Exam FYS4110, fall semester 2016

Solutions

PROBLEM 1 )

a) Matrix elements of H in the two-dimensional subspace
[0, +1) = %h(wo +w01)|0, 1) + AR[T, —1)
H[1,-1) = %h(i’)wo —w1)]0,+1) + AR|0, +1)

In matrix form

Hzlh(w0+w1 2\ ):1hA<COSQ sin 0 >—|—eh]1

2 2 3wy — wy 2 sinf —cosf
which gives
Acosf =w; —wy, Asinf =2\, e€=uwy

and from this

A= /(@ —wo)? +4x2

and

w1 — wo 2

cosf = sinf =

\/(wl — w0)2 +4)?2 ’ \/(wl — UJQ)Z + 4\?

b) Eigenvalue problem for the matrix

(S5m0 “eoss) (5) = 2(5)

cosf — 9§ sin 6 0
sin 0 —cosf — ¢
= 6% —cos’f—sin? = 0 = H=+1

Energy eigenvalues

1 1
Ei = h(E + §A) =h (WO + 5\/(&)1 — w0)2 + 4A2>

Eigenvectors

1
(cosOF1l)a+sindf=0 = ézilose
a

ot +sin 60
(ﬁi)<_ph<1$ﬂm89>

N2 =sin? 6 + (1 F cos0)? = 2(1 F cosb)

sin 6

This gives

with normalization factor

)]

2

3)

“

®)

(6)

(7

®)

€)

(10)



Finally

(ai>_ 1 ( +sinf )_1<:|:\/1:|:cos9) (11
B+)  2(1Fcosh) \1Fcosl) /2 \ V1Fcosh
and in bra-ket form
e) = \2 (£vTEcos00,+1) + VI F cosO |1, 1)) (12)
c¢) Density operator
1 1
pr = S(Eeos)(0)0@ |+ 1(+1]) + 11 F cosB)(1)(1]©| - (1)
2 sin (10} (1] @ |+ 1)(~1] + [1)(0] @ | ~ 1)(+1]) (13)

Reduced density operators
o R . 1 1
position :  pi = Trsps = 5(1 + cos0)|0)(0] + 5(1 Fcosh)|1)(1]
1 1
spin : ﬁft:Trp,éi:5(110050”+1><+1|+§(1:F0059)]—1><—1| (14)

Entanglement entropy

1 1 1 1
St =81 = —[5(1 —cosf) log(i(l —cosf)) + 5(1 + cosf) log(i(l + cos )]
0 0 0 0
27 2V .2V 2V
= —[cos 5 log(cos 2) + sin 5 log(sin 2)] =S (15)
Maximum entanglement
LN LA L _
9—2. cos2—sm2—2 = S=log2 (16)
Minimum entanglement
0 0
0=0: (30525:1,sin2§:0 = S=0
0 0
6=m: cos2§:0,sin2§=1 = S=0 (17)

PROBLEM 2

a) Change of variables

de = plata+ 02T+ pv(alb + bla)
dtd = v?ata+ p®b'b — uw(atb + bta)
=  weele+wydd = (p2we + I/de)de + (VPwe + ,u2wd)i)Tl;
+pv(we — wa)(ald + bla) (18)



To get the correct form for the Hamiltonian, define w,, wg, ¢ and v so that the following equations are
satisfied

> & & =

I /,62 + 1/2
11 /fwc + 12wy =
I 2w+ plwg =

IV wv(we —wg) = (19)

From I, II and III follows

ITb (Wetwg) = w

1
2

2 2 —
b (p° — v°)(we —wq) =

(20)

Since w, # wg from IV, we have 2 = 2 =1 /2, and therefore (by convenient choice of sign factors)
@ = v = 1/4/2. Inserted in IV this gives

IVb %(wc —wy) = A (21
which together with IIb gives
We=wW=+A, wg=w-—A (22)
Commutation relations
[é, éq = u? {d, dq + 12 [l;, I;T} =+ =1
[é, CZT} - —W([a, &T} - [6, BT}) =0 (23)

Similar evaluations of other commutators show that the two sets of ladder operators satify the standard
commutation rules for two independent harmonic oscillators.

b) Time evolution of a coherent state
(1)) = UBIW0)), Ut) = exp[—i(wee'e + wyd'd +wl)]
= ey(t) = UBU®D) T eU)b(0)
(t) eiwctéTé ée—iwctéTé ‘w(o»

TRU(t) ¢ [ (0)
ez [4(0)) (24)

U
U
e
= e

|4)(t)) is thus a coherent state of the c-oscillator with eigenvalue 2.(t) = etz Simlar result is
valid for the d- oscillator with z4(t) = =l z4.

¢) Since all the operators a, 13, ¢, and d commute, they have a common set of eigenvalues. This
implies that a state which is a coherent state of ¢, and d will also be a coherent state of & and b. As
follows from a) we have

(é+d) (25)



The corresponding relations between the eigenvalues are

1

za(t) = ?}?i(ZC(t)__ z(t))
= \}ﬁ(eiwctzco — e" Wity )
= S e (a0 + 20) + € (200 — 20)
_ %e*iwt(cosw)zao — isin(A\t)z0) 26)
and similarly
alt) = e =M (200 + 200) + ¥ (220 — 20))
= %e_i“’t(i sin(At)zq0 + cos(At)zpo) (27)
PROBLEM 3
a) Time derivatives of matrix elements
I pe = (e!% e) = —pe + 7Py
I p, = (9!%!@ = =Py + ¥Pe
n b = <e!% 9) = [%AE - %(v +)b (28)

From I and II follows % (pe + pg = 0), the sum of occupation probabilities is constant.
b) Conditions satisfied by the density operator

o po= 4
2) p > 0
3) Trp = 1 29)

1) implies that p. and p, are real, which is consistent with the interpretation of these as probabilities.
3) gives the normalization p. + p, = 1. 2) means that the eigenvalues of p are non-negative. To see
the implication of this we find the eigenvalues from the secular equation

pe_>\ b
b* Pg — A

o0

= AN = A+pepy—[p*=0

1
= =gl V1442 — pepy) (30)

Positivity of A_ then requires [b|*> < pep,.
¢) At thermal equilibrium we have p. = p, = b =0. I then implies

p ’Y' AE/kKT

[ —

We=7p, = =L =" 31
Dg Y

4



Using py = 1 — p,. we find

_ A 1
STl )y L4 eAEAT
1 1
Po= 1%y = 1+4eBERT

From III follows b = 0 = b = 0.
d) From the initial values p(0) = 1, py(0) = 0, and the constraint on |b|? follows

[b(0)* < pe(0)pg(0) =0 = b(0) =0
We apply in the following the general formula
t=ar = z(t)=e"z(0)
For b this means
b(t) = e $2F 20T (0) = 0
With p. = 1 — p, eq. II gives for p,

1

oz

Pg=—(v+)pg+7=—(v+7)(pg

or

d 1 - /! _ / 1
a(pg—m)— (v +)pg +7=—(v+7)(pg 114/~

Integrating the equation gives

)

1 1

- —— — — ()t 0) — ——
which with pg(0) = 1 is solved to
po(t) = T 1+ (' [y)e” )

and for p. = 1 — p, gives

v/ — (At
e(t) = ———(1+e 7
pelt) = o (14 e

(32)

(33)

(34)

(35)

(36)

(37

(38)

(39)

(40)

We note that the above expressions reproduce correctly, in the limit ¢ — oo, the values for p. and p,

at thermal equilibrium.

The limit 7" — 0 gives 7'/ — 0. This gives py(t) — 1 and p.(t) — 0 consistent with the fact
that the system remains in the ground state when 7" = 0. In the limit 7" — oo we have 7/ /vy — 1,

which gives
1

py(t) — 5(1+e_27t)
pelt) — %(1—6—%

In this case the time evolution gives lim;_,o pe = limy_yo0 pg = %

(41)



