequence of the transversality condition ∇ · A = 0. Since there
are no constraints on the amplitudes Aka, these variables forms a convenient set of generalized
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coordinates for the independent degrees of freedom of the field. Note, however that the ampli-
tudes for opposite wave vectors k and −k will represent the same degrees of freedom, as we
shall discuss below.

The normal modes, which are defined by the amplitudes

Aka(t) = A0
kae
±iωkt , ωk = ck (k = |k|) (4.22)

represent plane waves of monochromatic, polarized light. The two vectors εka, with a = 1, 2,
are the polarization vectors, which are unit vectors in the plane perpendicular to k. We will in
the following chose these vectors to be real, with the orthonormality condition

εka · εka′ = δaa′ (4.23)

Real polarization vectors corresponds to linear polarization of the field modes. Also complex
vectors can be chosen, corresponding to circular or more generally to elliptic polarization.
These different sets of polarization vectors are equivalent in the sense that the unit vectors of
one set can be written as linear combinations of the unit vectors of any other set.

The fact that the field A(r, t) is a real field gives the following relation between the field
amplitudes at wave vectors k and −k,∑

a

A−kaε−ka =
∑
a

A∗kaεka (4.24)

The polarization vectors can be chosen so that

ε−ka = εkā (4.25)

where ā is determined from a by interchanging the two polarization directions 1 and 2. For the
field amplitude this give the relation

A∗ka = A−kā (4.26)

The Lagrangian of the free electromagnetic field expressed in terms of the Fourier ampli-
tudes is

L =
1

2
ε0
∑
ka

[
Ȧ∗kaȦka − ω2

kA
∗
kaAka

]
(4.27)

We note that there is no coupling between the different Fourier components, and for each
component the Lagrangian has the same form as for a harmonic oscillator of frequency ω = ck.
This is similar to the situation previously discussed in the quantization of the field theory of
the vibrating string. However, in the present case the field variables are complex rather than
real, since reality of the field is represented by the relation (4.26) with each Fourier component
being complex. A rewriting of the Lagrangian in terms of real variables is straight forward, but
it is more convenient to continue to work with the complex variables.

We also note two other differences when comparing with the string field thory. The first
one is the presence of additional degrees of freedom associated with polarization, and the other
is the use of periodic boundary conditions which allows propagating waves rather than standing
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waves as the fundamental modes. However, the important common feature is the decomposi-
tion of the systems into non-interacting harmonic oscillators, one for each field mode. This
reflects the free field properties of the systems, which means that the fields satisfy linear field
equations.

To introduce conjugate momenta for the variables Aka is now unproblematic,

Πka = ε0Ȧ
∗
ka = −ε0E∗ka (4.28)

where Eka is the Fourier component of the electric field. From this the form of the free field
Hamiltonian is found

H =
∑
ka

ΠkaȦka − L

=
∑
ka

1

2
ε0(E∗kaEka + ω2

kA
∗
kaAka) (4.29)

which is consistent with the earlier expression found for the Hamiltonian of the electromagnetic
field. It is represented by the first term of (4.15), here written in Fourier transformed field
components.

Quantization of the theory means that the classical field amplitude A and field strength E
are now replaced by operators Â and Ê, while the complex conjugate fields are replaced by
hermitian conjugate operators. The conjugate field variables satisfy the canonical commutation
relations in the form [

Ê†ka, Âk′b

]
= −1

c

[
˙̂
A
†
ka, Âk′b

]
= i

h̄

ε0
δkk′ δab (4.30)

while the different components of the A commute[
Âka, Âk′b

]
= 0 (4.31)

It is convenient to change to new variables,

Âka =

√
h̄

2ωkε0
(âka + â†−kā)

Êka = i

√
h̄ωk
2ε0

(âka − â†−kā) (4.32)

where the reality condition (4.24) (here meaning hermiticity of Â(r, t) and Ê(r, t)) has been
made explicit. In terms of the new variables the Hamiltonian, with the vacuum energy sub-
tracted, takes the form

Ĥ =
∑
ka

h̄ωkâ
†
kaâka (4.33)

and the canonical commutation relations are[
âka, â

†
k′b

]
= δkk′δab

[âka, âk′b] = 0 (4.34)
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Expressed in this way the Hamiltonian has exactly the form of a collection of independent
quantum oscillators, one for each field mode, with âka as lowering operator and â†ka as raising
operator in the energy spectrum of the oscillator labeled by (ka).

It is convenient to work, in the following, in the Heisenberg picture, where the observables
are time dependent. In this picture the vector potential is described by the field operators,

Â(r, t) =
∑
ka

√
h̄

2V ωkε0

[
âkaεkae

i(k·r−ωkt) + â†kaεkae
−i(k·r−ωkt)

]
(4.35)

and the electric and mangnetic fields are field operators derived from this by differensiation
with respect to t and r,

Ê(r, t) = − ∂

∂t
Â(r, t) , B̂(r, t) = ∇× Â(r, t) (4.36)

4.2.2 Constructing Fock space

The state space of the free electromagnetic field then can be viewed as a product space of har-
monic oscillator spaces, one for each normal mode of the field. The vacuum state is defined as
the ground state of the Hamiltonian (4.33), which means that it is the state where all oscillators
are unexcited,

âka|0〉 = 0 for all (k, a) (4.37)

The operator â†ka, which excites one of the oscillators, is interpreted as a creation operator
which creates one photon from the vacuum,

â†ka|0〉 = |1ka〉 (4.38)

By repeatedly applying the creation operator an arbitrary number of photons can be created in
the same state (ka),

(â†ka)
nka |0〉 =

√
nka! |nka〉 (4.39)

The operator âka is an annihilation operator which reduces the number of photons in the mode
(ka),

âka|nka〉 =
√
nka |nka − 1〉 (4.40)

The photon number operator is

N̂ka = â†kaâka (4.41)

It counts the number of photons present in the state (ka),

N̂ka|nka〉 = nka |nka〉 (4.42)

The general photon state, often referred to as a Fock state, is a product state with a well-
defined number of photons for each set of quantum numbers (ka). It is specified by a set of
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occupation numbers {nka} for the single-photon states. The set of Fock states |{nka}〉 form
a basis of orthonormal states that span the state space, the Fock space, of the quantized field.
Thus a general quantum state of the free electromagnetic field is a linear superposition of Fock
states,

|ψ〉 =
∑
{nka}

c({nka})|{nka}〉 (4.43)

with c({nka}) as the expansion coefficients in this basis.
The observables of the theory are assumed to have the same form as the corresponding

classical variables when expressed in terms of the electric and magnetic fields. Thus, the energy
operator has the same form as the classical field energy

Ĥ =

∫
d3r

1

2
(ε0Ê

2 +
1

µ0
B̂2)

=
∑
ka

1

2
h̄ωk(â

†
kaâka + âkaâ

†
ka)

=
∑
ka

h̄ωk(N̂ka +
1

2
) (4.44)

and is identical to the free field part of the Hamiltonian previously discussed, except that the
vacuum energy is here included. In the following this contribution will usually be ommited.

In a similar way the classical field momentum, defined by Poyntings vector, is replaced by
an operator of the same form,

P̂ =

∫
d3rε0(Ê× B̂)

=
∑
ka

1

2
h̄k(â†kaâka + âkaâ

†
ka)

=
∑
ka

h̄kN̂ka (4.45)

In this case the vacuum contribution disappears when summing over k. Both Ĥ and P are
diagonal in the Fock basis.

The expressions for Ĥ and P show that a single photon in the mode (ka) has energy E =
h̄ωk and momentum p = h̄k, in accordance with the de Broglie relations. Furthermore, the
relation ωk = ck, generally valid for electromagnetic waves, means that the energy-momentum
relation isE = cp, which is the correct one for a massless relativistic particle. This is consistent
with the idea of the photon as a massless particle, not simply as an energy quantum of an
electromagnetic mode. In addition, the degree of freedom associated with the two possible
polarizations is readily re-interpreted as due to the intrinsic spin of the photon. Thus, the
photon carries one unit of spin, and the existence of only two spin states, rather than three, is
related to the fact that the photon is massless. A natural choice for two orthogonal spin states
are the helicity states, corresponding to spin either in the direction of the momentum or in the
direction opposite to the momentum. In the language of polarization these two possibilities
correspond to circular polarization, which may either be right-handed or left-handed. The
photons are bosons, since an arbitrary number of photons can be created in the same state.
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4.2.3 Coherent and incoherent photon states

In a similar way as for the quantum description of particles, we may view the expectation
values of the electromagnetic field operators to represent classical variables within the quantum
theory. For example, the expectation value of the electric field operator takes the usual form of
a classical electric field. Expanded in plane wave components it is

〈
Ê(r, t)

〉
= i

∑
ka

√
h̄ωk
2V ε0

[
αkaεkae

i(k·r−ωkt) − α∗kaεkae−i(k·r−ωkt)
]

(4.46)

where the complex expansion coefficients αka and α∗ka are the expectation values of the anni-
hilation and creation operators.

αka = 〈âka〉 , α∗ka =
〈
â†ka

〉
(4.47)

The quantum field in addition has (quantum) fluctuations around the classical configuration.
We note, from the above expression, the curious fact that for Fock states, with a sharply

defined set of photon numbers, the expectation value of the electric (as well as the magnetic)
field vanishes. Such states, which may be highly excited in energy while the expectation values
for the fields vanish, we may regard as being highly non-classical states. In these states the
fields, in a sense, are dominated by the quantum fluctuations. Classical fields, on the other hand,
may be represented by states where the expectation values dominate the quantum fluctuations.
For a single harmonic oscillator we have already discussed such ”classical” states in the form
of coherent states, states with minimum uncertainty in their phase space positions x̂ and p̂.
For the electromagnetic field the corresponding variables are Â(r, t) and Ê(r, t), and since
each field mode can be regarded as a harmonic oscillator, the definition of oscillator coherent
states can be directly applied to define coherent states of the electromagnetic field. Such states
correspond to a particular form of superpositions of Fock states.

For a single electromagnetic field mode (ka), the coherent state has the same form as
discussed in Sect. 1.3.3 for the harmonic oscillator,

|αka〉 =
∑
nka

e−
1
2
|αka|2 (αka)

nka

√
nka!

|nka〉 (4.48)

where αka is related to the expectation values of âka and â†ka as in (4.47). The full coherent
state of the electromagnetic field is then a product state of the form

|ψ〉 =
∏
ka

|{αka}〉 (4.49)

and the corresponding expectation value of the electric field is given by (4.46).

Vacuum fluctuations
The vacuum state is a special case of a coherent state, and in the same way as for a single
harmonic oscillator, the quantum fluctuations of this state are the same as for any other coherent
state. This follows since the coherent state can be considered as obtained from the vacuum state
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by shifting the field operators by a classical field contribution3. The quantum fluctuations of
the fields in a given, sharply defined point in space, are ill defined. The two-point correlation
function, however, gives finite expressions for the fluctuations. We examine here the vacuum
correlation function

Cij(r− r′) ≡
〈
Ei(r)Ej(r

′)
〉
− 〈Ei(r)〉

〈
Ej(r

′)
〉
vac

=
∑
k

h̄ωk
2V ε0

eik·(r−r
′)(δij −

kikj
k2

)

→ ch̄

2(2π)3ε0

∫
d3kkeik·(r−r

′)(δij −
kikj
k2

) (4.50)

where in the last step we have taken the infinite volume limit. For large k this integral has
an undamped oscillatory behavior, but the integral can be made well defined by introducing a
damping factor e−εk, taking ε to 0 after the integration. We note that the correlation function
only depends on the relative coordinates of the two points and therefore simply put r′ = 0,
so that r represents the relative coordinate of the two points. The correlation function can be
re-expressed in the following way

Cij(r) =
ch̄

2(2π)3ε0
(
∂

∂xi

∂

∂xj
− δij

∑
k

∂

∂xk

∂

∂xk
)

∫
d3k

1

k
eik·re−εk (4.51)

with the integral evaluated as∫
d3k

1

k
eik·re−εk = 2π

∫ ∞
0

dkk

∫ π

0
dθ sin θ eikr cos θ−εk

= 2π

∫ ∞
0

dkke−εk
∫ 1

−1
du eikru

=
4π

r

∫ ∞
0

dk sin kr e−εk

=
4π

r2
(4.52)

where in the last step we have taken the limit ε→ 0+. This gives

Cij(r) =
ch̄

2(2π)3ε0
(
∂

∂xi

∂

∂xj
− δij

∑
k

∂

∂xk

∂

∂xk
)

4π

r2

=
ch̄

π2ε0r4
(2
xixj
r2
− δij)

= − ch̄

π2ε0r4
(δij − 2

xixj
r2

) (4.53)

We note the fall-off of the correlation with increased separation between the two points and
also note that the function diverges as r → 0. This divergence is typical for field theories,
and reflects the fact that the physical fields cannot be defined with infinite resolution. A way

3i.e., by a contribution proportional to the identity operator
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Figure 4.1: The correlation function for the electric field in a coherent state, Cij(r − r′) ≡
〈Ei(r)Ej(r

′)〉 − 〈Ei(r)〉 〈Ej(r
′)〉. The form of the non-vanishing elements, i = j, is shown as the

function of distance r− r′ between two points in space.

to avoid such infinities is to define the physical fields by averaging over a small volume. This
introduces effectively a momentum cut-off in the Fourier transformation of the field.

A similar calculation for the magnetic field shows that the correlation function is the same
as for the electric field. This is typical for the coherent state which is symmetric in its de-
pendence of the field variable and its conjugate momentum. Since A and E are conjugate
variables, the electric and magnetic fields do not commute as operator fields. Formally the
commutator is, for equal times,

[
Bi(r), Ej(r

′)
]

= i
h̄

ε0
εijk

∂

∂xk
δ(r− r′) (4.54)

where one should consider the Fourier transform of the above expression, in order to give the
derivative of the delta-function a precise meaning. There are states where the fluctuations in the
E-field are suppressed relative to that of the vacuum state, but due to the non-vanishing of the
commutator with B, the fluctuations in the B-field will then be larger than that of the vacuum.
States with reduced fluctuations in one of the fields, and which still satisfy the condition of
minimum (Heisenberg) uncertainty for conjugate variables, are often referred to as squeezed
states.

Radio waves, produced by oscillating currents in an antenna, can clearly be regarded as
classical electromagnetic waves and are well described as coherent states of the electromag-
netic field within the quantum theory of radiation. The mean value of the fields at the receiver
antenna induces the secondary current that creates the electric signal to the receiver. Also for
shorter wavelengths in the microwave and the optical regimes coherent states of the electro-
magnetic can be created, but not by oscillating macroscopic currents. In masers and lasers the
intrinsic tendency of atoms to correlate their behavior in a strong electromagnetic field is used
to create a monochromatic beam with a high degree of coherence. Ordinary light, on the other
hand, as emitted by a hot source is highly incoherent, since the emission from different atoms
only to a low degree is correlated. The expectation value for the field values at any point in
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space vanishes, and in this sense the light from a hot source is non-classical. However, this
light does not corresponding to a pure quantum state, like the Fock state, but instead to a mixed
state, with a probability distribution over Fock states.

The thermal photon gas
We examine now the quantum state of radiation from a hot source, which we assume to have the
form of black body radiation, with a thermal Boltzmann distribution over energy eigenstates.
The density operator of this state is

ρ̂ = N e−βĤ , N = (Tr e−βĤ)−1 , β = (kBT )−1 (4.55)

where Ĥ =
∑

ka h̄ωkâ
†
kaâka is the Hamiltonian of the free electromagnetic field, kB is Boltz-

mann’s constant and T is the temperature of the radiation. We first calculate the expectation
value of the photon numbers

nka ≡
〈
N̂ka

〉
= N Tr (e−βĤ â†kaâka)

= N Tr(e−βĤ â†kae
βĤ e−βĤ âka)

= N Tr(e−βh̄ωk â†ka e
−βĤ âka)

= e−βh̄ωkN Tr( e−βĤ âkaâ
†
ka)

= e−βh̄ωkN Tr(e−βĤ(â†kaâka + 1))

= e−βh̄ωk(nka + 1) (4.56)

where we have made use of the relation

e−βĤ â†kae
βĤ = e−βh̄ωk â†ka (4.57)

From (4.56) then follows

nka =
1

eβh̄ωk − 1
(4.58)

with ωk = ck. This is the well-known Bose-Einstein distribution for photons in thermal equi-
librium with a heat bath. From this distribution the Planck spectrum of the black body radiation
can be determined. The total radiation energy is

E =
∑
ka

h̄ωknka

→ 2
V

(2π)3

∫
d3k

h̄ωk
eβh̄ωk − 1

=
V h̄

π2c3

∫
dω

ω3

eβh̄ω − 1
(4.59)

This corresponds to the following energy density per frequency unit to be
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Figure 4.2: The Planck spectrum. A schematic experimental set up is shown where thermal light is
created in a cavity surrounded by a heat bath (an oven). The radiation escapes through a narrow hole
and can be analyzed in a detector. The right part of the figure shows the intensity (energy density) of the
radiation as a function of wave length for three different temperatures.

u(ω) =
h̄

π2c3

ω3

eβh̄ω − 1
(4.60)

which displays the form of the Planck spectrum.
We next consider the expectation values of the photon annihilation and creation operators.

A similar calculation as for the number operator gives〈
â†ka

〉
= N Tr(e−βH â†ka)

= N Tr(e−βH â†kae
βH e−βH)

= N Tr(e−βh̄ωk â†ka e
−βH)

= e−βh̄ωkN Tr( e−βH â†ka)

= e−βh̄ωk
〈
â†ka

〉
(4.61)

This shows that the expectation value of the creation operator vanishes. A similar reasoning
applies to the annihilation operator, so that〈

â†ka

〉
= 〈âka〉 = 0 (4.62)

As a consequence the expectation value of the electric and magnetic field vanish identically,

〈E(r, t)〉 = 〈B(r, t)〉 = 0 (4.63)

There are several ways to interpret this result, that the expectation values of the electro-
magnetic fields vanishes. We have represented the quantum state of the black body radiation
as a statistical distribution over Fock states, and this indicates that the light from a hot source
should be viewed as non-classical in the same sense as the pure Fock states. However, the
vanishing of the expectation values of the fields only reflects rotational invariance, or the fact
that black body radiation is unpolarized. This can be obtained also with statistical distributions
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over classical field configurations. In fact, the mixed quantum state of black body radiation can
be expressed as statistical distributions over two completely different ensembles of pure states.
One is the ensemble of Fock states, that we have already discussed. The other is an ensemble
of coherent states. Thus, if we write the density operator (4.55) as a product over modes,

ρ̂ =
∏
ka

ρ̂ka (4.64)

the density operator of each mode has a thermal form with the two equivalent expansions

ρ̂ka = N
∑
n

exp(−βh̄ωn)|n〉〈n| = N ′
∫
d2α exp(−(eβh̄ω − 1)|α|2)|α〉〈α| (4.65)

In this expression ω = ck is the frequency of the mode, α is a coherent-state variable and N
and N ′ are normalization factors. The identity between the two expansions is readily verified
by using the expansion of coherent states in energy eigenstates.

This situation, that the density operator of a mixed state can be viewed as statistical dis-
tributions over completely different ensembles of pure quantum states, is something we have
noticed already in the introductory discussion of pure and mixed states in Sect. 2.1.1. In the
present case this means that it is our subjective choice to see the quantum state of the radiation
either as a probability distribution over states with well defined photon numbers (the particle
representation) or as a probability distribution over coherent states (the wave representation).
Thus, the distinction between ”classical light” and ”non-classical light” is not so obvious for
mixed quantum states as it is for pure states of the electromagnetic field.

Let us finally consider the question of how these different views of light are related to the
classical demonstrations of the wave nature of light, in particular as shown in Young’s inter-
ference experiments. These demonstrations may seem to favor the wave representation rather
than the particle representation of light. However, even if this type of experiments demonstrate
the wave nature of light, one should remember that interference is a direct consequence of
quantum superpositions and is not depending of coherent behavior of many photons. We may
compare this with the double slit experiment for electrons where interference can be seen as
a single particle effect. Many electrons are needed to build up the interference pattern, but no
coherent effect between the states of different electrons is needed. The interference can be seen
as a single-electron effect, but the geometry of the experiment introduces a correlation in space
between the pattern associated with each particle so that a macroscopic pattern can be built.
In the same way we may interpret interference in incoherent light to be a single-photon ef-
fect. Each photon interferes with itself, without any coherent behavior with other photons. But
they all see the same geometrical structure of the slits and this creates a correlated interference
pattern.

4.2.4 Photon emission and photon absorption

We shall in the following consider processes where only a single electron is involved. To be
more specific we may consider transitions in a hydrogen atom, or a hydrogen-like atom, where
a single atomic electron can either absorb or emit a photon. The full Hamiltonian has the form

Ĥ = Ĥfield
0 + Ĥatom

0 + Ĥint (4.66)
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where

Ĥatom
0 =

p̂2

2m
+ V (r̂) (4.67)

is the unperturbed Hamiltonian of the electron, which moves in the electrostatic potential V
set up by the charges of the rest of the atom (i.e., the nucleus and possibly other, more tightly
bound electrons). The transitions are induced by the interaction part of the Hamiltonian of the
electron and electromagnetic field,

Ĥint = − e

m
Â(r̂) · p̂ +

e2

2m
Â(r̂)2 − e

m
Ŝ · B̂(r̂) (4.68)

where r̂ is the electron coordinate and p̂ is the (conjugate) momentum operator. The g-factor
of the electron has here been set to 2.

The two first terms in Hint are charge interaction terms which describe interactions be-
tween the charge of the electron and the electromagnetic field. The third term is the spin inter-
action term, which describes interactions between the magnetic dipole moment of the electron
and the magnetic field. We note that to lowest order in perturbation expansion, the first and
third term of the interaction Hamiltonian (4.68) describe processes where a single photon is
either absorbed or emitted. The second term describe scattering processes for a single photon
and two-photon emission and absorption processes. This term is generally smaller than the
first term and in a perturbative treatment it is natural to collect first order contributions from
the second term with second order contributions from the first term. This means that we treat
the perturbation series as an expansion in powers or the charge e (or rather the dimensionless
fine-structure constant) instead of as an expansion in the interaction Hint.

The spin interaction term is also generally smaller than the first (charge interaction) term.
However there are different selection rules for the transitions induced by these two terms, and
when the direct contribution from the first term is forbidden the spin term may give an important
contribution to the transition. Here we shall in the following restrict the discussion to transitions
where the contribution from the first term is dominant and we therefore can neglect the two
other terms. For simplicity we use the same notation Hint when only the first term is included.

The interaction Hamiltonian we may now separated in a creation (emission) part and an
annihilation (absorption) part

Ĥint = Ĥemis + Ĥabs (4.69)

Separately they are are non-hermitian with Ĥ†emis = Ĥabs. Expressed in terms of photon
creation and annihilation operators they are

Ĥemis = − e
m

∑
ka

√
h̄

2V ε0ωk
p̂ · εkaâ†kae−i(k·r−ωkt)

Ĥabs = − e
m

∑
ka

√
h̄

2V ε0ωk
p̂ · εkaâkaei(k·r−ωkt) (4.70)

Note that when written in this way the operators are expressed in the interaction picture where
the time evolution is determined by the free (non-interacting) theory. The time evolution of the
state vectors are in this picture determined by the interaction Hamiltonian only, not by the free
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(unperturbed) Hamiltonian. This picture is most conveniently used in perturbative expansions,
as previously discussed in Sect. 1.2.1.

From the above expressions we can find the interaction matrix elements corresponding to
emission and absorption of a single photon. We note that to first order the photon number only
of one mode (k, a) is changed and we write the photon number only of this mode explicitly.
We write the initial and final states as

|i〉 = |A,nka〉
|f〉 = |B,nka ± 1〉 (4.71)

where |A〉 is the (unspecified) initial state of the atom (i.e., the electron state), |B〉 is the final
state of the atom, and nka is the photon number of the initial state. This means that we consider
transitions between Fock states of the electromagnetic field.

For absorption the matrix element is

〈B,nka − 1|Ĥabs|A,nka〉 = − e

m

√
h̄

2V ε0ωk
〈B,nka − 1|p̂ · εka âkaei(k·r−ωkt)|A,nka〉

= − e

m

√
h̄nka

2V ε0ωk
εka · 〈B|p̂eik·r|A〉e−iωkt (4.72)

and the corresponding expression for photon emission is

〈B,nka + 1|Ĥemis|A,nka〉 = − e

m

√
h̄

2V ε0ωk
〈B,nka + 1|p̂ · εka â†kae

−i(k·r−ωkt)|A,nka〉

= − e

m

√
h̄(nka + 1)

2V ε0ωk
εka · 〈B|p̂e−ik·r|A〉eiωkt (4.73)

In the final expressions of both (4.72) and (4.73) note that only the matrix elements for the
electron operator between the initial and final states A and B remain, while the effect of the
photon operators is absorbed in the prefactor, which now depends on the photon number of the
initial state.

It is of interest to note that the electron matrix elements found for the interactions with a
quantized electromagnetic field is quite analogous to those found for interaction with a classical
time-dependent electromagnetic field of the form

A(r, t) = A0 e
i(k·r−ωkt) + A∗0 e

−i(k·r−ωkt) (4.74)

where the positive frequency part of the field (i.e., the term proportional to e−iωkt)) corresponds
to the absorption part of the matrix element and the negative frequency part (proportional to
eiωkt)) corresponds to the emission part. The use of this expression for the A-field gives a semi-
classical approach to radiation theory, which in many cases is completely satisfactory. It works
well for states with a large number nka of photons, where the strength of the matrix elements
for absorption and emission are essentially equal. However, for small photon numbers there is
a non-negligible difference in the strength of the two matrix elements, a difference which is not
reflected in the classical amplitude (4.74). In the case of spontaneous emission, with nka = 0
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in the initial state, the quantum theory correctly describes the transition of the electron from
an excited state by emission of a photon, whereas a semiclassical description does not, since
electronic transitions in this approach depends on the presence of an oscillating electromagnetic
field.

4.2.5 Dipole approximation and selection rules

For radiation from an atom, the wave length of the radiation field is typically much larger than
the dimension of the atom. This difference is exemplified by the wave length of blue light and
the Bohr radius of the hydrogen atom

λblue ≈ 400nm , a0 = 4πε0
h̄2

me2
≈ 0.05nm (4.75)

This means that the effect of spacial variations in the electromagnetic field over the dimensions
of an atom are small, and therefore the time-variations rather than the space variations of the
field are important. In the expression for the transition matrix elements (4.72) and (4.73) this
justifies an expansion of the phase factors in powers of k · r,

e±ik·r = 1± ik · r− 1

2
(k · r)2 + ... (4.76)

where the first term is dominant. The approximation where only this term is kept is referred
to as the dipole approximation. The other terms give rise to higher multipole contributions.
These may give important contributions to atomic transitions only when the contribution from
the first term vanishes due to a selection rule. However the transitions dominated by higher
multipole terms are normally much slower than the ones dominated by the dipole contribution.

When the dipole approximation is valid, the matrix elements of the interaction Hamiltonian
simplify to

〈B,nka − 1|Ĥabs|A,nka〉 = − e

m

√
h̄nka

2V ε0ωk
εka · pBA e−iωkt

〈B,nka + 1|Ĥemis|A,nka〉 = − e

m

√
h̄(nka + 1)

2V ε0ωk
εka · pBA eiωkt (4.77)

where pBA is the matrix element of the operator p̂ between the states |A〉 and |B〉. It is
convenient to re-express it in terms of the matrix elements of the position operator r̂, which can
be done by use of the form of the (unperturbed) electron Hamiltonian,

Ĥatom
0 =

p̂2

2m
+ V (r̂) (4.78)

where V (r̂) is the (Coulomb) potential felt by the electron. This gives[
Ĥatom

0 , r̂
]

= −i h̄
m

p̂ (4.79)

With the initial state |A〉 and the final state |B〉 as eigenstates of Ĥatom
0 , with eigenvalues EA

and EB , we find for the matrix element of the momentum operator between the two states

pBA = i
m

h̄
(EB − EA)rBA = imωBA rBA (4.80)
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where we have introduced ωAB = (EA−EB)/h̄. Note that in the expression for the interaction,
the change from pBA to rBA corresponds to the transformation

− e

m
A · p→ er · Ȧ = −er ·E (4.81)

where the last term is identified as the electric dipole energy of the electron. This form justifies
the name electric dipole transitions for transitions induced by this operator.

By use of the identity (4.80) the interaction matrix elements are finally written as

〈B,nka − 1|Ĥabs|A,nka〉 = −ie

√
h̄nkaω

2
BA

2V ε0ωk
εka · rBA e−iωkt

〈B,nka + 1|Ĥemis|A,nka〉 = ie

√
h̄(nka + 1)ω2

AB

2V ε0ωk
εka · rBA eiωkt

(4.82)

As we shall later see these expressions may in most cases be simplified by use of energy con-
servation, in the form ωk = ωBA for photon absorption and ωk = ωAB for photon emission.

Selection rules
The matrix elements

rBA = 〈B |̂r|A〉 (4.83)

are subject to certain selection rules which follow from conservation of spin and parity. Thus,
the operator r̂ transforms as a vector under rotation and changes sign under space inversion.
Since a vector is a spin 1 quantity, the operator can change the spin of the state |A〉 by max-
imally one unit of spin. Physically we interpret this as due to the spin carried by the photon.
The change in sign under space inversion corresponds to the parity of the photon being −1.
This change implies that the parity of the final state is opposite that of the initial state.

Let us specifically consider (orbital) angular momentum states of the atomic electron, char-
acterized by the quantum numbers l and m (total angular momentum and angular momentum
in the z-direction). The initial atomic state A is then characterized by quantum numbers lA and
mA, while the parity is PA = (−1)lA . The corresponding quantum numbers for the state B
are lB,mA and PB = (−1)lB . We note that the change in parity forces the angular moment
to change by one unit (lA 6= lB) and the formula for spin addition gives lB = lA ± 1. The
selection rules for the electric dipole transitions (referred to as E1 transitions) are therefore

∆l = ±1 (lA 6= 0) , ∆l ≡ lB − lA
∆l = +1 (lA = 0)

∆m = 0,±1 , ∆m ≡ mB −mA (4.84)

The transitions that do not satisfy these rules are “forbidden” in the sense that the interaction
matrix element vanishes in the dipole approximation. Nevertheless such transitions may take
place, but as a much slower rate than the E1 transitions. They may be induced by higher
multipole terms in the expansion (4.76), or by higher order terms in A which give rise to
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multi-photon processes. The multipole terms include higher powers in the components of the
position operator, and these terms transform differently under rotation and space inversion than
the vector r. As a consequence they are restricted by other selection rules. Physically we may
consider the higher multipole transitions as corresponding to non-central photon emission and
absorption, where the total spin transferred is not only due to the intrinsic photon spin but also
orbital angular momentum of the photon.

4.3 Photon emission from excited atom

In this section we examine the photon emission process for an excited atom in some more
detail. We make the assumption that the atom at a given instant t = ti is in an excited state
|A〉 and consider the amplitude for making a transition to a state |B〉 at a later time t = tf by
emission of a single photon. The amplitude is determined to first order in the interaction, and
the transition probability per unit time and and unit solid angle for emission of the photon in a
certain direction is evaluated and expressed in terms of the dipole matrix element. We subse-
quently discuss the effect of decay of the initial atomic state and its relation to the formation of
a line width for the photon emission line.

4.3.1 First order transition and Fermi’s golden rule

The perturbation expansion of the time evolution operator in the interaction picture is (see
Sect. 1.2.1)

Ûint(tf , ti) = 1− i

h̄

tf∫
ti

dtĤint(t) +
1

2
(− i
h̄

)2

tf∫
ti

dt

t∫
ti

dt′Ĥint(t)Ĥint(t
′) + ...

(4.85)

where the time evolution of the interaction Hamiltonian is

Ĥint(t) = e
i
h̄
Ĥ0tĤinte

− i
h̄
Ĥ0t (4.86)

with Ĥ0 as the unperturbed Hamiltonian. The transition matrix element between an initial state
|i〉 at time ti and final state |f〉 at time tf is

〈f |Ûint(tf , ti)|i〉 = 〈f |i〉 − i

h̄
〈f |Ĥint|i〉

tf∫
ti

dte
i
h̄

(Ef−Ei)t

+
1

2
(− i
h̄

)2
∑
m

〈f |Ĥint|m〉〈m|Ĥint|i〉
tf∫
ti

dt

t∫
ti

dt′e
i
h̄

(Ef−Em)te
i
h̄

(Em−Ei)t′ + ...

(4.87)

In this expressions we have assumed that the initial state |i〉 and the final state |f〉 as well as
a complete set of intermediate states |m〉 are eigenstates of the unperturbed Hamiltonian Ĥ0.
The corresponding eigenvalues are Ei, Ef and Em. We perform the time integrals, and in
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order to simplify expressions we introduce the notation ωfi = (Ef − Ei)/h̄, T = tf − ti and
t̄ = (ti + tf )/2. To second order in the interaction the transition matrix element is

〈f |Ûint(tf , ti)|i〉 = 〈f |i〉

−2i
sin[1

2ωfiT ]

h̄ωfi
eiωfi t̄

[
〈f |Ĥint|i〉 −

∑
m

〈f |Ĥint|m〉〈m|Ĥint|i〉
h̄ωmi

+ ...
]

−2ieiωfi t̄
∑
m

sin[
1

2
ωfmT ]eiωmiT

〈f |Ĥint|m〉〈m|Ĥint|i〉
h̄2ωfm ωmi

+ ...

(4.88)

where we assume the diagonal matrix elements of Ĥint to vanish in order to avoid ill-defined
terms in the expansion. The factor depending on t̄ is unimportant and can be absorbed in a
redefinition of the time coordinate so, that t̄ = 0. (The interesting time dependence lies in the
relative coordinate T = tf − ti.) The last term in (4.88) does not contribute (at average) to low
order due to rapid oscillations. Without this term the result simplifies to

〈f |Ûint(tf , ti)|i〉 = 〈f |i〉 − 2i
sin[1

2ωfi T ]

h̄ωfi
eiωfi t̄ Tfi (4.89)

where Tfi is the T-matrix element

Tfi =
[
〈f |Ĥint|i〉 −

∑
m

〈f |Ĥint|m〉〈m|Ĥint|i〉
h̄ωmi

+ ...
]

(4.90)

The transition probability for f 6= i is

Wfi =

(
2 sin[1

2ωfi T ]

h̄ωfi

)2

|Tfi|2 (4.91)

Also this is an oscillating function, but for large T it gives a contribution proportional to T . To
see this we consider the function

f(x) =

(
sinx

x

)2

(4.92)

The function is shown in fig.4.3. It is localized around x = 0 with oscillations that are damped
like 1/x2 for large x. The integral of the function is

∞∫
−∞

f(x)dx = π (4.93)

The prefactor of (4.91) can be expressed in terms of the function f(x) as(
2 sin[1

2ωfi T ]

h̄ωfi

)2

=
T 2

h̄2 f(
1

2
ωfi T ) (4.94)
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Figure 4.3: Frequency dependence of the transition probability. For finite transition time T the function
has a non-vanishing width. In the limit T →∞ the function tends to a delta-function.

When regarded as a function of ωfi this function gets increasingly localized around ωfi = 0
as T increases, and in the limit T →∞ it approaches a delta function, with the strength of the
delta function being determined by the (normalization) integral (4.93),(

2 sin[1
2ωfi T ]

h̄ωfi

)2

→ 2π

h̄
Tδ(h̄ωfi) (4.95)

This gives a constant transition rate between the initial and final states,

wfi =
Wfi

T
=

2π

h̄
|Tfi|2δ(Ef − Ei) (4.96)

where Tfi to lowest order in the interaction is simply the interaction matrix element. When
applied to transitions in atoms, the expression (4.96) for the constant transition rate is often
referred to as Fermi’s golden rule. The delta function expresses energy conservation in the
process. Note, however, that only in the limit T → ∞ the energy dependent function is really
a delta function. For finite time intervals there is a certain width of the function which means
that Ef can deviate slightly from Ei. This apparent breaking of energy conservation for finite
times may happen since Ef and Ei are eigenvalues of the unperturbed Hamiltonian rather than
the full Hamiltonian.

In reality the time T cannot be taken to infinity for an atomic emission process, since any
excited state will have a finite life time. The width of the energy-function then has a physical
interpretation in terms of a line width for the emission line. At this point we neglect this effect
of level broadening, but we shall return to a description of this effect a coming section.

4.3.2 Emission rate

We consider now the case where initially the atom is in an excited state A and finally in a state
B with one photon being emitted. The initial and final states of the full quantum system are

|i〉 = |A, 0〉 , |f〉 = |B, 1ka〉 (4.97)
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where 0 in the initial state indicates the photon vacuum, while 1ka indicates one photon with
quantum numbers ka. We will be interested in finding an expression for the differential tran-
sition rate, i.e., the transition probability per unit time and unit solid angle, as well as the total
transition rate.

We write the transition rate summed over all final states of the photon as

wBA =
∑
ka

2π

h̄
|〈B, 1ka|Ĥemis|A, 0〉|2δ(EA − EB − h̄ωk)

→ V

(2π)3

∫
d3k

∑
a

2π

h̄
|〈B, 1ka|Ĥemis|A, 0〉|2δ(EA − EB − h̄ωk)

=
V

(2π)2h̄

∫
dΩ

∞∫
0

dkk2
∑
a

|〈B, 1ka|Ĥemis|A, 0〉|2δ(EA − EB − h̄ωk)

=
V ω2

BA

(2π)2c3h̄2

∫
dΩ
∑
a

|〈B, 1ka|Ĥemis|A, 0〉|2 (4.98)

where the infinite volume limit has been taken in the change from a diskrete momentum sum
to a momentum integral. The subsequent integration of k = ωk/c over the delta function
then fixes the frequency of the emitted photon to match the atomic frequency, ωk = ωAB =
(EA −EB)/h̄. By use of the expression for the dipole transmission matrix element (4.82), we
find the following expression for differential emission rate,

dwBA
dΩ

=
e2ω3

AB

8π2ε0h̄c3
|rBA · ε∗ka|2 (4.99)

where εka is the polarization vector of the emitted photon.
Summed over photon states we have

∑
a

|rBA · ε∗ka|2 = |rBA|2 −
|rBA · k|2

k2
(4.100)

From this we find the total transition rate into all final states of the photon,

wBA =
e2ω3

AB

8π2ε0h̄c3

∫
dΩ
[
|rBA|2 −

|rBA · k|2

k2

]
=

e2ω3
AB

4πε0h̄c3
|rBA|2

π∫
0

dθ sin θ(1− cos2 θ)

=
e2ω3

AB

4πε0h̄c3
|rBA|2

+1∫
−1

du(1− u2)

=
e2ω3

AB

3πε0h̄c3
|rBA|2

=
4α

3c2
ω3
AB|rBA|2 (4.101)
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where α is the fine structure constant. This expression shows how the transition rate depends
on the dipole matrix element |rBA|2 and on the energy h̄ωAB released in the transition.4

The formalism employed here for the case of spontaneous emission can also be used to
describe photon absorption processes and scattering of photons on atoms. In the latter case the
amplitude should be calculated to second order in the electric charge, and that would involve
the A ·A-term as well as the A ·p-term of the interaction. We note from the expression (4.101)
that the emission rate increases strongly with the energy of the emitted photon. To a part that
can be seen as a density of states effect, since for high energy photons many more states are
available (within a fixed energy interval) than for low energy photons. This is demonstrated
explicitly by (4.98) which shows that a factor ω2

BA can be ascribed to the frequency dependence
of the density of states. A similar effect takes place when light scattering is considered. This
gives a qualitative explanation for why blue light is more readily scattered than red light, and
thereby why the sky is blue and the sunset is red.

4.3.3 Life time and line width

Fermi’s golden rule, which gives a constant transition rate from the excited to the lower en-
ergy level of the atom, can be correct only in an approximate sense. Thus, the corresponding
expression for the integrated transition probability,

WBA(t) = twBA (4.102)

which shows that WBA increases linearly with time, can obviously be correct only for a suffi-
ciently short time interval t < w−1

BA. One way to view this problem is that the expression (4.91)
does not take into account the fact that the probability of state A to be occupied is reduced dur-
ing the transition. This motivates the following modification of the expression for the transition
rate,

d

dt
WBA = wBAPA(t) (4.103)

where wBA is the time independent rate determined from the golden rule and PA(t) is the
probability for level A to be occupied after time t. This probability is on the other hand related
to the sum of transition rates over all final states B,

PA(t) = 1−
∑
B

WBA(t) (4.104)

and taking the time derivative and making use of (4.91), we find

d

dt
PA = −

∑
B

d

dt
WBA

= −
∑
B

wBAPA

≡ −PA/τA (4.105)

4Note that in the evaluation we have treated rBA as a real vector. In reality rBA may be complex, but this does
not change the result, one only has to repeat the evaluation for the real and imaginary parts separately.
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where τA = (
∑
B
wBA)−1. This can be integrated to give

PA(t) = e−t/τA (4.106)

which shows an exponential decay of the excited state A, with τA as the life time of the state.
From this follows that the corrected transition rate is

d

dt
WBA = wBAe

−t/τA (4.107)

which integrates to

WBA = wBA τA (1− e−t/τA) (4.108)

The original expression (4.91) for the transition probability corresponds to (4.108) expanded
to first order in t/τA, and is clearly a good approximation to the full expression only when
t << τA.

The decay of the initial state can be built into the expressions for the transitions to lower
energy states in a simple way by including a damping factor exp(−t/2τA) as a normalization
factor in the amplitude. For the transition amplitude this gives a modified expression

〈f |Ûint(tf , ti)|i〉 = − i
h̄
〈f |Ĥint|i〉

tf∫
ti

dte
i
h̄

(Ef−Ei)te
− (t−ti)

2τA + ...

= − i
h̄
〈f |Ĥint|i〉eΓAti/2h̄

tf∫
ti

dte
i
h̄

(Ef−Ei+ i
2

ΓA)t + ...

= − 〈f |Ĥint|i〉
Ef − Ei + i

2ΓA
(e

i
h̄

(Ef−Ei)tf e−
1
2h̄

ΓA(tf−ti) − e
i
h̄

(Ef−Ei)ti) + ...

→ 〈f |Ĥint|i〉
Ef − Ei + i

2ΓA
e
i
h̄

(Ef−Ei)ti + ... (4.109)

where we have introduced ΓA = h̄/τA and at the last step assumed tf − ti >> τA. With the
initial energy Ei = EA and the final energy Ef = EB + h̄ωk, the expression shows that the
correction due to a finite life time of the atomic level A can be viewed as represented by an
imaginary contribution to the energy of this level, EA → EA − (i/2)ΓA.

The transition probability is then, for tf − ti >> τA, given by

Wfi =
|〈f |Ĥint|i〉|2

(EA − EB − h̄ωk)2 + 1
4Γ2

A

+ ... (4.110)

Viewed as a function of ωk, the transition probability is no longer proportional to a delta
function in the difference ωk − ωAB . The delta function is instead replaced by a Lorentzian
(Fig.4.4), which is strongly peaked around ωfi = 0, but which has a finite width proportional
to ΓA. For the emitted photon this is translated to a finite line width for the emission line
corresponding to the transition A→ B.
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Figure 4.4: Level broadening. The emission probability given by Wfi = |〈f |Ĥint|i〉|2/[(h̄ωfi)
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A] is shown as a function of ωfi.

If we compare the two figures 4.3 and 4.4 we note that a finite cut-off in the time integral
(i.e., a finite value of T = tf − ti) gives essentially the same frequency dependence for the
emitted photon as the one obtained by an exponential damping due to the finite life time of
the initial atomic state. We finally note that since ΓA depends on the transition probabilities,
to include it in the lowest order transition amplitude means that we effectively have included
higher order contributions. This means that the perturbative expansion is no longer an order by
order expansion in the interaction Hamiltonian.

4.4 Stimulated photon emission and the principle of lasers

As we have already noticed, the rate for stimulated emission of a photon by an atomic transition
is larger than the corresponding spontaneous emission. Thus, to lowest order in the interaction,
the transition probability by photon emission into a given mode is enhanced by a factor n equal
to the number of photons already present in the mode. This means that if an atom in an excited
state emits a photon with equal probability in all directions, the same atom, when placed in a
strong field which resonates with the atomic transition, will preferably emit the photon into the
mode that is already occupied. However, in free space, since a continuum of modes is available,
the probability for emission into the preferred will may still be small.

A laser is based on the principle of stimulated emission, but the probability for emission
into the preferred mode is enhanced by use of a reflecting cavity. The boundary conditions
imposed by the reflecting mirrors of the cavity reduce the number of available electromagnetic
modes to a discrete set, and the trapping of the photons makes it possible to build a large
population of photons in one of the modes.

A schematic picture of a laser is shown in fig.4.5 where a elongated cavity is filled with
gas of (Rubidium) atoms. These are continuously excited (pumped) from the ground state to a
higher energy state. The excited atoms subsequently make transitions to a lower energy state
and emit photons with energy that matches one of the modes selected by the distance between
the mirrors in the longitudinal direction. The emission tends to increase the excitation of the
preferred mode to a high level. Some of the light that builds up inside the cavity escapes
through a small hole in one of the mirrors in the form of a laser beam.
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Figure 4.5: Schematic representation of a laser. A gas of atoms is trapped inside a Fabry-Perot cavity
with reflecting walls. The atoms are pumped to an excited state that subsequently make transitions to a
lower energy mode. The emitted photons resonate with a longitudinal mode of the cavity and build up a
strong field in this mode. Some of the light from this mode escapes through a semi-reflective mirror in
one end of the cavity to form a monochromatic laser beam.

The laser light has the same characteristics as that of a classical, momochromatic beam of
light. This means that it has a sharply defined frequency, with a long temporal phase coherence.
It is therefore usually considered to be well described as a coherent state of photons. The
coherence of the laser light follows from how the stimulated emission builds up a strong field
in a single mode of the laser cavity. The coupling to the atoms involved in the stimulated
emission, and to the electromagnetic field outside the cavity, will however introduce some
degree of decoherence in the laser light.

4.4.1 Three-level model of a laser

We consider a simple model of a laser where a single mode is populated by stimulated emission.
A three-level model is used for the atom, where most atoms are in the ground state |0〉, but
where there is a continuous rate of “pumping” of atoms to a higher energy level |2〉, by a light
source or some other way of excitation. The atoms in the upper level next make transitions to
an intermediate level |1〉 by emission of a photon. This may be by stimulated emission of a
photon to the field mode that is already strongly populated, or by spontaneous emission to one
of the other photon states in the emission line that are allowed by the boundary conditions of
the cavity. From the state |1〉 there is a fast transition back to the ground state due to a strong
coupling between the levels |1〉 and |0〉.

Due to the assumed strength of the transitions we have

N0 >> N2 >> N1 (4.111)

This means that the number of atoms in the ground state N0 is essentially identical to the total
number of atoms N . When we consider the two levels 1 and 2, which are relevant for popu-
lating the laser mode, the inequality means that there is population inversion, since the upper
level is more strongly populated than the lower mode. Population inversion is a condition for
the atoms to be able to “feed” the preferred photon mode, since the probability of reabsorbing
a photon from the preferred mode by the inverse transition |1〉 → |2〉 is much smaller than
emission of a photon by the process |2〉 → |1〉.
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Figure 4.6: Transitions between three atomic levels in a laser. R is the pumping rate from the ground
state 0 to an excited state 2. The transition from level 2 to an intermediate level 1 can go either by
spontaneous emission (Γsp), or by stimulated emission (Γst n) to the laser mode. n is the photon
number of the laser mode. A fast transition T brings the atoms back to the ground state. The direct
transition rate 2→ 0 is assumed to be negligible.

When the atoms are pumped to a higher energy level, this creates initially a situation where
the photon modes within the line width of the transition 2 → 1 begins to get populated, but
where no single mode is preferred. If the pumping rateR is sufficiently large, this is an unstable
situation, due to the effect of stimulated emission to preferably populate a mode which already
is excited. As a result one of the modes will spontaneously tend to grow at the expense of the
others. We will consider the situation after one of the modes has been preferred in this way.

The transition from state 2 to 1 may now go in two ways, either by spontaneous emission
to one of the modes that have not been populated or by stimulated emission to the preferred
(laser) mode. We denote the transition rate by spontaneous emission Γsp and by stimulated
emission Γst n, where n is the photon number of the laser mode. The difference between Γsp
and Γst is due to the large number available for spontaneous emission compared to the single
mode available for stimulated emission. Typical values are

Γsp ≈ 107s−1 , Γst ≈ 1s−1 (4.112)

The smallness of Γst is compensated by the factor n and when a stationary situation is reached
the photon number n in the laser mode will be so large so that the probabilities of the two types
of transitions are comparable. The ratio

ns =
Γsp
Γst

(4.113)

is referred to as the saturation photon number.
The quantum state of the laser mode should be described by a (mixed state) density matrix

ρnn′ rather than a (pure state) wave function. This is so since we cannot regard the electromag-
netic field as a closed (isolated) system. It is a part of a larger system consisting of both atoms
and field, but even that is not a closed system due to coupling of the atoms to the pumping field
and due to the leak from the laser mode to the escaping laser beam and to the surroundings.

We will not approach the general problem of describing the time evolution of the density
matrix ρnn′ , but rather show that the steady state form of the photon probability distribution
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pn = ρnn can be found with some simplifying assumptions5. We first note that for the steady
state there is a balance between transitions to and from atomic level 2,

N0R = N2(Γsp + Γstn) (4.114)

whereR is the transition rate, per atom, from the ground state to the excited state 2. We assume
at this point that the photon number n in this equation is identical to the expectation value 〈n〉.
This means that we neglect the (quantum and statistical) fluctuations in the photon number,
which we regard as small compared to its mean value.

We next consider the photon probability distribution pn. If this distribution is stationary
this means that for any photon number n there is balance between the processes that tend to
increase the photon number and to decrease the photon number. We write this as a balance
equation

N2Γst(np(n−1) − (n+ 1)pn)− Γcav(npn − (n+ 1)p(n+1)) = 0 (4.115)

where we have introduced the cavity loss rate per photon, Γcav. With |T |2 as the transmission
probability to the outside for each reflection and L as the length of the cavity, it is given by
Γcav = c|T |2/L. By multiplying the equation with n and averaging over the probability
distribution, we find the following expression for the photon expectation value6,

N2Γst(1 + 〈n〉) = Γcav 〈n〉 (4.116)

This equation relates the number N2 of atoms in level 2 to the average photon number in the
laser mode. We insert this in the steady state equation (4.114), with n replaced by 〈n〉, and we
also replace N0 by the total number of atoms N ,

ΓstΓcav 〈n〉2 − (NRΓst − ΓspΓcav) 〈n〉 −NRΓst = 0 (4.117)

By introducing the coefficient

C =
NRΓst
ΓspΓcav

(4.118)

the equation simplifies to

〈n〉2 − (C − 1)ns 〈n〉 − Cns = 0 (4.119)

with solution

〈n〉 =
1

2

[
(C − 1)ns + [(C − 1)2n2

s + 4Cns]
1
2

]
(4.120)

The expectation value for the photon number is in Fig. 4.7 shown as a function of the parameter
C for ns = 107. As a characteristic feature one notes that around C = 1 the photon number
rapidly increases from a small number to a number of the order of ns. After this rapid increase
there is a continued less dramatic increase where 〈n〉 changes linearly with C.

The curve demonstrates the presence of a threshold for the laser around C = 1. For smaller
values the effects of spontaneous emission and emission from the cavity prevents the build up
of the laser mode, while for larger values of C there is a net input of photons into the mode
which allows the photon number to grow to a large number.

5The discussion here mainly follows the approach of Rodney Loudon, The Quantum Theory of Light, Oxford
Science Publications, 2000.

6Correlations between quantum fluctuations in N2 and n are then assumed to be unimportant
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Figure 4.7: The photon number of the laser mode as a function of the parameter C = NR/(nsΓcav).
The curve corresponds to a saturation photon number ns = 107.

4.4.2 Laser light and coherent photon states

So far we have considered the expectation value of the photon number, which can increase to a
large value for C > 1. This implies that the mode is strongly excited, but does not necessarily
mean that it is in a coherent state that can be described by a (classical) monochromatic wave.
For this to be the case fluctuations of the field variables have to be restricted. The fluctuations
in the photon number can be determined from the evolution equation of the probability dis-
tribution (4.115). This should be satisfied for all n, including n = 0, and with p−1 = 0 we
conclude that following simpler equation has to be satisfied

N2Γstp(n−1) = Γcavpn (4.121)

With the occupation number N2 determined by (4.114), we get

pn =
NRΓst

Γcav(Γsp + Γstn)
p(n−1)

=
Cns
ns + n

p(n−1)

(4.122)

By repeated use of the equation we find

pn =
(Cns)

nns!

(ns + n)!
p0 (4.123)

where p0 is determined by the normalization of the probability distribution.
Well above the laser threshold, C >> 1, we have

〈n〉 = (C − 1)ns (4.124)

as follows from Eq. (4.120). By use of this expression for C, the distribution can be re-written
as

pn =
(ns + 〈n〉)n

(n+ ns)!
ns!p0 (4.125)
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We note that the above distribution has a form very similar to that of a coherent state,

pcsn =
〈n〉n

(n)!
e−〈n〉 (4.126)

which has the form of a Poisson distribution over photon numbers n. The n-dependence is
essentially the same in (4.125), except for the shift n→ n+ns in the case of the laser. For the
coherent state the width of the distribution has the variance

(∆n)2
cs = 〈n〉 (4.127)

whereas, due to the shift, the width of the probability distribution (4.125) is

(∆n)2 = 〈n〉+ ns (4.128)

For large photon numbers, 〈n〉 >> ns the last term can be neglected and the variance is

a+

Re ζ

Im ζ
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Fock state Coherent state

Figure 4.8: The complex phase plane of a single electromagnetic mode. A photon state is represented
by the overlap with a coherent state |z〉. The radial coordinate correspond to the direction of increasing
energy (or photon number), while the angular variable correspond to the phase of the electromagnetic
wave. A Fock state (blue), with sharp photon number, is completely delocalized in the angular direction.
A coherent state is well localized in both directions.

the same as expected for a coherent state. However, for smaller values ns introduces a non-
negligible contribution to the fluctuation in the photon number. This can be interpreted as
the influence of spontaneous emission: It affects the fluctuations in the occupation number
N2 which in turn influences the fluctuations in the photon number of the laser mode through
stimulated emission.

The expression we have found for the photon distribution of the laser gives an indication
that laser light is to a good approximation described as coherent light. This is indeed the
standard picture of light produced by a laser, and historically the introduction of coherent
states of light was introduced in this context. However, the photon distribution in reality does
not give information of the phase relations between the different photon components of the
quantum state, which are essential in order to specify this as a coherent state. In Fig. 4.8 the
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phase of the coherent state corresponds to the angular distribution of the state, while the photon
number distribution corresponds to the radial distribution.

There has in fact quite recently been a discussion of this question, to what extent laser light
is well described as a coherent state. This question is raised since the complex phase of the
quantum state is not available for detection in any measurement, due to the rapid rotation of
the phase angle. (This phase rotation defined by the angular frequency ω of the light.) How-
ever, the relative phase angle for different points along the laser beam is measurable, and the
corresponding phase stability which characterize laser light is well established experimentally.
In fact, this phase stability makes it possible to create interference between the light of two
different lasers, as has been shown experimentally. The phase stability can be understood as a
(phase) coherence of the quantum state, but with coherence in a more general sense than in the
definition of a coherent state. We shall not go into further details about this question here.

4.5 Open quantum systems

An open quantum system is a system which is coupled to another, larger system, often referred
to as the surroundings, with degrees of freedom that are not included in the description in a
detailed way. Thus, the full set of degrees of freedom are separated in two groups, the set of
internal degrees of freedom of the smaller system, which are treated explicitly, and the set of
external degrees of freedom that are treated in an average way. Due to the coupling between the
two systems the natural setting for the quantum description of the smaller system is to use the
reduced density operator of this system. The time evolution of the density operator is assumed
to depend only on a small set of coupling parameters to the external system, while the internal
degrees of freedom are given a complete quantum treatment.

A general time evolution equation of the smaller system exists in the form of the Lindblad
equation, which we will discuss below. The validity of the average treatment of the external
degrees of freedom depends on their interaction with the internal degrees of freedom in a sense
is acting only one way. Thus, there is essentially no delayed interaction between the two
subsystems. In statistical physics, where the surroundings, in this way, has no memory of the
earlier interactions with the smaller system, is called a Markovian system. In a previous section
we have in fact met such a system in the form of a single atom in open space (the smaller
system), which acts by spontaneous emission on the radiation field (the surroundings). In this
case the system has the Markovian property, since the photons emitted by the atom will simply
be absorbed by the radiation field, with no delayed reaction back on the atom. (For an atom
in a small reflecting cavity, however, this may not be a good approximation, since an emitted
photon there can be reflected back to react again with the atom.) Also the laser can be regarded
as an open quantum system, with the internal degrees of freedom being those of the atoms in
the cavity together with the laser mode. The external degrees of freedom will then include all
other modes of the electromagnetic field and the degrees of freedom of the system that feeds
energy to the laser.

The idea now is to start from the description of spontaneous emission in Sect. 4.3.3 where
an imaginary energy contribution was given to the decaying atomic level to account for the
effects of the emission process. The discussion was based on arguments of probability, and
we shall see that by completing these arguments we will be able to reproduce the Lindblad
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equation.
To include the imaginary contributions to the energy we define an effective atomic Hamil-

tonion of the form

Ĥeff = Ĥ0 −
i

2

∑
i

Γi|i〉〈i| =
∑
i

(Ei −
i

2
Γi)|i〉〈i| (4.129)

where Ĥ0 is the atomic Hamiltonian without decay, |i〉 are the corresponding eigenvectors,
and Ei the eigenvalues. Note that the operator Ĥeff acts only on the atomic states, while the
effect of the coupling to the radiation field is only through the decay parameters Γi. Theses
parameters are nonnegative, Γi, and in principle all different from zero, exept for the ground
state.

The corresponding Schrödingier equation

ih̄
d

dt
|ψ〉 = Ĥeff |ψ〉 (4.130)

gives decay of the occupation probabilities for the states |i〉 when Γi 6= 0. However since Ĥeff

is non-hermitian, the norm of |ψ〉 is not preserved, and this we take a sign that something is
missing in the description of the time evolution of the atomic state.

A qualitative understanding of what is missing is not so difficult to get. Assume the photon
emission is linked to an atomic transition |i〉 → |j〉. The Hamiltonian (4.129) takes correctly
into account the reduction of the occupation probability of state |i〉 in this transition, but it does
not include the corresponding increase in the occupation of state |j〉. To compensate for this
we cannot simply add new terms to the Hamiltonian, we have to modify the time evolution
equation of the density operator. Let us therefore first rewrite Eq.(4.130) as an equation for the
atomic density operator ρ̂ = |ψ〉〈ψ|,

ih̄
d

dt
ρ̂ = Ĥeff ρ̂− ρ̂Ĥ†eff

=
[
Ĥ0, ρ̂

]
− i

2

∑
i

Γi(|i〉〈i|ρ̂+ ρ̂|i〉〈i|) (4.131)

This gives

d

dt
Tr ρ̂ = −1

h̄

∑
Γi〈i|ρ̂|i〉 < 0 (4.132)

which shows the decrease in the norm of the state during the time evolution. The idea is now
to add a term in the equation for the time evolution of ρ̂ that compensates for this and makes
Tr ρ̂ constant (equal to 1).

To proceed we first introduce what is often referred as a ”jump operator”, which maps the
initial state |i〉 of the radiative transition to the final state |j〉. The operator and its hermitian
conjugate are

α̂ji = |j〉〈i| , α̂†ji = |i〉〈j| (4.133)

We furter write Γi as a sum over contributions from all transitions with |i〉 as initial state

Γi =
∑
j

γji , γji = h̄wji (4.134)
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where wji is the transition rate for the transition |i〉 → |j〉. This relation between Γi and wji is
consistent with what has been established in Sect. 4.3.3. From this follows∑

i

Γi|i〉〈i| =
∑
ij

γji|i〉〈i|

=
∑
ij

γji|i〉〈j|j〉〈i|

=
∑
ij

γji α̂
†
jiα̂ji (4.135)

Note that we may in these expressions have unrestricted summation over i and j, provided we
set γji = 0 for all cases where |i〉 → |j〉 does not correspond to a radiative transition. In
particular Ei > Ej is a necessary condition for γji 6= 0.

The two equations (4.131) and (4.132) can then be written as

ih̄
d

dt
ρ̂ = Ĥeff ρ̂− ρ̂Ĥ†eff

=
[
Ĥ0, ρ̂

]
− ih̄

2

∑
ij

γji( α̂
†
jiα̂jiρ̂+ ρ̂α†jiα̂ji) (4.136)

and

ih̄
d

dt
Tr ρ̂ = −i

∑
ij

γji Tr(α̂ji ρ̂ α̂
†
ji) (4.137)

The last equation suggests a way to prevent decay of the norm. Since we have the identity

Tr(α̂†jiα̂jiρ̂+ ρ̂α†jiα̂ji − 2α̂jiρ̂α̂
†
ji) = 0 (4.138)

we may correct the expression for the time derivative of the density operator in the following
way,

ih̄
d

dt
ρ̂ =

[
Ĥ0, ρ̂

]
− i

2

∑
ij

γji( α̂
†
jiα̂jiρ̂+ ρ̂α†jiα̂ji − 2α̂jiρ̂α̂

†
ji) (4.139)

The laddition of the last term, which we may write as

α̂jiρ̂α̂
†
ji = |j〉〈i|ρ̂|i〉〈j| (4.140)

increases the occupation probability of state |j〉, and compensates presicely for the lost occu-
pation probability of state |i〉, in the transition |i〉 → |j〉.

Eq. (4.139) is what we have referred to as the Lindblad equation. It has been reached in
a stepwise way, by use of probability arguments, and has been applied to a concrete situation
with decay of exitation probabilities for an atom interacting with the radiation field. However,
the equation has much wider range of validity. It can be applied to open quantum systems
more generally, under the condition of Markovian behavior of the system. The equation does
not only describe the decay of separate excited atomic levels, as previously discussed, but also
accounts for the effects of decay for more general atomic states, corresponding to superposition
between the energy eigenstates.
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4.5.1 Application to a two-level atom

Consider a two-level model of an atom with ground state |0〉 and excited state |1〉. The Hamil-
tonian,when the coupling to the radiation field is neglected, we write as

Ĥ0 =
1

2
∆σz (4.141)

where σz is diagonal in the energy eigenstate basis, with eigenvalues −1 for the ground state
and +1 for the excited state. Coupling to the radiation field introduces a transition from the
excited state to the ground state, with a decay parameter we denote by γ. The time evolution
of the density operator is governed by the Lindblad equation, here on the form

ih̄
d

dt
ρ̂ =

[
Ĥ0, ρ̂

]
− ih̄

2
γ( α̂†α̂ρ̂+ ρ̂α†α̂− 2α̂ρ̂α̂†) (4.142)

where the jump operator is α = |0〉〈1|.
Let us write the density matrix, in the energy eigenstate basis, as

ρ =

(
p1 d
d∗ p0

)
(4.143)

with p1 as the occupation probability of the upper level, p0 of the ground state, and d as the
matrix element between the upper and lower level. We note that the term in (4.142) which con-
tains Ĥ0 only gives contributions to the off-diagonal terms, whereas the last term, proportional
tot αρ̂α† only gives contributions to the diagonal terms of the density matrix. We find, for the
different matrix elements

d

dt
p1 = −γ

h̄
p1

d

dt
p0 =

γ

h̄
p1

d

dt
d = −(

γ

2h̄
+
i

h̄
∆) d (4.144)

The equations give rise, as expected, to exponential decay of the occupation probability p1 of
the excited level, and a corresponding increase in the occupation probability p0 of the ground
state. This is consistent with the total probability being conserved, p0 + p1 = 1. The off-
diagonal matrix element d also decays, but with a time rate that is half of that for p1. There
is in addition a phase rotation of d caused by the energy difference between the two levels.
Expressed in terms of initial values p1(0) and d(0), for t = 0, Eqs. (4.144) give the following
expressions for the time dependent parameters,

p1(t) = p1(0) e−
γ
h̄
t

p0(t) = 1− p1(0)e−
γ
h̄
t

d(t) = d(0)e−( γ
2h̄
−i∆

h̄
)t (4.145)

The density matrix may also be parametrized as

ρ =
1

2
(1+ r · σ) =

1

2

(
1 + z x− iy
x+ iy 1− z

)
(4.146)
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Expressed in these variables the general time evolution is

x(t) =

(
x(0) cos(

∆

h̄
t)− y(0) sin(

∆

h̄
t)

)
e−

γ
2h̄
t

y(t) =

(
x(0) sin(

∆

h̄
t) + y(0) cos(

∆

h̄
t)

)
e−

γ
2h̄
t

z(t) = (z(0) + 1)e−
γ
h̄
t − 1 (4.147)

If the initial state is a statistical mixture of the exited state and the ground state, we have
x = y = 0 under the time evolution, and z approaches exponentially the ground state value
−1. If x 6= 0 and/or y 6= 0 this means that the state includes superpositions between the
two state. Also in this case the state will approach exponentially the ground state, but with a
different decay rate for the horizontal coordinates x, y and the vertical coorinate z.
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In the figure the initial values are x = 1, y = z = 0, which gives

x(t) = cos(
∆

h̄
t)e−

γ
2h̄
t

y(t) = sin(
∆

h̄
t)e−

γ
2h̄
t

z(t) = e−
γ
h̄
t − 1 (4.148)

The motion is a combination of rotation in the x, y-plane and exponential decay of the variables
towards the ground state value.



Chapter 5

Quantum mechanics and geometry

Physics and geometry are closely linked in many different ways. In its original form Euclidean
geometry describes the mathematical structure of physical space and the shapes of physical
bodies. In the theory of relativity this geometry of space is extended to a geometry of space-
time. Although general relativity represents in many ways the clearest realization of geometry
in physics, there are also many other examples, both in classical and quantum physics, of how
a geometrical formulation is both possible and important in order to understand the structure
of the theory.

In quantum theory geometry is usually not emphasized to the same degree as it is in the
theory of relativity. But there are some parts of quantum theory where the underlying geom-
etry is quite clear. One example has to do with gauge invariance of electromagnetism and the
generalization of electromagnetic theory to gauge theories. Another example has to do with ge-
ometrical phases that appear when a quantum state is evolving in a periodic fashion. However,
beyond these particular cases a geometrical view of quantum theory at a more fundamental
level is possible, and an interesting question to consider is whether the geometrical view of
quantum physics may be of importance beyond the applications studied today.

In this chapter the intention is not to make an extensive study of the geometry of quantum
mechanics, but rather to examine some basic elements in such a geometrical formulation and
to discuss some simple examples where the geometry is clearly revealed. In particular I will
focus attention on the geometrical phases, but I will also discuss the general aspects of quantum
geometry that have to do with the fact that the natural geometry of quantum states is complex
rather than real.

5.1 Geometry of quantum states

The state space of a quantum system is a vector space, and in the same way as for three-
dimensional space, or four-dimensional space-time, the natural geometry of this vector space
is defined by the scalar product. In particular the there is a notion of length, or metric, defined
by

∆s2 ≡ 〈∆ψ|∆ψ〉 (5.1)

133
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where ∆ψ is the relative vector of two ”points” in the Hilbert space, defined by two vectors |ψ〉
and |ψ+ ∆ψ〉. Clearly there are some important differences between the geometry of physical
(Euclidean) space and the Hilbert space of a quantum system. One difference is that the Hilbert
space is complex rather than real, and therefore the geometry defined by the scalar product
is also complex. Another difference has to do with the interpretation of distance. In three-
dimensional space distance is a basic variable. It defines the separation and relative motion
of physical bodies. In quantum theory the scalar product instead is linked to the probability
interpretation of the theory, since the squared scalar product of two vectors |〈φ|ψ〉|2 can be
viewed as the probability of finding the system in state φ when it is prepared in state ψ (or the
other way around). This implies that the distance defined by (5.1) does not have the dimension
of physical length, but is instead a dimensionless quantity.

However, the metric defined by the scalar product of a Hilbert space is not precisely the
metric we will identify as the metric of the quantum states. That is because these states are not
in a one-to-one correspondence to Hilbert space vectors. Thus, if a vector is is multiplied by a
complex number z,

|ψ〉 → |ψ′〉 = z|ψ〉 (5.2)

this does not correspond to a change of the quantum state1. The ambiguity in representing
quantum states in terms of state vectors is reduced when normalization is introduced, 〈ψ|ψ〉 =
1, but still the possibility of multiplying the vector by a complex phase factor remains. Since
such a transformation does not represent a physical change, it should not affect the distance
between two states. The definition of distance (5.1) does not satisfy this requirement, but it
can be corrected by a simple modification. For an infinitesimal change we write the (corrected)
metric, for normalized vectors, as

ds2 ≡ 〈dψ|dψ〉 − 〈dψ|ψ〉〈ψ|dψ〉 (5.3)

where the correction term can be interpreted as a subtraction of the contribution from changing
the phase of the vector. Invariance of the corrected metric under multiplication with a (state
dependent) phase factor can readily be demonstrated.

The reason that the distance in (5.3) is defined for an infinitesimal, rather than for a finite
change of the vector, is due to the fact that the corrected metric is not a flat (Euclidean) metric.
In that respect it is different from the original Hilbert space metric (5.1). We shall return to this
point.

To express the metric in coordinate form, we introduce a complete set of Hilbert space
vectors and expand a general vector in this basis,

|ψ〉 =
∑
i

ψi|χi〉 (5.4)

The metric then can be written as

ds2 =
∑
ij

γij dψ
∗idψj (5.5)

1A quantum state may be viewed as corresponding to a ray of Hilbert space vectors. A ray is defined as an
equivalence class of vectors, where vectors that differ by a complex number belong to the same class, |ψ〉 ' z|ψ〉.
The space of rays is not a vector space, but is referred to as a projective space. Since the rays can be associated with
directions in the Hilbert space, the topology of this space is similar to that of a sphere.
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with

γij = 〈χi|χj〉 − 〈χi|ψ〉〈ψ|χj〉 (5.6)

where dψi represent the coordinates of the change |dψ〉 of the Hilbert space vector. The matrix
γij is the metric tensor, which here is complex and hermitian. The expression (5.5) should be
compared with the more conventional expression for the metric of a real, curved space,

ds2 =
∑
ij

gij(x)dxidxj (5.7)

where the metric tensor gij is a real and symmetric matrix. The tensor γij depends on the
vector |ψ〉, and this dependence, which is similar to the x-dependence of gij , reflects the fact
that it is the metric of a curved space.

So far the discussion has been restricted to pure quantum states. However, an extension to
the full set of pure and mixed states can readily be done. In order to do so, we first re-write the
metric (5.5) of pure states in terms of density operators. The density operator of a pure state
has the form ρ̂ = |ψ〉〈ψ| (assuming a normalized vector), and for an infinitesimal change that
gives

dρ̂ = |dψ〉〈ψ|+ |ψ〉〈dψ| (5.8)

By use of this expression it is straight forward to check that the metric (5.3) can be written as

ds2 =
1

2
Tr(dρ̂2) (5.9)

and this expression, which is well-defined also for mixed states, extends the notion of distance,
in a natural way, to the set of all quantum states, both pure and mixed.

It is interesting to note that right-hand-side of (5.9) is proportional to the norm of dρ̂ with
respect to the natural scalar product of hermitian matrices

〈A|B〉 = Tr(AB) (5.10)

These matrices define a real vector space, which is a flat, Euclidean space with respect to the
vector norm. In this vector space the density operators form a continuous, flat subset, restricted
by the positivity condition ρ̂ ≥ 0 and the norm condition Tr ρ̂ = 1. The situation is illustrated
in a schematic way in Fig. 5.1, which shows the subset of density matrices in the vector space
of hermitian matrices. The positive matrices are shown as the interior of the positive cone of
matrices, and the density matrices is the subset of these in the (flat) hyperplane2 selected by the
trace condition. If the Hilbert space dimension of the quantum system is n, the dimension of
the corresponding vector space of hermitian matrices is n2 (since a hermitian n × n matrix is
specified by n2 real parameters), and the dimension of the set of density matrices is n2− 1 due
to the constraint Tr ρ̂ = 1. The pure states form a continuous set of dimension 2n − 2, which
are boundary points of the set of density matrices. (A general complex vector is specified
by 2n real parameters, and a physical pure state satisfy two constraints, the norm condition
and a condition that specifies the complex phase of the vector. This reduces the number of
independent parameters to 2n− 2.) As a specific example we shall next examine the geometry
of quantum states for a two-level system, in which case the geometry can be illustrated in a
simple way.

2A hyperplane refers to a flat subspace not restricted to two dimensions.
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Figure 5.1: A schematic representation of the set of density matrices in the vector space of hermitian
matrices. The positive matrices form a cone about the axis defined by the unit matrix, and the nor-
malization condition restricts the density matrices to a convex subset, here represented by the shaded
circle.

5.1.1 Example: Geometry of the two-level system

As previously discussed, a general hermitian 2x2-matrix has the following representation in
terms of Pauli matrices

A =
1

2
(a1+ r · σ) (5.11)

where hermiticity means that a as well as the three components of r are real. Thus, the 2x2
hermitian matrices can be viewed as vectors in a four-dimensional real vector space, spanned
by the four matrices 1, σx, σy and σz . These matrices satisfy the orthogonality relations

1

2
Tr(σµσν) = δµν , µ, ν = 1, 2, 3, 4 (5.12)

where we for simplicity have defined σ4 = 1. The eigenvalues of the matrix A are (a± r)/2,
and positivity is therefore expressed by the following condition,

0 ≤ r =
√
x2 + y2 + z2 ≤ a (5.13)

Geometrically this condition means that the positive matrices are represented by vectors that
are located within a cone, which is centered around the axis defined by the identity matrix 1
(see Fig. 5.1 for a schematic illustration).

The trace condition, satisfied by the density matrices, fixes one of the coordinates, a = 1
and reduces thereby four-dimensional space to a three-dimensional hyperplane in this space.
The coordinates of this space are now the three components of r, and the set of positive matrices
defines the Bloch sphere, with r ≤ 1, as we have previously discussed. The center of the sphere
corresponds to the point (0, 0, 0, 1

2) in the four dimensional representation, and it represents the
maximally mixed state ρ̂ = 1

21.
To examine the metric in the space of density matrices, we write a general density matrix

in the standard way as

ρ̂ =
1

2
(1+ r · σ) (5.14)



5.1. GEOMETRY OF QUANTUM STATES 137

and consider an infinitesimal displacement

dρ̂ =
1

2
dr · σ (5.15)

The corresponding infinitesimal distance is given by,

ds2 =
1

2
Tr(dρ̂2)

=
1

8

∑
ij

Tr(σiσj)

=
1

4
dr2 (5.16)

This shows that the metric of the quantum states that we have previously defined, in the three-
dimensional space of density matrices of the two-level system, is proportional to the standard
Euclidean metric of three-dimensional space.

Written in polar coordinates the expression for the distance is

ds2 =
1

4
(dr2 + r2dθ2 + r2 sin2 θ dφ2) (5.17)

and therefore, if we restrict the density matrices to pure quantum states, the metric is

ds2 =
1

4
(dθ2 + sin2 θ dφ2) (5.18)

This is, up to a constant factor, identical to the standard metric of the surface of a unit sphere.
This also shows what has been stated as a general situation, that the pure states form a contin-
uous, curved surface at the boundary of the set of density matrices, while the full set, with the
mixid states in the interior included, is a (compact) subset of a flat, Euclidean space.

5.1.2 Geometrical structures in parameter space

In the following we again restrict the discussion to the geometry of pure quantum states. For
the two level system they can be identified with the surface of the sphere, and a specific state
can be identified by the values of the two real parameters θ and φ. We will now consider a
similar description for more general sets of quantum states.

Let us therefore consider a set of n real coordinates x = {x1, x2, ..., xn}, which label
a continuous set of quantum states. In the two-level case there are two parameters θ and φ
and for a three-level system four parameters are needed to label the full set of quantum states.
However, in the following we do not specify precisely this set, it may be the complete set of all
states of a quantum system, or a subset of quantum states that are relevant for the dynamics of
the system. We shall later consider a situation where the relevant states are low-energy states
of the system.

Each set of coordinates x we consider as specifying a point in parameter space and to
each such point we associate a unique quantum state described by a state vector |χx〉. As
already discussed there is not a unique mapping between physical states and state vectors, but
we assume that, for all x, the vector |χx〉 is normalized and that the complex phase is specified
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by making a choice between equivalent vectors. In this way we have created a one-to-one
mapping between the continuous set of quantum states and the parameter space. We consider
first how the metric structure on the set of (pure) quantum states can be described as a structure
on the parameter space.

Since a variation of the state vector |χx〉 can be associated with a change in the parameters
x, we write this change as

|dχx〉 =
n∑
k=1

|∂kχx〉dxk , |∂kχx〉 ≡
∂

∂xk
|χx〉 (5.19)

The metric (5.3) can then be written in the form

ds2 =
∑
kl

[〈∂kχx|∂lχx〉 − 〈∂kχx|χx〉〈χx|∂lχx〉] dxkdxl

=
∑
kl

gkl(x) dxkdxl (5.20)

Expressed in this way the metric tensor gkl is real and can be assumed to be symmetric. It is
given by

gkl =
1

2
[〈∂kχx|∂lχx〉 − 〈∂kχx|χx〉〈χx|∂lχx〉+ 〈∂lχx|∂kχx〉 − 〈∂lχx|χx〉〈χx|∂kχx〉]

= Re[〈∂kχx|∂lχx〉 − 〈∂kχx|χx〉〈χx|∂lχx〉] (5.21)

We now introduce the projected derivative in the following way

|Dkχx〉 ≡ |∂kχx〉 − |χx〉〈χx|∂kχx〉 (5.22)

The second term is introduced, like in the definition of the complex metric tensor γij , to remove
the contribution that is ”unphysical” in the sense that it only changes the phase of the vector.
For the scalar product between two such state vectors we find

〈Dkχx|Dlχx〉 = 〈∂kχx|∂lχx〉 − 〈∂kχx|χx〉〈χx|∂lχx〉 (5.23)

and the metric tensor can therefore be expressed as

gkl = Re[〈Dkχx|Dlχx〉] (5.24)

To examine further the meaning of the projected derivative we introduce the following
vector field

ak(x) = −i〈χx|∂kχx〉 (5.25)

which is a real-valued field, due to the normalization condition,

〈χx|χx〉 ⇒ 〈∂kχx|χx〉 = −〈χx|∂kχx〉 (5.26)

The projected derivative then can be re-written as

|Dkχx〉 = |∂kχx〉 − iak|χx〉 (5.27)
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or simply

Dk = ∂k − iak (5.28)

This form for the derivative gives a clear resemblance to minimal coupling in electromag-
netism, where the interaction of an electron with the electromagnetic field can be introduced
in the Schrödinger equation by a simple substitution ∂k → Dk ≡ ∂k − i eh̄c Ak, with Ak as
the electromagnetic potential. The differentiation Dk is there called a covariant derivative; it
transforms in a covariant way under a combined gauge transformation of the electromagnetic
potential and of the quantum mechanical wave function. This correspondence to electromag-
netism is no accident, and we shall refer to the field ak as the geometrical potential. Also
here Dk can be interpreted as a covariant derivative, and to show this we examine what gauge
invariance means in the present context.

As already discussed there is an intrinsic ambiguity in associating a unique state vector |χx〉
to each quantum state, labeled by the set of parameters x. Thus, a choice has to be made for the
complex phase of each state vector, and a change in this choice, corresponding to multiplication
with an x-dependent phase factor, gives rise to an equivalent set of state vectors,

|χx〉 → |χ′x〉 = eiφ(x)|χx〉 (5.29)

This transformation introduces a change of the geometric potential

ak → a′k = −i〈χ′x|∂kχ′x〉 = ak + ∂kφ (5.30)

which is like the gauge transformation of the electromagnetic potential. The corresponding
transformation of the projected derivative is

Dk → D′k ≡ ∂k − ia′k = eiφ(x)Dke
−iφ(x) (5.31)

and from this follows that the derivative of a state vector transforms in the same way as the
state vector itself,

|Dkχx〉 → |D′kχ′x〉 = eiφ(x)|Dkχx〉 (5.32)

This justifies the name of a covariant derivative.
It is clear from the expression (5.24) that the metric tensor is gauge invariant, in the sense

that it does not change under the phase transformation (5.29). However, this expression for gkl
also indicates that there exists another related, gauge-invariant field, which we write as

fkl = 2 Im〈Dkχx|Dlχx〉 (5.33)

(the numerical factor 2 is simply introduced for convenience). This field has also a geometric
interpretation, and we shall soon discuss that further. Note that fkl is antisymmetric in the
indices k and l, whereas gkl is symmetric. Also note that when expressed in terms of ordinary
derivatives, gkl has an additional term which depends on the potential ak, whereas fkl has no
such term

gkl = Re〈∂kχx|∂lχx〉 − akal
fkl = 2 Im〈∂kχx|∂lχx〉 (5.34)
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However, as follows directly from the definition of ak, another useful expression for fkl exists,

fij = ∂iaj − ∂jai (5.35)

and this shows that fkl is analogous to the electromagnetic field tensor. In the following we
shall show that this field gives rise to a geometrical phase factor in the time evolution of the
state vector of the quantum system.

5.2 Periodic motion and the geometric phase

We consider the situation of periodic motion, where the quantum state after a certain time T re-
turns to the inital state. Expressed in terms of the time dependent state vector |ψ(t)〉, the vectors
at time t = 0 and time t = T will be equal up to a phase factor, |ψ(T )〉 = exp(−iα(T ))|ψ(0)〉.
As we shall show the phase α(T ) consists of two contributions, a dynamical term which de-
pends on the expectation value of the energy along the path, and another one which we identify
as the geometric phase associated with the closed path in the space of quantum states.

We assume that the relevant state vectors are parametrized in the way previously discussed,
so that x represents a set of real parameters which identifies a quantum state, with |χx〉 as the
corresponding, normalized state vector. Expressed in terms of these vectors, the time dependent
state vector takes the form

|ψ(t)〉 = e−iα(t)|χx(t)〉 (5.36)

This gives

〈ψ(t)| ∂
∂t
|ψ(t)〉 = −iα̇+

∑
k

ẋk〈χx(t)|∂kχx(t)〉 (5.37)

By application of Schrödinger’s equation, we find the following expression for the expectation
value of the energy

E(t) ≡ 〈ψ(t)|Ĥ|ψ(t)〉
= h̄(α̇+ iẋk〈χx(t)|∂kχx(t)〉) (5.38)

Integrating this over a closed path C in x space we get

α(T ) =
1

h̄

∫ T

0
dtE(t)− i

∮
C
dxk〈χx|∂kχx〉 (5.39)

Note that this result is valid whether the Hamiltonian is time dependent or not. The main
point is that the quantum state performs periodic motion, and returns to the original state at
time T . The first contribution, which is the dynamical one, depends on the integrated energy
E(t). If the Hamiltonian is time independent, and the expectation value of the energy also is
so, the dynamical phase factor gets the recognizable form exp(− i

h̄ET ). The second term is
the geometric phase. It only depends on the path C described by the state vector and not on
the energy of the state or the time spent on traversing the closed path. The geometric phase,
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often referred to as the Berry phase, can be expressed in terms of the geometric fields ai and
fij earlier introduced as

αB =

∮
C
dxkak(x) =

1

2

∫
S
fijdσij (5.40)

where S is a surface in parameter space with C as boundary, and dσij is the infinitesimal
surface element on S. We note that for periodic motion the phase (5.40) is gauge independent,
in the sense that it does not depend on the phases chosen for the x-dependent basis vectors
|χ0
x〉. However, for an open path that is not the case, since the geometrical phase will depend

on the relative phases of the two basis vectors associated with the end points of the path.

5.2.1 Example: Spin motion in a magnetic field

We consider first the geometric phases for closed paths in space of quantum states of a spin half
system. As previously discussed, the full set of states can be viewed as the surface of a unit
sphere, with the unit vector n as variable. Let us parametrize the corresponding state vectors
by the polar angles (φ, θ) of the unit vector n. These angles thus correspond to the parameters
xk in the previous section. From earlier discussion of the spin states we have the following
complete set of vectors parametrized by the angles angles (φ, θ),

χn = χφ,θ =

(
cos θ2
eiφ sin θ

2

)
(5.41)

From this we derive the two components of the geometric potential

aθ = −i〈χn|∂θχn〉 = 0 , aφ = −i〈χn|∂φχn〉 =
1

2
(1− cos θ) (5.42)

The corresponding antisymmetric field fkl has one (independent) non-vanishing component,

fθφ = −fφθ =
1

2
sin θ (5.43)

For the geometric phase associated with a closed path C on the unit sphere this gives

αB =

∫
C
aφdφ =

∫
S
fθφdθdφ =

1

2

∫
S

sin θdθdφ (5.44)

where S is a surface with C as boundary. Thus, the geometric phase is identical to half the
solid angle defined by the closed loop on the sphere. One should note the ambiguity in the
definition of S, as the loop defines two surfaces on the sphere, with solid angles adding to 4π.
However, this only means that the geometric phase is defined modulo 2π.

We next introduce dynamics by considering the time evolution of the spin in a constant
magnetic field, which points in the z-direction. The spin Hamiltonian is

H = − eh̄
2m

B · σ =
1

2
h̄ωB σz (5.45)

and the the time evolution, for a general initial state, then is

ψ(t) = e−
i
2
ωBtσzψ(0) (5.46)
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The motion is periodic, with the same period T = 2π/ωB for any initial state. With ψ(T ) =
−ψ(0) the phase change during one period is α(T ) = π (mod 2π).

We will now check that this simple result is consistent with the general result given in Eqs.
(5.39) and (5.40). To this end we specify the initial state as

ψ(0) =

(
cos θ02
sin θ0

2

)
(5.47)

which means φ = 0 and θ0 unspecified. The expectation value of the energy then is

E =
1

2
h̄ωB(cos2 θ0

2
− sin2 θ0

2
) =

1

2
h̄ωB cos θ0 (5.48)

which gives the time integral

i

h̄

∫ T

0
Edt = π cos θ0 (5.49)

The geometric phase associated with the closed path is

αB =
1

2

∫ 2π

0
dφ

∫ θ0

0
sin θ = π(1− cos θ0) (5.50)

The sum is thus

α(T ) =
i

h̄

∫ T

0
Edt+ αB = π (5.51)

which is consistent with the result derived above in a more direct way.
We consider next the case where the magnetic field contains a rotating component

B = B0 k +B1(cosωt i + sinωtj). (5.52)

which gives the time dependent hamiltonian

Ĥ(t) =
1

2
h̄[ω0 σz + ω1(cosωt σx + sinωt σy)] (5.53)

where ω0 = −eB0/m and ω1 = −eB1/m. The spin motion in this field was found in
Sect.1.4.2, by transforming to a rotating frame where the Hamiltonian was time independent.
In this frame the spin motion is a precession around the effective magnetic field, and con-
sequently, in the non-rotating frame the motion is a combination of this precession with the
rotation of the frame. The situation is illustrated in Fig. 5.2.

The Hamiltonian in the rotating frame has the form

ĤR =
1

2
h̄[(ω0 − ω)σz + ω1σx] (5.54)

where the effect of the rotation is seen to reduce the contribution from the magnetic field in
the z-direction. We focus on one of the eigenstates of ĤR, with spin vector in the direction
of the effective magnetic field, with unit vector n defined by polar angles with φ = 0 and
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B
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z

x

y

Figure 5.2: Spin precession in a slowly varying magnetic field. The direction of the magnetic field B
is slowly rotating around the z-axis (indicated by the blue cone), while the spin vector S = (h̄/2)n is
rapidly precessing around the B field (indicated by the red cones).

tan θ = ω1/(ω0 − ω). Since the Hamiltonian HR is time independent, this vector is fixed in
the rotating frame, but rotates with angular velocity ω around the z-axis in the non-rotating
frame. The time dependent state vector is therefore

ψ(t) = e−iα(t)χn(t) (5.55)

with n(t) as the unit vector of the rotating spin. The spin motion is periodic, with period
T = 2π/ω.

We will also here examine the phase factor associated with one period of motion of the spin
vector. Since the Hamiltonian in the non-rotating frame is time dependent the phase factor of
the two-component state vector cannot be determined quite so easily as in the time independent
case. We can find it by use of the time evolution operator, which we have earlier found, but
rather than doing this we will use Eq. (5.39).

We first find the energy expectation value of the rotating spin state

E = 〈ψ(t)|Ĥ(t)|ψ(t)〉
= 〈ψ(0)|Ĥ(0)|ψ(0)〉

=
1

2
h̄〈χn|ω0 σz + ω1σx|χn〉

=
1

2
h̄(ω0 cos θ + ω1 sin θ)

=
1

2
h̄
ω0(ω0 − ω) + ω2

1

Ω
(5.56)

The result is time independent since the state vector rotates with the same angular frequency as
the time dependent part of the magnetic field. The time integral of the expectation value then
is

i

h̄

∫ T

0
Edt = π

ω0(ω0 − ω) + ω2
1

ωΩ
(5.57)
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The geometric phase of the closed path is, as given in (5.50),

αB = π(1− cos θ) = π(1− ω0 − ω
Ω

) (5.58)

and together they give the phase

α(T ) = π(1 +
Ω

ω
) (5.59)

Let us consider what happens in the adiabatic limit, that is when the motion of the magnetic
field is sufficiently slow so that the state vector χn(t), during the motion will be an eigenvector
of the time dependent Hamiltonian Ĥ(t). For the angular frequency this means ω << ω0 and
ω << ω1. Expanding the phase angle in powers of ω, we find

α(T ) = π

(
1 +

1

ω

√
(ω0 − ω)2 + ω2

1

)

= π

1 +
1

ω

√
ω2

0 + ω2
1 −

ω0√
ω2

0 + ω2
1

+O(ω)

=
1

2
TΩ0 + π(1− ω0

Ω0
) +O(1/T ), (5.60)

with Ω0 =
√
ω2

0 + ω2
1 . The first term, which is proportional to the period T of the motion, is the

dynamic part, with h̄Ω0 as the energy of the spin state. The second term, which is independent
of T , is the geometric phase, where we identify cos θ0 = ω0/Ω0 with θ0 as the angle between
the spin vector and the z-axis in the adiabatic limit.

This result is a special case of the situation with adiabatic evolution in a system with a
time dependent Hamiltonian. If such a system initially is in one of the eigenstates of the
Hamiltonian, it will continue to be so during the slow evolution, even when the energy slowly
changes.The phase factor picked up in a full period, will consist of two parts. The dynamical
phase is pro proportional to the time integrated energy, and the non-dynamical part is identical
to the geometric phase of the curve in parameter space, as in (5.59). This is in turn consistent
with the more general expression for the phase factor, represented in Eqs.(5.39) and (5.40).
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