
FYS 4110 Modern Quantum Mechanics, Fall Semester 2016

Problem set 4

4.1 Spin operators and Pauli matrices
A spin half operator Ŝ is defined in the standard way as

Ŝ =
h̄

2
σ (1)

where σ is a vector with the three Pauli matrices (σ1, σ2, σ3) (or equivalently written as (σx, σy, σz))
as Cartesian components. We use the standard expressions for these 2x2 matrices, as given in the
lecture notes. We also introduce the rotated Pauli matrix, defined by σn = n · σ, where n is an
unspecified three dimensional unit vector.

a) Show that σn has eigenvalues ±1, and the eigenstate (in matrix form) corresponding to the
eigenvalue +1 is (up to an arbitrary phase factor)

Ψn =

(
cos θ2
eiφ sin θ

2

)
(2)

with (θ, φ) as the polar angles of the unit vector n. Also show the relation

Ψ†nσΨn = n (3)

b) Show, by using operator identities from Problem Set 2, the following relation

e−
i
2
ασz σx e

i
2
ασz = cosασx + sinασy (4)

Explain why this shows that the unitary matrix

Û = e−
i
2
ασn = e−

i
h̄
αn·Ŝ (5)

induces a spin rotation of angle α about the axis n.
c) Demonstrate, by expansion of the exponential function, the following identity

e−
i
2
ασn = cos

α

2
1− i sin

α

2
σn (6)

with 1 as the 2x2 identity matrix.

4.2 Oscillations in ammonia molecules (Midterm Exam 2010)
The ammonia molecule has the chemical formula NH3, which means that it is composed of

three hydrogen and one nitrogen atoms. The left part of the figure shows the spatial structure of the
molecule, where the hydrogen atoms define a planar, equilateral triangle (in the yz-plane) and the
nitrogen atom is located on the orthogonal symmetry axis (x-axis) at some distance from the plane of
the hydrogen atoms.

With the plane of the hydrogen atoms being fixed, there are, however, two possible positions of the
nitrogen atom that are equally favored with respect to potential energy. They are located symmetrically
about the plane, as indicated in the figure.
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In the quantum description we associate two different state vectors |ψR〉 and |ψL〉 with these two
positions of the nitrogen atom. In the right part of the figure the situation is pictured with the potential
energy and the two wave functions shown as functions of the position of the nitrogen atom along
the symmetry axis. The potential has the form of a double well with two degenerate ground state
positions. With Ĥ as the Hamiltonian we write this degeneracy as

〈ψL|Ĥ|ψL〉 = 〈ψR|Ĥ|ψR〉 ≡ E0 (7)

There is however a correction to this picture. Even though there is potential barrier between the
two equilibrium positions, there is a small probability for quantum tunneling from one position to the
other. This is represented by a non-vanishing matrix element

〈ψL|Ĥ|ψR〉 ≡ λ (8)

were we may assume λ to be real and positive. The value of this matrix element is very small, which
means that the corresponding transition time from one minimum of the potential to the other is very
long, but the result is that if the nitrogen atom initially is in one of the wells it will oscillate back and
forth between the two minima at a low frequency (compared to other atomic frequencies).

The true ground state is however a stationary state, which to a good approximation is a superpo-
sition of the states |ψL〉 and |ψR〉 associated with the two minima. In the following we restrict the
description to the two-dimensional Hilbert space spanned by these two vectors.

a) Write the Hamiltonian as a 2 × 2 matrix and find the energy eigenvalues E±0 and eigenstates
|ψ±0 〉, when the λ terms are included. Express the ground state |ψ−0 〉 and the excited state |ψ+

0 〉 as
linear combinations of |ψL〉 and |ψR〉 and describe briefly with words the characteristics of the two
energy eigenstates.

The ammonia molecule has an electric dipole moment which arises from the tendency of the
nitrogen atom to attract an electron from the hydrogen atoms. The dipole moment is directed along
the symmetry axis in the opposite direction of the nitrogen atom. We assume now that the ammonia
molecule is located in a constant electric field E directed along the x-axis. The field introduces a new
term Ĥd in the Hamiltonian with matrix elements

〈ψL|Ĥd|ψL〉 = −〈ψR|Ĥd|ψR〉 ≡ ∆
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〈ψL|Ĥd|ψR〉 = 〈ψR|Ĥd|ψL〉 = 0 (9)

with ∆ = E d, and with d as the electric dipole moment of the molecule.

b) Determine the new energy eigenvalues E± with this additional term in the Hamiltonian, and
make a plot that shows how the two energy levels change with variable ∆ from a large negative to a
large positive value (from ∆ << −λ to ∆ >> λ). Choose E±/λ and ∆/λ as variables.

c) Determine eigenvectors |ψ±〉 expressed in terms of |ψL〉 and |ψR〉 and plot, as functions of ∆,
the overlaps |〈ψL|ψ±〉|2 between the energy eigenvectors and |ψL〉.

The situation we have here is sometimes referred to as an avoided crossing between the two energy
levels. Give a brief qualitative description of the crossing based on the plotted curves.

We next assume the electric field to vary periodically with time, E = E0 cosωt, and correspond-
ingly, ∆ = ∆0 cosωt, with ∆0 as a positive constant.

d) Show that in the {|ψ±0 〉} basis the Hamilton can be expressed as

Ĥ = E01 + λσz + ∆0 cosωtσx (10)

with σx and σz as standard Pauli matrices.

The last term in (10) can be written as

∆0 cosωtσx =
1

2
∆0(e

iωtσ− + e−iωtσ+) +
1

2
∆0(e

−iωtσ− + e+iωtσ+) (11)

where σ± = 1
2(σx ± iσy) can be viewed as raising and lowering operators in the spectrum of the

two-level Hamiltonian. Assuming ω to be positive the first term will usually give the most important
contribution to the Hamiltonian. This motivates the so-called rotating wave approximation, where the
last term in (11) is ommitted. In the following apply this approximation with the Hamiltonian given
by

Ĥ = E01 + λσz +
1

2
∆0(e

iωtσ− + e−iωtσ+) (12)

e) Show that this has the same form as the spin Hamiltonian in a rotating magnetic field, discussed
in Sect.1.3.2 of the lecture notes. Outline the method used to find the time evolution operator and give
the expressions for the Rabi frequency Ω and resonance frequency ω0 in terms of the parameters λ and
∆0. It may be convenient here to re-define the zero-point of the energy so that E0 = 0. Comment on
why the value of E0 is not important. It is sufficient to refer to results from the lecture notes without
a detailed derivation.

f) Initially, at time t = 0, the system is in the left shifted state |ψL〉. Determine the time depen-
dence of the overlap of the time evolved state |ψ(t)〉 with the right shifted state, 〈ψR|ψ(t)〉.

g) Assuming that the strength of the oscillating field is given by ∆0 = 2λ, examine numerically
the time dependent function |〈ψR|ψ(t)〉|2 by making a plot over several periods of this function, for
two different values of the frequency, 1) at resonance, ω = ω0 and 2) off resonance with ω = ω0/10.
Use the dimensional variable τ = 2πλt as time coordinate. Make a (qualitative) discussion of what
the curves show and compare with the related curve in the case when the electric field is turned off,
∆0 = 0.
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