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Problem set 6

6.1 Entanglement
Two persons A and B communicate with the help of quantum entanglement. They share a set of pairs
of particles with spins in the entangled state

|ψ〉 =
1√
2

(|+ +〉+ | − −〉) (1)

where | + +〉 = |+〉 ⊗ |+〉 is a state where both particles of the pair have spin up in the z-direction,
and similarly | − −〉 = |−〉 ⊗ |−〉 is the state where both particles have spin down in the z-direction.

a) What is the quantity used as measure for the degree of entanglement in such a two-partite system,
and what is the degree of entanglement in the given spin state?

b) Assume A and B perform independent spin operations on their particles in a given pair, each
operation described by a unitary operator, ÛA or ÛB . What happens to the entanglement of the
two-particle system under such an operation.

c) Assume A performs an ideal measurement of the spin component in the x- direction, which
projects the spin to an eigenstate of the x-component of the spin operator. What happens to the
entanglement in this case?

6.2 Schmidt decomposition 1

We have a system consisting of two spin-12 particles. For each of the following states, study the
reduced density matrix of of one of the particles and determine if the state is entangled or not. For the
states which are not entangled, find a factorization of the state as a tensor product of one state for each
particle. For the entagled states, find the Schmidt decomposition of the state.

|ψ1〉 =
1

2
(| ↑↑〉 − | ↑↓〉+ | ↓↑〉 − | ↓↓〉)

|ψ2〉 =
1

2
(| ↑↑〉+ | ↑↓〉+ | ↓↑〉 − | ↓↓〉)

|ψ3〉 = a+| ↑↑〉+ a−| ↑↓〉+ a−| ↓↑〉+ a+| ↓↓〉
|ψ4〉 = a−| ↑↑〉+ a+| ↑↓〉+ a+| ↓↑〉+ a−| ↓↓〉

where

a± =

√
3± 1

4

6.3 Schmidt decomposition 2
Entanglement can occur not only between distinct particles, but also between different observables
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fot the same particle, like position and spin. Here we will find the Schmidt decomposition of one
continuos and one discrete Hilbert space. A spin-half particle moving in one dimension is described
by a two-component wave function

Ψ(x) =

(
ψ1(x)
ψ2(x)

)
(2)

where the upper matrix position is assumed to correspond to ”spin up” in the z-direction and the lower
matrix position to ”spin down” in the same direction. The scalar product of the two wave functions
will generally be different from zero, and we write it as

〈ψ1|ψ2〉 =

∫
dxψ∗1(x)ψ2(x) ≡ ∆ (3)

a) The Schmidt decomposition of the two-component wave function has the form

Ψ(x) = c1χ1 φ1(x) + c2χ2 φ2(x) (4)

where c1 and c2 are expansion coefficients, χ1 and χ2 are normalized, two-component spinors, and
φ1(x) and φ2(x) are normalized, scalar (one-component) wave functions. What are the conditions
that the spinors and wave functions should satisfy?

b) Assume the two wave functions of (2) are real Gaussian functions of the form

ψ1(x) = Ne−λ(x−x0)
2
, ψ2(x) = Ne−λ(x+x0)

2
(5)

Determine the normalization factor N and the overlap ∆, expressed in terms of λ and x0.

c) Determine the coefficients, spinors and wave functions in (4). (Since the wave function Ψ(x) is
real, you may assume the variables in Eq.(4) all to be real.)

6.4 Coupled two-level systems
Two coupled two-level systems A and B are described by the following Hamiltonian

Ĥ =
ε

2
(3σz ⊗ 1 + 1⊗ σz) + λ(σ+ ⊗ σ− + σ− ⊗ σ+) (6)

where the first factor in the tensor product refers to system A and the second factor to system B. In
the equation we use the definition σ± = 1

2(σx ± iσy).

a) Write the Hamiltonian as a 4x4 matrix and show that two of the eigenvalues and eigenvectors are
independent of λ. Introduce new variables, defined by ε = µ cos θ and λ = µ sin θ. Solve the
eigenvalue problem for the remaining two-dimensional subspace and determine both the energies
and eigenvectors as functions of µ and θ.

b) Express the two eigenstates as 4x4 density matrices and determine the reduced density matrices
for the two subsystems A and B.

c) Determine the entropy of the reduced density matrices as functions of θ. For what parameter value
is the entanglement of the two subsystems maximal?
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6.5 Entanglement and measurements

In a textbook on quantum mechanics we find the following discussion of the EPR thought experi-
ment:

The problem posed by Einstein, Rosen, and Podolsky was made sharper by David Bohm
(1917–1992). A system of zero total angular momentum decays into two particles, each
with spin 1/2. Using the Clebsch-Gordan coefficients for combining spin 1/2 and spin 1/2
to make spin zero, the spin state vector is then

Ψ =
1√
2

[Ψ↑↓ −Ψ↓↑] , (12.1.2)

where the two arrows indicate the signs of the z-component of the two particles spins.
After a long time, the particles are far apart, and then measurements are made of the
spin components of particle 1. If the z-component of the spin of particle 1 is measured,
it must have a value h̄/2 or h̄/2, and then the z-component of the spin of particle 2
must correspondingly have a value h̄/2 or +h̄/2, respectively. This not mysterious – the
particles were once in contact, so it is not surprising that the z-components of their spins
are strongly correlated. Following this measurement, suppose that the x-component of
the spin of particle 1 is measured. It will be found to have the value h̄/2 or −h̄/2, and
the z-component of particle 1s spin will no longer have a definite value. Also, because
the system has zero total angular momentum, the spin of particle 2 will then have x-
component −h̄/2 or h̄/2, and its z-component will not have a definite value. There is
no problem in understanding the change in the spin state of particle 1; measuring one
spin component of this particle naturally affects other spin components. But if particle
1 and particle 2 are very far apart, then how can a measurement of the spin state of
particle 1 affect the spin state of particle 2? And if it does not, then are we to conclude
that the spin of particle 2 has definite values for both its z and its x-components, even
though these components do not commute? The only way to preserve consistency with
quantum mechanics is to suppose that while the first measurement puts the system in
a state where the first and second particles spin z-components are definite, the second
measurement puts the system in a state where it is only the x-component of the first and
second particles spin that have definite values. Though the particles are far apart, their
spins remain entangled.

If I understand this description correctly, the author makes a serious mistake at some point, giving
the reader an incorrect picture of entanglement. Can you find the mistake? Can you help rewrite the
text so that it becomes correct, while still describing the EPR-paradox?


