FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2018

Return of solutions:

The problem set is available from Monday morning, 15 October.

Written/printed solutions should be returned to Ekspedisjonskontoret in the Physics Building before
Monday, 22 October, at 12:00.

Use candidate numbers rather than full names.

Language:

Solutions may be written in Norwegian or English depending on your preference.

Questions concerning the problems:

Please ask Joakim Bergli (room V405, or on the Piazza page).

The problem set consists of 1 problem written on 6 pages.

Problem 1: Sqeezed states for enhancing the sensitivity of gravitaional wave detectors

We have in the lectures studied coherent states of the harmonic oscillator as examples of minimal
uncertainty states. Here we will consider a related class of minimal uncertainty states called squeezed
states. We will first study their general properties, and then see how they can be used to enhance the
sensitivity of interferometers used in gravitational wave detectors.

We define the squeeze operator

S(¢) = edca i

where ¢ is a complex number and @ and ' are the usual annihilation and creation operators of the
harmonic oscillator. The squeezed vacuum state is defined as

[sac) = S(C)[0)

a) Show that the action of the squeeze operator on & and &' is given by

ST($)asS(¢) = acoshr — e?al sinhr
ST(0)aTS(¢) = af coshr — e ®asinhr
where ¢ = re'?.

b) In the state |sqc), find the variance of the position and momentum operators

&= %(awa) and ;a:z',/h%(zﬂ—a).

That is, calculate



Ax? = (sqc|#?[sqc) — (sqc|#]sqc)?
Ap? = (sqc|p?[sqc) — (sqc|plsac)?

¢) The Heisenberg uncertainty relation tells us that AzAp > % with equality only for minimal un-
certainty states. Calculate the product AzAp for the states |sq.) and show that for certain ¢ they
are minimal uncertainty states. For those # which gives minimal uncertainty, compare Az and Ap
with the corresponding values in vacuum and describe what happens to the uncertainties.

d) Find the expectation value of the number operator a'a in the state |sqc). Later we will apply the
theory of squeezed states to a mode of the electromagnetic field, which we know is equivalent to a
harmonic oscillator. This expectation value is then interpreted as the mean number of photons in
the mode.

The squeezed vacuum state can be displaced to create the squeezed coherent states

|, sq¢) = D()5(¢)]0)-

We will now study some properties of these states.

e) Show that these states are still minimal uncertainty states, and that their uncertainties are the same
as for the squeezed state |sq.). Find the expectation values of position and momentum in terms of
a and (.

f) We have defined the sqeezed coherent states as |, sqc) = D(«)S(¢)|0). That is, we first sqeeze
the vacuum, and then displace. The operators = D(«) and S(¢) do not commute. Investigate
the states |sq¢, ) = S({)D(a)|0). That is, we first displace and then squeeze. You may find
information on this in the literature, and you should include references to all sources that you use.

The use of squeezed states to reduce the noise in gravitational wave interferometers was first proposed
by C. Caves, Phys. Rev. D 23, 1693 (1981). A recent overview is provided by R. Schnabel et al.,
Nat. Commun. 1, 121 (2010) and demonstration of the practical use is shown in J. Asai et al., Nat.
Photonics 7, 613 (2013).

To detect gravitational waves, one can use a Michelson interferometer as shown:
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Light is aimed at a semitransparent mirror (beam splitter), which splits it into two perpendicular
beams. These are reflected back from distant mirrors, and recombined at the beam splitter. Inter-
ference beween the two beams will give rise to interference fringes with alternating constructive and
destructive interference depending on the exact path length difference. The interferometer is normally
operating with the detector at a dark point in the interference pattern, so that in the absence of a sig-
nal, there are (ideally) no photons reaching the detector. The end mirrors, where the light is reflected
back to the beamspliter, are mounted on large suspended masses (with mass m), which ideally do not
move. When a gravitational wave passes through the interferometer, the lengths of the arms change,
the fringes move, and the light intensity (photon counting rate) oscillates.

g) In the LIGO-detector (which was the first to detect a real gravitational wave), the distance from
the beam splitter to the mirrors is [ = 4 km. The strain amplitude (ratio of length change to initial
length) of a realistic gravitational wave of cosmic origin (inspiraling of two black holes) is 1072,
How small displacement differences z = z3 — 2; of the interferometer mirrors do we have to detect
to see the gravitational wave signal? Compare your answer to some relevant physical dimension.

There are several sources of noise that will reduce the sensitivity of the interferometer. In this problem
we will focus on two fundamental quantum mechanical noise limits, and ignore any practical problems
(which are not trivial in practice). The first effect is called photon-counting error (or shot noise) and
is a consequence of the fact that the laser light used is not in a number eigenstate, but rather close
to a coherent state. This means that the photon number is not a sharply defined quantity, and it will
fluctuate in time as a result of quantum uncertainty. The second effect is called radiation-pressure
error, and is a result of the fluctuating motion of the mirrors because of the fluctuating radiation
pressure in the laser beams. This is again because the photon number is not well-defined, and is
therefore also a fundamental quantum restriction.

Normally, one would input coherent light (from a powerful laser) in the input port 1, and arrange
the interferometer so that in the absense of any gravitational wave signal all the light would exit back
in the same direction, while there will be complete destructive interference in the output port 2. Port
2 would be used only for output, with no (that is, the vacuum state) input. Surprisingly, the noise



can be modified by the input of a squeezed vacuum state in port 2, instead of the normal vacuum. To
investigate this effect, we need to understand how to find the combined state of the field from the two
sources. One has to add the electric fields from each source, and it can be shown that this leads to
relations between the creation and anihilation operators for the modes.

h)

i)

For the radiation pressure noise we need to consider the relation between the field before and after
passing the beamsplitter. Let di and a; be the creation and annihilation operators for photons in
input mode 1 (moving horizontally in the figure), while d; and ay are the corresponding operators
for mode 2 (moving vertically). The operators for the horizontal mode after the beamsplitter is
IA)I and by, and those for the vertical mode are B; and by. The relation between the operators are
similar to those we have used to relate states passing beamsplitters:
b 1 .

1= ﬁ(al + ZQQ)

by = i(a + idy)
2 ) 2 1

The momentum of a photon is p = E/c = hw/c. The momentum transfer to the mirror is twice
the momentum of a single photon times the number of photons. The change in the interferometer
output depends only on the difference in the change in path length, and therefore only on the
difference in the transferred momenta to the two end mirrors. The difference in the transferred
momentum is then

2hw

Find the expectation values of P and P? if the input state is
) = 52(¢) D1(a)|0)

where S2(¢) = e%(c‘ig_cdf) is the squeezing operator in incoming mode 2 and D1 () = eadf—atan
is the displacement operator in incoming mode 1. That is, we have a coherent state (with typically
large intensity) in mode 1 and a squeezed vacuum state in mode 2. You need only consider the
case where both v and ¢ = r are real.

The effect of the radiation pressure fluctutaions builds up over time as the momentum transferred
to the end mirrors leads to displacement. If we define the variance of P as (AP)? = (y|P2?[1)) —
(1| P|tp)?, argue that the variance in path difference after a time 7 is Az, = 5--AP and show
that it is given by

hwT -
Az = ——\/ a2e? +sinh®r.
me

In what way does Az,, depend on the power of the laser beam in input 1? On the mass of the end
mirrors? How can we reduce Az,),?

For the photon counting error we need to consider the output modes, after the light has passed
through the beamsplitter, reflected from the mirrors and passed the beamsplitter the second time.
We let 61,61 and é;,ég denote the creation and annihilation operators of the two output modes.
Show that



¢ = ie'® [—a1 sin ¢ + ag cos ¢
6y = ie'® [a1 cos ¢ + ag sin @]
Find the expressions for ® and ¢ and explain their physical meaning.

k) Show that the expectation value of the number operator Ny = égég in output port 2 is (for real o
and ()

(1| Na|1h) = a? cos? ¢ + sinh? r sin® ¢

and that the variance is

(AN3)? = (| N2[))— (1| No|1p)? = a? cos? p+2sinh? r cosh? rsin? ¢+ (a2e ™ +sinh? r) cos? ¢ sin? .

1) As for the radiation pressure noise we can convert this into an uncertainty in the difference in the
displacements z = zy — 21 of the two mirrors. Show that a change of z by Az gives a change
. W . . . . oo
in ¢ by A¢p = ©Az. Show th.at Whe.n |accos ¢| > | sinhrsin ¢| this gives the noise in position
difference due to photon counting noise

Azpc = 4 2 4

(0% (07 «

¢ [cot?¢  2tan? psinh®rcosh®r e=2r  sinh?r
— 75— + + + .
2w o
We can reduce the photon counting noise by choosing the proper phase difference in the absence of a
signal. Working near a dark point in the interference pattern we have cos ¢ ~ 0 the first term in the
above expression is small. If « is sufficiently large, the second term can also be small provided we
are not exactly on the dark point so that tan ¢ is not too large. The last term can also be neglected
compared to the third, and we are left with the approximate expression

-r

c e

Azpe = — .
2w «

Similarly we have for the radiation pressure noise approximately

hwt
Az, = —ae'.
P e

If we assume that the noise sources are independent (which probably is not true), we get that the total

noise is
_ 2 2
Az = /Az; + Az,

m) Discuss the dependence of the two noise sources on the laser power and the squezzing parameter r.
The power is proportional to the number of photons, which has an average value of a?. Minimize
the total noise as a function of o and determine how the optimal power and the minimal noise
depend on 7.

Here is a figure [Figure 6¢ of R. Schnabel ef al., Nat. Commun. 1, 121 (2010)] showing the simulated
change in the signal from the detector without (left) and with (right) input of sqeezed light.
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As we see, the signal is virtually invisible without squeezing, and is clearly seen with squeezing.

n) Create a plot similar to the one shown above. You are at this point allowed to use any simplifying
assumptions you need and any method that you find useful. But you should carefully describe your
procedure and any assuptions made, discussing how realistic they are.



