Problem set 12

12.1 A state in thermal equilibrium (Exam 2011)

A quantum state in thermal equilibrium is described by the density operator

$$\hat{\rho}(\beta) = N(\beta)e^{-\beta\hat{H}} = N(\beta)\sum_{n} e^{-\beta E_n}|n\rangle\langle n|$$

with \hat{H} as the Hamiltonian, E_n as the corresponding energy eigenvalues, and $N(\beta)$ as a normalization factor. The parameter β is related to the temperature T by $\beta=1/(k_BT)$, with k_B as Boltzmanns constant.

a) Show that the expectation value for the energy can be expressed in terms of $N(\beta)$ as

$$E(\beta) = \frac{d}{d\beta} \ln N(\beta)$$

and find a similar expression for the von Neumann entropy $S(\beta) = \text{Tr}[\hat{\rho}(\beta) \ln \hat{\rho}(\beta)]$. (Use here the natural logarithm in the definition of S.)

- b) For a two-level system, with Hamiltonian $\hat{H} = (\epsilon/2)\sigma_z$, determine the functions $N(\beta)$, $E(\beta)$ and $S(\beta)$, and make a sketch of the expectation value of the energy E as function of the temperature T.
- c) Find the density operator expressed in the form $\hat{\rho} = (1/2)(\mathbb{1} + \mathbf{r} \cdot \sigma)$. Determine \mathbf{r} as a function of β and relate this to the results in b).

12.2 Coupled harmonic oscillators (Exam 2016)

Two harmonic oscillators, referred to as A and B, form a composite quantum mechanical system. The Hamiltonian of the system has the form

$$\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + \hat{b}^{\dagger}\hat{b} + 1) + \hbar\lambda(\hat{a}^{\dagger}\hat{b} + \hat{b}^{\dagger}\hat{a})$$

with $(\hat{a}, \hat{a}^{\dagger})$ as lowering and raising operators for A and $(\hat{b}, \hat{b}^{\dagger})$ as corresponding operators for B, while ω and λ are real valued constants.

a) Show that the Hamilton operator can be expressed in diagonal form as

$$\hat{H} = \hbar \omega_c \hat{c}^{\dagger} \hat{c} + \hbar \omega_d \hat{d}^{\dagger} \hat{d} + \hbar \omega \mathbb{1}$$

where \hat{c} and \hat{d} are linear combinations of \hat{a} and \hat{b} ,

$$\hat{c} = \mu \hat{a} + \nu \hat{b}, \qquad \hat{d} = -\nu \hat{a} + \mu \hat{b},$$

with μ and ν as real constants satisfying $\mu^2 + \nu^2 = 1$, and determine the new parameters μ , ν , ω_c and ω_d , expressed in terms of ω and λ . Check that the new operators \hat{c} and \hat{d} satisfy the same set of harmonic oscillator commutation relations as \hat{a} and \hat{b} . It is sufficient to show

$$\left[\hat{c},\hat{c}^{\dagger}\right]=\left[\hat{d},\hat{d}^{\dagger}\right]=1, \qquad \left[\hat{c},\hat{d}^{\dagger}\right]=0$$

b) Assume that the state $|\psi(0)\rangle$ of the composite system, at time t=0, is a coherent state when expressed in terms of the new variables,

$$\hat{c}|\psi(0)\rangle = z_{c0}|\psi(0)\rangle, \qquad \hat{d}|\psi(0)\rangle = z_{d0}|\psi(0)\rangle.$$

Also at a later time the state $|\psi(t)\rangle$ will be a coherent state for both \hat{c} and \hat{d} ,

$$z_c(t) = e^{i\omega_c t} z_{c0}, \qquad z_d(t) = e^{i\omega_d t} z_{d0}.$$

Show this for $z_c(t)$. (The expression for $z_d(t)$ follows in the same way, and is therefore not needed to be shown.)

c) Show that the state $|\psi(t)\rangle$ is a coherent state also for the original harmonic oscillator operators \hat{a} and \hat{b} , and find the eigenvalues $z_a(t)$ and $z_b(t)$ expressed in terms of z_{a0} and z_{b0} .

12.3 Time evolution in a two-level system (Exam 2013)

The Hamiltonian of a two-level system (denoted A) is $\hat{H}_0 = (1/2)\hbar\omega\,\sigma_z$, with σ_z as the diagonal Pauli matrix. We refer to the normalized ground state vector as $|g\rangle$ and the exited state as $|e\rangle$. In reality the system is coupled to a radiation field (denoted S), and the excited state will therefore decay to the ground state under emission of a quantum of radiation. $\hat{\rho}$ denotes the reduced density operator of subsystem A. To a good approximation the time evolution of this system is described by the Lindblad equation

$$\frac{d\hat{\rho}}{dt} = -\frac{i}{\hbar} \left[H_0, \hat{\rho} \right] - \frac{1}{2} \gamma \left[\hat{\alpha}^{\dagger} \hat{\alpha} \hat{\rho} + \hat{\rho} \hat{\alpha}^{\dagger} \hat{\alpha} - 2 \hat{\alpha} \hat{\rho} \hat{\alpha}^{\dagger} \right] \tag{1}$$

with γ as the decay rate for the transition $|e\rangle \to |g\rangle$, $\hat{\alpha} = |g\rangle\langle e|$ and $\hat{\alpha}^{\dagger} = |e\rangle\langle g|$.

In matrix form, with $\{|e\rangle, |g\rangle\}$ as basis, we write the density matrix as $\hat{\rho}$

$$\hat{\rho} = \begin{pmatrix} p_e & b \\ b^* & p_g \end{pmatrix} \tag{2}$$

with p_e as the probability for the system to be in state $|e\rangle$ and p_g as the probability for the system to be in state $|g\rangle$.

- a) Assume initially the two-level system, at time t=0, to be in state $\hat{\rho}=|e\rangle\langle e|$. Show, by use of Eq. (1), that p_e decays exponentially, with γ as decay rate, while the total probability p_e+p_g is conserved.
- b) Assume next that the system is initially in the following superposition of the two eigenstates of \hat{H}_0 , $|\psi\rangle = \frac{1}{\sqrt{2}}(|e\rangle + |g\rangle)$. Determine the time dependent density matrix $\hat{\rho}(t)$ with this initial state.
- c) The density operator of subsystem A can alternatively be expressed in terms of the Pauli matrices as $\hat{\rho} = \frac{1}{2}(\mathbb{1} + \mathbf{r} \cdot \boldsymbol{\sigma})$. Determine the function $r^2(t)$ in the two cases above and show that in both cases it has a minimum for $t = (1/\gamma) \ln 2$. What is the minimum value for r in the two cases? Comment on the implication the results give for the entanglement between the two subsystems A and S. (We assume A+S all the time to be in a pure state.)