FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2020. Solution

Problem 1: Superradiance
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From the lecture notes we have
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Restricted to the {|0), |1)} subspace we can write

p = (0p|1)[0)(1] + (1[p[0)[1){0] = (Olp|1)o~ + (1|p|0)o™

When calculating transition rates, there will appear a §-function ensuring energy conservation.
This means that terms of the form o~ or a'o ™ never will contribute. We choose the position of
the atom to be r = 0 and in the dipole approximation it means that e ~*** ~ 1 and we get
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with
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The relative phase of |0) and |1) can always be choosen so that (1|p|0) = (0|p|1) is real.

The rate of spontaneous emission is
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where Ey and E; are the energies of |0) and |1) and |1, 0) refers to the atom in state |1) and field
in vacuum state. As in the lecture notes, eq (4.101) we get
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where iw = E — Ey. To compare with (4.101) recall (4.80): (0|p|1) = imw(0|r|1).
As indicated in the problem, we write |10) = % (|pT) + |~)) with Wi)%(\m} +)01)). The
state [¢)7) is an eigenstate of the Hamiltonian (both the Hamiltonian of the atom, and the inter-

action) and this part of the initial state will not decay. The remaining |1)™) has a nonzero matrix
element (00| D~ |4)*) and will decay to the ground state |00).

There is a probability % to be in the state 1)) and therefore not decay. Otherwise, one photon is
emitted. On average, % photon is emitted for each repetition of the experiment.
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e) We have

(D7) ™™11---1) ~|00---011--- 1)+All permutations with J+M atoms in |1) and J-M atoms in |0)
J-M  J+M

Therefore (JM|JM') = 0 if M # M’ since the number of excited atoms are different. To check

normalization we note that there are (,"),) = W('JHVI)' different terms in (D7) =M|11...1).

But the operator generates each term seveal times. For a given set of J — M atoms to be de-excited,
the order in which they are de-excited does not matter, which means that
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where A is the normalization to be determined. We then have

(JM|JM) = |A]*[(J—M)!]*({(00--- 011 - - - 1|4+permutations) (|00 - - - 011 - - - 1)+permutations).
Each permutation has inner product 1 with itself and 0 with all other permutations, so

N!

(IMIIM) = (AP = M)

Requiring (JM|JM) = 1 gives

(J + M)!

A= NI(J = M)

f) The decay rate from the state | J M) is
27
eSSy (M -1, Lia| Hint| JM, 0)*§(E 11 + hwy, — Egar).
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The difference from the one atom case is that (0|c~|1) is replaced by

(J + M)!
NI(J = M)!

(J,M=1|D~|JM) = (J,M=1|(D7) =M 11...1) = /(T + M)(J — M + 1)

where we used that

(D)~ MH11 .y = \/]V({;‘L_MM_E;)! 1, M —1).

This gives
Wiy = (JJrM)(J*MJr 1)11}1.



g) The decy rate is maximal for M = 0 and M = 1.

N N N?
wyo=Wpn=JJ+Dw = 5(5 + Dwy =~ Twl.

One atom emits a photon at the rate w;, so N independent atoms will emit at the rate Nw;. For
N > 1 we see that wyy > Nw; so the emission rate is much larger than for N independent
atoms.

h)

(J. M=1|D~|JM)[* = (JM|D*|J, M~1)(J, M—=1|D~|JM) = (JM|D* > [JM')(JM'|D~|J M)
M/

since (JM'|D~|JM) = 0 for all M" # M — 1. Since the states |J M) constitute a complete set,
the sum of projectors is the identity and we get

(J,M —1|D~|JM)|* = (JM|DTD~|JM).
i) If |ag - - - an) with ag, = 0 or 1 is some state, we have
U;raﬂal ceean) = ajlay - -an).

This means that if ag = 0 for J — M atoms and a;, = 1 for J + M atoms

ZJ;"JZ-_\CL1~-QN> =(J+ M)|ay---an).
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This applies to all permutations and depends only on the number of excited atoms, so ) _, U;— o, |JM) =
(J + M)|J M), which menas that

(JM|Y “ofoy |[JM) =T+ M.

j) We have

(JMIDYD™|JM) = (JM|) o;fo; |JM) = (JM]| Z of o |IM)+ (JM|> oo} |TM).
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Due to the permutation symmetry of the state, the last sum consists of N(N — 1) identical terms.
From f) and h) we have that

(JM|D*D™|JM) = [(J,M —1|D"|JM)|> = (J + M)(J — M +1)

which gives

(JM|of oy |TM) =



k) We have

a;“aj_ = Z(O’; +ioy ) (0}, —ioy) = 1(0;0% +o

From the permutation symmetry of |JM) we get

Oy — 10,00 +ioya)).
(JM|okol|JM) = (JM|o}ol|JM).

There is also symmetry with respect to x and y, so

(JM|otal|JM) = <JMya;a§yJM>
which means that

J? — M?

Mloiol|JM) = 2{JM|oFTo7|JM) =2——— .
(JMlogol|JM) = 2(JM|o; o, |JM) NN = 1)

We denote the probability that the measurements of o, and aé gives the same result as P, and the
probability to get opposite results as P_ = 1— P,. Then (JM|clo}|JM) = P, —P_ = 2P, —1
which gives that

L J? — M?
2 N(N-1)
For N =2and M =0 we get P, = 1. ForlargeNanszOwegetP+z%.

P+:

1) Wehave N =4, =2, M = —2,—1,0,1,2.

M = 2|22) = [1111)

p1 = [1)(1]
S = 0 (no entanglement)

1
M =1[21) = Z(|0111) + [1011) + [1101) +[1110))

(10)(0] + 3[1)(1)

=

P1=

1.1 3, 3
S——ZIHZ—ZIHZ

1
M = 0]20) = %(|0011> +1(0101) + |0110) 4 |1001) + [1010) + |1100}))
1
o1 = 20){0] + (1))
S = —2%1n% =In2.

Negative M gives the same with 0 and 1 interchanged.



m)

p12 = é(\om(00\+2101><01y+2\10><10\+\11><11\+2101><1oy+2\10><01\) = %
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where we use the matrix representation |0) = < (1) ) and |1) = < 0 > Two eigenvalues are

p1 = p4 = 1/6. We find the other two eigenvalues
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which gives
2
p=3 p3=0

The entropy is
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n) We have
0 00O
_ _ _ 1 0 0O
D =0"®14+1®0" = 100 0
0110
and
1 00 O
__wo _ 0 00 O
H = ?(Uz®]l+]l®0'2)— ol o 00 o
0 00 —1
We parametrize the density matrix
P b ¢
|l a g d e
ct et ff s

with p,q,7,s € Rand p + ¢+ r + s = 1. Using the Lindblad equation we find (after some
calculations)



0)

p)

0 —-a -b —2c

dp vy a* 0 0 —e
a v 0 0o —f
2¢t e f* 0

4p 3a+0b a+3b 2¢

Y| 3a"+b" 2g+d+d —2p g+r+2d—2p e+ f—2a—2b
2| a*+3b* qg+r+2d°—2p 2r+d+d* —2p e+ f—2a—2b
2c* e+ f*—2a* —2b* e+ f*—2a* -2 —2(q+7r+d+d¥)

A stationary state is a state with % = 0, which means that all matrix elements of % are 0. The 11
element gives that p = 0. The 23 and 32 elements give that d = d* and then the 22 ad 23 elements
give that ¢ = r = —d. The condition p + ¢ + r + s = 1 then implies ¢ = %(1 — ). The 12
and 13 elements together imply that ¢« = b = 0 and if we know that, the elements 42 and 43 give
e = f = 0. The 14 element gives ¢ = 0. The only remaining free parameter is s, and the density
matrix has the form

p = s|00)(00[ + (1 = s)[7) (7.

IF the initial state is |10), the initial density matrix has ¢ = 1 and all other elements are =0. From
the expression for fl—? we see that only the elements g, r, s and d will ever be nonzero. They satisfy
the equations

¢=—(q+d)
7= —y(r+d)
d:—%(q+r+2d)

5=r(qg+r+2d)

Summing the first two equations and subtracting twice the third we get

d
z —2d) =0
dt(q+7' )

which implies that ¢ + » — 2d = 1 since this is the value at ¢ = 0. In the final stationary state we
have ¢ + r + 2d = 0, so we have d = —i. Thenqg+r = % and s = % The final stationary state is
then

1 1.,
p = 5100)(00] + 3 [v7) (|
in accordance with what we found in ¢).

With independent environments for each atom (e.g. distiguishable photon modes) we have one
Lindblad operator for each process (atom 1 emits and atom 2 emits).

. 4! - — — 72 — _ _
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where Jli =0t ® 1 and JZi = 1 ® oT. With the density matrix as in Eq. (1) we get
0 —a —-b —2c
dp i a* 0 0 —e
a0l v 0 0 —f

2 e f* 0

2p 2a b c

2p a 2b ¢
Y1 | 2a* 2¢q d e

_n 2| e —2p d -2
2 b* d* —-2p —2a 2 200 d* 2r f
c* et —2a" —2q ¢t =200 ff —2r

Inastationarystatewehave%:Owhichgivesp:a:b:c:d:e:f:r:q:Oand

s = 1, so the only stationary state is |00) (00| which means that any initial state will decay to the
ground state.



