Problem set 4

4.1 Ladder operators in the Heisenberg picture

Consider a harmonic oscillator with Hamiltonian

$$
\begin{equation*}
\hat{H}=\hbar \omega\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right) \tag{1}
\end{equation*}
$$

expressed in terms of the ladder operators \hat{a}^{\dagger} and \hat{a}. Show that these two operators take the following time dependent form in the Heisenberg picture

$$
\begin{equation*}
\hat{a}^{\dagger}(t)=e^{i \omega t} \hat{a}^{\dagger}, \quad \hat{a}(t)=e^{-i \omega t} \hat{a} \tag{2}
\end{equation*}
$$

4.2 Displacement operators in phase space

For a particle moving in one dimension the position coordinate x and the momentum p define the coordinates of the two-dimensional classical phase space.

In the quantum description of the one-dimensional harmonic oscillator non-hermitian lowering operator is defined as

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2 m \hbar \omega}}(m \omega \hat{x}+i \hat{p}) \tag{3}
\end{equation*}
$$

We may consider this as the operator of a complex phase space variable, with position as the real part and momentum as the imaginary part. It has a dimensionless form due to the constants introduced in the expression.

A coherent state, in a similar way is characterized by a complex number z, the eigenvalue of \hat{a}, which we may interpret as a complex phase space coordinate,

$$
\begin{equation*}
z=\frac{1}{\sqrt{2 m \hbar \omega}}\left(m \omega x_{c}+i p_{c}\right) \tag{4}
\end{equation*}
$$

The following operator

$$
\begin{equation*}
\hat{\mathcal{D}}(z)=e^{\left(z \hat{a}^{\dagger}-z^{*} \hat{a}\right)} \tag{5}
\end{equation*}
$$

acts as a displacement operator in phase space, in the sense

$$
\begin{equation*}
\hat{\mathcal{D}}(z)^{\dagger} \hat{x} \hat{\mathcal{D}}(z)=\hat{x}+x_{c}, \quad \hat{\mathcal{D}}(z)^{\dagger} \hat{p} \hat{\mathcal{D}}(z)=\hat{p}+p_{c} \tag{6}
\end{equation*}
$$

Show that displacements in two different directions in general will not commute but rather satisfy a relation of the form

$$
\begin{equation*}
\hat{\mathcal{D}}\left(z_{a}\right) \hat{\mathcal{D}}\left(z_{b}\right)=e^{i \alpha\left(z_{a}, z_{b}\right)} \hat{\mathcal{D}}\left(z_{b}\right) \hat{\mathcal{D}}\left(z_{a}\right) \tag{7}
\end{equation*}
$$

with $\alpha\left(z_{a}, z_{b}\right)$ as a complex phase. Determine the phase as a function of z_{a} and z_{b}. What is the condition for the two operators to commute?

4.3 Eigenvectors for $\hat{\boldsymbol{a}}^{\dagger}$?

The coherent states $|z\rangle$ are defined as eigenvectors of the lowering operator \hat{a}. Assume $|\bar{z}\rangle$ to be eigenvector of the raising operator \hat{a}^{\dagger},

$$
\begin{equation*}
\hat{a}^{\dagger}|\bar{z}\rangle=\bar{z}|\bar{z}\rangle \tag{8}
\end{equation*}
$$

Show that no normalizable vector exists that satisfies this equation by expanding the state $|\bar{z}\rangle$ in the energy eigenstates $|n\rangle$.

4.4 A driven harmonic oscillator (Exam 2010)

A quantum mechanical, driven harmonic oscillator is described by the following Hamiltonian

$$
\begin{equation*}
\hat{H}=\hbar \omega_{0}\left(\hat{a}^{\dagger} \hat{a}+\frac{1}{2}\right)+\hbar \lambda\left(\hat{a}^{\dagger} e^{-i \omega t}+\hat{a} e^{i \omega t}\right) \tag{9}
\end{equation*}
$$

where $\hat{a} \operatorname{og} \hat{a}^{\dagger}$ satisfy the standard commutation relations for lowering and raising operators, and where ω_{0}, ω og λ are three constants. We introduce the following dimensionless position and momentum operators,

$$
\begin{equation*}
\hat{x}=\frac{1}{2}\left(\hat{a}+\hat{a}^{\dagger}\right), \quad \hat{p}=-\frac{i}{2}\left(\hat{a}-\hat{a}^{\dagger}\right) \tag{10}
\end{equation*}
$$

a) As a reminder, Heisenberg's equation of motion has the form

$$
\begin{equation*}
\frac{d}{d t} \hat{A}=\frac{i}{\hbar}[H, \hat{A}]+\frac{\partial}{\partial t} \hat{A} \tag{11}
\end{equation*}
$$

for any given observable \hat{A}. Apply this to the lowering operator \hat{a}, and show that it satisfies an equation of the form

$$
\begin{equation*}
\frac{d^{2} \hat{x}}{d t^{2}}+\omega_{0}^{2} \hat{x}=C \cos \omega t \tag{12}
\end{equation*}
$$

Determine the constant C.
b) By use of the the time dependent unitary transformation

$$
\begin{equation*}
\hat{T}(t)=e^{i \omega t \hat{a}^{\dagger} \hat{a}} \tag{13}
\end{equation*}
$$

the new Hamiltonian, $\hat{H}_{T}(t)$, which determines the time evolution of the transformed state vectors $\left|\psi_{T}(t)\right\rangle=\hat{T}(t)|\psi(t)\rangle$, will take a time independent form. Find the expression for the transformed Hamiltonian.
c) A coherent state is defined as an eigenstate of the lowering operator \hat{a},

$$
\begin{equation*}
\hat{a}|z\rangle=z|z\rangle \tag{14}
\end{equation*}
$$

Assume at time $t=0$ the oscillator is in the ground state for the λ-independent part of the Hamiltonian, that is

$$
\begin{equation*}
|\psi(0)\rangle=|0\rangle, \quad \hat{a}|0\rangle=0 \tag{15}
\end{equation*}
$$

Show that, during the time evolution, it will continue as a coherent state,

$$
\begin{equation*}
|\psi(t)\rangle=e^{i \alpha(t)}|z(t)\rangle \tag{16}
\end{equation*}
$$

with $\alpha(t)$ as a time dependent phase and $z(t)$ as a complex-valued function of time.
Find the function $z(t)$ and give a qualitative description of the motion in the complex z-plane. Show that the real part $x(t)=\left(z(t)+z(t)^{*}\right) / 2$ satisfies the same equation of motion (12) as the position operator $\hat{x}(t)$.
As a reminder we give the following operator relation

$$
\begin{equation*}
e^{\hat{A}} \hat{B} e^{-\hat{A}}=\hat{B}+[\hat{A}, \hat{B}]+\frac{1}{2!}[\hat{A},[\hat{A}, \hat{B}]]+\ldots \tag{17}
\end{equation*}
$$

which applies generally to two operators \hat{A} og \hat{B}.

