
FYS 4110/9110 Modern Quantum Mechanics
Exam, Fall Semester 2021. Solution

Problem 1: SWAP gate

a) We write |ψ〉 = a|0〉+ b|1〉 and |φ〉 = c|0〉+ d|1〉 and get

|ψ〉 ⊗ |φ〉 = (a|0〉+ b|1〉)(c|0〉+ d|1〉)
CNOT→ a|0〉(c|0〉+ d|1〉) + b|1〉(c|1〉+ d|0〉)
CNOT→ ac|00〉+ ad|11〉+ bc|01〉+ bd|10〉
CNOT→ ac|00〉+ ad|10〉+ bc|01〉+ bd|11〉
= (c|0〉+ d|1〉)(a|0〉+ b|1〉) = |φ〉 ⊗ |ψ〉.

b) In the basis {|00〉, |01〉, |10〉, |11〉} the action of SWAP on the basis vectors is

|00〉 SWAP→ |00〉, |01〉 SWAP→ |10〉, |10〉 SWAP→ |01〉, |11〉 SWAP→ |11〉,

which gives the matrix

SWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


c) We can SWAP multi-qubit registers one qubit at a time
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We need 3n CNOT gates.
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Problem 2: Sending information with entangled photons?

a) The reduced density matrix of system A is given by the partial trace of the full density matrix over
system B. The fyll density matrix is given by

ρ = |φ〉〈φ| =
∑
ij

did
∗
j |nAi 〉〈nAj | ⊗ |nBi 〉〈nBj |.

Calculating the partial trace in the basis |nBi 〉 we see that only terms with i = j contribute, so the
reduced density matrix is

ρA =
∑
i

|di|2|nAi 〉〈nAi |.

The expectation value of an operator A⊗ 1 on A is

〈A〉 = Tr(A⊗ 1ρ) =
∑
kl

〈nAk nBl |A⊗ 1ρ|nAk nBl 〉 =
∑
kl

〈nAk nBl |
∑
ij

did
∗
jA|nAi 〉〈nAj | ⊗ |nBi 〉〈nBj ||nAk nBl 〉

=
∑
k

〈nAk |A
∑
i

|di|2|nAi 〉〈nAi ||nAk 〉 = Tr(AρA).

b) Applying the unitary transformation U to system B means appying U = 1⊗UB to the full system.
We have the reduced density matrix for A after the transformation

ρ′A = TrB[1⊗ UBρ1⊗ U †B] =
∑
ijk

did
∗
j |nAi 〉〈nAj |〈nBk |UB|nBi 〉〈nBj |U

†
B|n

B
k 〉

=
∑
ijk

did
∗
j |nAi 〉〈nAj |〈nBj |U

†
B|n

B
k 〉〈nBk |UB|nBi 〉

=
∑
i

|di|2|nAi 〉〈nAi | = ρA.

So the reduced density matrix does not change.

c) An observable on system B has the form 1⊗B. Let the eigenstates of B be given by

B|φBi 〉 = λi|φBi 〉.

Similarly to the Schmidt decomposition we can write the full state as

|ψ〉 =
∑
i

√
pi|φAi 〉 ⊗ |φBi 〉.

The only difference is that when choosing the basis |φBi 〉 for B we are not guarateed that the cor-
responding states |φAi 〉 are orthogonal. Here pi are the probabilities of the different meansurement
outcomes. We have that the reduced density matrix for A is
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ρA =
∑
i

pi|φAi 〉〈φAi |.

We measure the outcome φBi with probability pi, collapsing the wavefunction for A to |φAi 〉. As
long as we do not get to know the outcome of the measurement, the state of A is the mixed state

ρ′A =
∑
i

pi|φAi 〉〈φAi |.

The state changes from an entangled state to a mixed state, but the density matrix is unchanged.

d) If we get to know the outcome of the measurement on B, the state collapses and the density matrix
corresponds to that state. If the outcome is φBi the density matrix of A is

ρiA = |φAi 〉〈φAi |.

Problem 3: Charge transfer by adiabatic passage

We have three quantum dots in a row and one electron. Each dot has one state for an electron, so
that the electron has three possible states, |1〉, |2〉 and |3〉 (and it can of course also be in superpositions
of these). The three basis states are orthogonal and normalized. The motion of the electron can be
controlled by gates which change the tunneling amplitude between the dots. The system is described
by the Hamiltonian

H = −h̄

 0 Ω1 0
Ω1 0 Ω2

0 Ω2 0

 .

Here Ω1 is the tunneling amplitude between dots 1 and 2 while Ω2 is the tunneling amplitude between
dots 2 and 3. Both amplitudes are controllable and can be time dependent. The initial state of the
electron is |1〉, which means that the electron is localized on the first dot.

a) When Ω1 > 0 is constant and Ω2 = 0 the Hamiltonian is proportional to σx in the {|1〉, |2〉}
subspace, and the corresponding eigenvectors are |ψ±〉 = 1√

2
(|1〉 ± |2〉) with eigenvalues ∓h̄Ω1.

We have that the initial state |1〉 = 1√
2
(|ψ+〉+ |ψ−〉), so

|ψ(t)〉 = e−
i
h̄
Ht|1〉 =

1√
2
e−

i
h̄
Ht(|ψ+〉+|ψ−〉) =

1√
2

(eiΩ1t|ψ+〉+e−iΩ1t|ψ−〉) = cos Ω1t|1〉+i sin Ω1t|2〉.

This means that the electron is oscillating between quantum dots 1 and 2.

b) The eigenvalues E = h̄λ are found from∣∣∣∣∣∣
λ Ω1 0

Ω1 λ Ω2

0 Ω2 λ

∣∣∣∣∣∣ = λ(λ2 − Ω2
2)− Ω2

1λ = 0
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which gives the energies

E0 = 0, E± = ±h̄Ω, Ω =
√

Ω2
1 + Ω2

2.

The corresponding eigenvectors are

|n0〉 = cos θ|1〉 − sin θ|3〉,

|n±〉 =
1√
2

(sin θ|1〉 ∓ |2〉+ cos θ|3〉).

with
sin θ =

Ω1

Ω
, cos θ =

Ω2

Ω
.

c) We have

ih̄
d

dt
|ψ′〉 = ih̄Ṫ †|ψ〉+ T †ih̄

d

dt
|ψ〉 = (T †HT + ih̄Ṫ †T )|ψ′〉,

which is the Schrödinger equation with the transformed Hamiltonian

H ′ = T †HT + ih̄Ṫ †T.

d) The condition

tan θ(0) =
Ω1(0)

Ω2(0)
� 1

implies that θ(0) ≈ 1. This means that the eigenvectors at t = 0 are approximately

|n0(0)〉 = |1〉, |n±(0)〉 =
1√
2

(∓|2〉+ |3〉).

From this we see that the transformation

T (t) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ


and we can calculate the Hamiltonian

H ′(t) = −h̄Ω(t)

0 0 0
0 0 1
0 1 0

+ ih̄
dθ

dt

0 0 −1
0 0 0
1 0 0

 (1)

e) At t = tm we have

tan θ(0) =
Ω1(tm)

Ω2(tm)
= etm/2σ � 1

which means that θ(tm) ≈ π
2 . When neglecting the term proportional to dθ

dt in the Hamiltonian we
get that H ′|1〉 = 0, so the state will not change in time, giving |ψ′(tm)〉 ≈ |1〉. We then get
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|ψ(tm)〉 = T (tm)|1〉 = −|3〉.

The electron is transferred from dot 1 to dot 3.

f) At intermediate times, the state will be

|ψ(t)〉 = T (t)|1〉 = cos θ|1〉 − sin θ|3〉.

The probability of finding the electron in state |2〉 is zero during the process. This is a bit surprising,
as the Hamiltonian only has terms for tunneling from dot 1 to to and from dot 2 to 3. So there is
no term that allows the electron to tunnel directly from dot 1 to dot 3, it has to pass through dot 2
on the way. At a finite rate of change, dθdt , we would not have the probability to be on dot 2 exactly
zero, but it goes to zero as dθ

dt → 0. The tunneling rates are so adjusted in time, that as soon as the
electron comes to dot 2 it is immediately tunneling on to dot 3.

5


