
FYS 4110 Modern Quantum Mechanics, Fall Semester 2016

Problem set 12

12.1 Time evolution in a two-level system (Exam 2013)
The Hamiltonian of a two-level system (denoted A) is Ĥ0 = (1/2)h̄ω σz, with σz as the diagonal

Pauli matrix. We refer to the normalized ground state vector as |g〉 and the exited state as |e〉. In reality
the system is coupled to a radiation field (denoted S), and the excited state will therefore decay to the
ground state under emission of a quantum of radiation. ρ̂ denotes the reduced density operator of
subsystem A. To a good approximation the time evolution of this system is described by the Lindblad
equation

dρ̂

dt
= − i

h̄
[H0, ρ̂]− 1

2
γ
[
α̂†α̂ρ̂+ ρ̂α̂†α̂− 2α̂ρ̂α̂†

]
(1)

with γ as the decay rate for the transition |e〉 → |g〉, α̂ = |g〉〈e| and α̂† = |e〉〈g|.
In matrix form, with {|e〉, |g〉} as basis, we write the density matrix as ρ̂

ρ̂ =

(
pe b
b∗ pg

)
(2)

with pe as the probability for the system to be in state |e〉 and pg as the probability for the system to
be in state |g〉.

a) Assume initially the two-level system, at time t = 0, to be in state ρ̂ = |e〉〈e|. Show, by use
of Eq. (1), that pe decays exponentially, with γ as decay rate, while the total probability pe + pg is
conserved.

b) Assume next that the system is initially in the following superposition of the two eigenstates of
Ĥ0, |ψ〉 = 1√

2
(|e〉+ |g〉). Determine the time dependent density matrix ρ̂(t) with this initial state.

c) The density operator of subsystem A can alternatively be expressed in terms of the Pauli ma-
trices as ρ̂ = 1

2(1 + r · σ). Determine the function r2(t) in the two cases above and show that in
both cases it has a minimum for t = (1/γ) ln 2. What is the minimum value for r in the two cases?
Comment on the implication the results give for the entanglement between the two subsystems A and
S. (We assume A+S all the time to be in a pure state.)

12.2 Radiation damping (Exam 2014)
A charged particle is oscillating in a one-dimensional harmonic oscillator potential. It emits elec-

tric dipole radiation, with the rate for transition between an initial state i and a final state f given by
the radiation formula

Wfi =
4α

3c2
ω3
fi|xfi|2 (3)

where α is the fine structure constant, h̄ωfi is the energy radiated in the transition, and c is the speed of
light. x is the position coordinate of the particle, which is related to the raising and lowering operators
of the harmonic oscillator by

x =

√
h̄

2mω
(â† + â) (4)

1



with m as the mass of the particle.

a) Show that the non-vanishing transition rates are of the form

Wn−1,n = γn (5)

with n = 0, 1, 2, ... as referring to the energy levels of the harmonic oscillator, and γ as a constant
decay parameter. Detemine γ.

The time evolution of the quantum state of the oscillating particle is described by the Lindblad
equation in the following way

dρ̂

dt
= − i

h̄
[H0, ρ̂]− 1

2
γ
[
â†âρ̂+ ρ̂â†â− 2âρ̂â†

]
(6)

with ρ̂ as the density operator of the particle and H0 as the harmonic oscillator Hamiltonian, without
decay.

b) In the following we focus on the diagonal terms of the density matrix, pn = ρnn = 〈n|ρ̂|n〉,
which define the occupation probabilities of the energy eigenstates. Show that they satisfy the equation

dpn
dt

= −γ(npn − (n+ 1)pn+1) (7)

Explain why this is consistent with the expression (5) for the transition rateWn−1,n.

c) Show that Eq. (7) implies that the expectation value of the excitation energy

E = 〈H0〉 −
1

2
h̄ω (8)

decays exponentially with time.
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