FYS 4110/9110 Modern Quantum Mechanics
 Midterm Exam, Fall Semester 2020. Solution

Problem 1: Superradiance

a) From the lecture notes we have

$$
\mathbf{A}(\mathbf{r})=\sum_{\mathbf{k} a} \sqrt{\frac{\hbar}{2 V \omega_{0} \epsilon_{0}}}\left[\hat{a}_{\mathbf{k} a} e^{i \mathbf{k r}}+\hat{a}_{\mathbf{k} a}^{\dagger} e^{-i \mathbf{k r}}\right] \epsilon_{\mathbf{k} a} .
$$

Restricted to the $\{|0\rangle,|1\rangle\}$ subspace we can write

$$
\mathbf{p}=\langle 0| \mathbf{p}|1\rangle|0\rangle\langle 1|+\langle 1| \mathbf{p}|0\rangle|1\rangle\langle 0|=\langle 0| \mathbf{p}|1\rangle \sigma^{-}+\langle 1| \mathbf{p}|0\rangle \sigma^{+}
$$

When calculating transition rates, there will appear a δ-function ensuring energy conservation. This means that terms of the form $\hat{a} \sigma^{-}$or $\hat{a}^{\dagger} \sigma^{+}$never will contribute. We choose the position of the atom to be $\mathbf{r}=0$ and in the dipole approximation it means that $e^{-i \mathbf{k r}} \approx 1$ and we get

$$
H_{\text {int }}=-\frac{e}{m} \sum_{\mathbf{k} a} \sqrt{\frac{\hbar}{2 V \omega_{0} \epsilon_{0}}}\left[\hat{a}_{\mathbf{k} a} \sigma^{+}+\hat{a}_{\mathbf{k} a}^{\dagger} \sigma^{-}\right]\langle 0| \mathbf{p}|1\rangle \cdot \epsilon_{\mathbf{k} a}=\sum_{\mathbf{k} a} g_{\mathbf{k} a}\left(\hat{a}_{\mathbf{k} a} \sigma^{+}+\hat{a}_{\mathbf{k} a}^{\dagger} \sigma^{-}\right)
$$

with

$$
g_{\mathbf{k} a}=-\frac{e}{m} \sqrt{\frac{\hbar}{2 V \omega_{0} \epsilon_{0}}}\langle 0| \mathbf{p}|1\rangle \cdot \epsilon_{\mathbf{k} a}
$$

The relative phase of $|0\rangle$ and $|1\rangle$ can always be choosen so that $\langle 1| \mathbf{p}|0\rangle=\langle 0| \mathbf{p}|1\rangle$ is real.
b) The rate of spontaneous emission is

$$
\left.w_{1}=\sum_{\mathbf{k} a} \frac{2 \pi}{\hbar}\left|\left\langle 0,1_{\mathbf{k} a}\right| H_{\text {int }}\right| 1,0\right\rangle\left.\right|^{2} \delta\left(E_{0}+\hbar \omega_{k}-E_{1}\right)
$$

where E_{0} and E_{1} are the energies of $|0\rangle$ and $|1\rangle$ and $|1,0\rangle$ refers to the atom in state $|1\rangle$ and field in vacuum state. As in the lecture notes, eq (4.101) we get

$$
\left.w_{1}=\frac{e^{2} \omega}{3 \pi c^{3} \hbar m^{2} \epsilon_{0}}|\langle 0| \mathbf{p}| 1\right\rangle\left.\right|^{2}
$$

where $\hbar \omega=E_{1}-E_{0}$. To compare with (4.101) recall (4.80): $\langle 0| \mathbf{p}|1\rangle=i m \omega\langle 0| \mathbf{r}|1\rangle$.
c) As indicated in the problem, we write $|10\rangle=\frac{1}{\sqrt{2}}\left(\left|\psi^{+}\right\rangle+\left|\psi^{-}\right\rangle\right)$with $\left|\psi^{ \pm}\right\rangle \frac{1}{\sqrt{2}}(|10\rangle \pm|01\rangle)$. The state $\left|\psi^{-}\right\rangle$is an eigenstate of the Hamiltonian (both the Hamiltonian of the atom, and the interaction) and this part of the initial state will not decay. The remaining $\left|\psi^{+}\right\rangle$has a nonzero matrix element $\langle 00| D^{-}\left|\psi^{+}\right\rangle$and will decay to the ground state $|00\rangle$.
d) There is a probability $\frac{1}{2}$ to be in the state $\left|\psi^{-}\right\rangle$and therefore not decay. Otherwise, one photon is emitted. On average, $\frac{1}{2}$ photon is emitted for each repetition of the experiment.
e) We have

$$
\left(D^{-}\right)^{J-M}|11 \cdots 1\rangle \sim|\underbrace{00 \cdots 0}_{J-M} \underbrace{11 \cdots 1}_{J+M}\rangle+\text { All permutations with } \mathrm{J}+\mathrm{M} \text { atoms in }|1\rangle \text { and J-M atoms in }|0\rangle
$$

Therefore $\left\langle J M \mid J M^{\prime}\right\rangle=0$ if $M \neq M^{\prime}$ since the number of excited atoms are different. To check normalization we note that there are $\binom{N}{J-M}=\frac{N!}{(J-M)!(J+M)!}$ different terms in $\left(D^{-}\right)^{J-M}|11 \cdots 1\rangle$. But the operator generates each term seveal times. For a given set of $J-M$ atoms to be de-excited, the order in which they are de-excited does not matter, which means that

$$
|J M\rangle=A\left(D^{-}\right)^{J-M}|11 \cdots 1\rangle=A(J-M)!(|\underbrace{00 \cdots 0}_{J-M} \underbrace{11 \cdots 1}_{J+M}\rangle+\text { permutations })
$$

where A is the normalization to be determined. We then have
$\langle J M \mid J M\rangle=|A|^{2}[(J-M)!]^{2}(\langle 00 \cdots 011 \cdots 1|+$ permutations $)(|00 \cdots 011 \cdots 1\rangle+$ permutations $)$.
Each permutation has inner product 1 with itself and 0 with all other permutations, so

$$
\langle J M \mid J M\rangle=|A|^{2}[(J-M)!]^{2} \frac{N!}{(J-M)!(J+M)!} .
$$

Requiring $\langle J M \mid J M\rangle=1$ gives

$$
A=\sqrt{\frac{(J+M)!}{N!(J-M)!}}
$$

f) The decay rate from the state $|J M\rangle$ is

$$
\left.w_{J M}=\sum_{\mathbf{k} a} \frac{2 \pi}{\hbar}\left|\left\langle J, M-1,1_{\mathbf{k} a}\right| H_{\text {int }}\right| J M, 0\right\rangle\left.\right|^{2} \delta\left(E_{J, M-1}+\hbar \omega_{k}-E_{J M}\right) .
$$

The difference from the one atom case is that $\langle 0| \sigma^{-}|1\rangle$ is replaced by

$$
\langle J, M-1| D^{-}|J M\rangle=\sqrt{\frac{(J+M)!}{N!(J-M)!}}\langle J, M-1|\left(D^{-}\right)^{J-M+1}|11 \cdots 1\rangle=\sqrt{(J+M)(J-M+1)}
$$

where we used that

$$
\left(D^{-}\right)^{J-M+1}|11 \cdots 1\rangle=\sqrt{\frac{N!(J-M+1)!}{(J+M-1)!}}|J, M-1\rangle .
$$

This gives

$$
w_{J M}=(J+M)(J-M+1) w_{1} .
$$

g) The decy rate is maximal for $M=0$ and $M=1$.

$$
w_{J 0}=W_{J 1}=J(J+1) w_{1}=\frac{N}{2}\left(\frac{N}{2}+1\right) w_{1} \approx \frac{N^{2}}{4} w_{1}
$$

One atom emits a photon at the rate w_{1}, so N independent atoms will emit at the rate $N \omega_{1}$. For $N \gg 1$ we see that $w_{J 0} \gg N w_{1}$ so the emission rate is much larger than for N independent atoms.
h)

$$
\left.\left|\langle J, M-1| D^{-}\right| J M\right\rangle\left.\right|^{2}=\langle J M| D^{+}|J, M-1\rangle\langle J, M-1| D^{-}|J M\rangle=\langle J M| D^{+} \sum_{M^{\prime}}\left|J M^{\prime}\right\rangle\left\langle J M^{\prime}\right| D^{-}|J M\rangle
$$

since $\left\langle J M^{\prime}\right| D^{-}|J M\rangle=0$ for all $M^{\prime} \neq M-1$. Since the states $|J M\rangle$ constitute a complete set, the sum of projectors is the identity and we get

$$
\left.\left|\langle J, M-1| D^{-}\right| J M\right\rangle\left.\right|^{2}=\langle J M| D^{+} D^{-}|J M\rangle
$$

i) If $\left|a_{1} \cdots a_{N}\right\rangle$ with $a_{k}=0$ or 1 is some state, we have

$$
\sigma_{i}^{+} \sigma_{i}^{-}\left|a_{1} \cdots a_{N}\right\rangle=a_{i}\left|a_{1} \cdots a_{N}\right\rangle
$$

This means that if $a_{k}=0$ for $J-M$ atoms and $a_{k}=1$ for $J+M$ atoms

$$
\sum_{i} \sigma_{i}^{+} \sigma_{i}^{-}\left|a_{1} \cdots a_{N}\right\rangle=(J+M)\left|a_{1} \cdots a_{N}\right\rangle
$$

This applies to all permutations and depends only on the number of excited atoms, so $\sum_{i} \sigma_{i}^{+} \sigma_{i}^{-}|J M\rangle=$ $(J+M)|J M\rangle$, which menas that

$$
\langle J M| \sum_{i} \sigma_{i}^{+} \sigma_{i}^{-}|J M\rangle=J+M
$$

j) We have

$$
\langle J M| D^{+} D^{-}|J M\rangle=\langle J M| \sum_{i j} \sigma_{i}^{+} \sigma_{j}^{-}|J M\rangle=\langle J M| \sum_{i} \sigma_{i}^{+} \sigma_{i}^{-}|J M\rangle+\langle J M| \sum_{i \neq j} \sigma_{i}^{+} \sigma_{j}^{-}|J M\rangle
$$

Due to the permutation symmetry of the state, the last sum consists of $N(N-1)$ identical terms. From f) and h) we have that

$$
\left.\langle J M| D^{+} D^{-}|J M\rangle=\left|\langle J, M-1| D^{-}\right| J M\right\rangle\left.\right|^{2}=(J+M)(J-M+1)
$$

which gives

$$
\langle J M| \sigma_{i}^{+} \sigma_{j}^{-}|J M\rangle=\frac{J^{2}-M^{2}}{N(N-1)}
$$

k) We have

$$
\sigma_{i}^{+} \sigma_{j}^{-}=\frac{1}{4}\left(\sigma_{x}^{i}+i \sigma_{y}^{i}\right)\left(\sigma_{x}^{j}-i \sigma_{y}^{j}\right)=\frac{1}{4}\left(\sigma_{x}^{i} \sigma_{x}^{j}+\sigma_{y}^{i} \sigma_{y}^{j}-i \sigma_{x}^{i} \sigma_{y}^{j}+i \sigma_{y}^{i} \sigma_{x}^{j}\right) .
$$

From the permutation symmetry of $|J M\rangle$ we get

$$
\langle J M| \sigma_{x}^{i} \sigma_{y}^{j}|J M\rangle=\langle J M| \sigma_{y}^{i} \sigma_{x}^{j}|J M\rangle .
$$

There is also symmetry with respect to x and y, so

$$
\langle J M| \sigma_{x}^{i} \sigma_{x}^{j}|J M\rangle=\langle J M| \sigma_{y}^{i} \sigma_{y}^{j}|J M\rangle
$$

which means that

$$
\langle J M| \sigma_{x}^{i} \sigma_{x}^{j}|J M\rangle=2\langle J M| \sigma_{i}^{+} \sigma_{j}^{-}|J M\rangle=2 \frac{J^{2}-M^{2}}{N(N-1)}
$$

We denote the probability that the measurements of σ_{x}^{i} and σ_{y}^{j} gives the same result as P_{+}and the probability to get opposite results as $P_{-}=1-P_{+}$. Then $\langle J M| \sigma_{x}^{i} \sigma_{x}^{j}|J M\rangle=P_{+}-P_{-}=2 P_{+}-1$ which gives that

$$
P_{+}=\frac{1}{2}+\frac{J^{2}-M^{2}}{N(N-1)} .
$$

For $N=2$ and $M=0$ we get $P_{+}=1$. For large N and $M=0$ we get $P_{+} \approx \frac{3}{4}$.

1) We have $N=4, J=2, M=-2,-1,0,1,2$.

$$
\begin{aligned}
& M=2|22\rangle=|1111\rangle \\
& \quad \rho_{1}=|1\rangle\langle 1| \\
& S=0 \text { (no entanglement) } \\
& M=1|21\rangle=\frac{1}{2}(|0111\rangle+|1011\rangle+|1101\rangle+|1110\rangle) \\
& \rho_{1}=\frac{1}{4}(|0\rangle\langle 0|+3|1\rangle\langle 1|) \\
& S=-\frac{1}{4} \ln \frac{1}{4}-\frac{3}{4} \ln \frac{3}{4} \\
& M=0|20\rangle=\frac{1}{\sqrt{6}}(|0011\rangle+|0101\rangle+|0110\rangle+|1001\rangle+|1010\rangle+|1100\rangle) \\
& \rho_{1}=\frac{1}{2}(|0\rangle\langle 0|+|1\rangle\langle 1|) \\
& \quad S=-2 \frac{1}{2} \ln \frac{1}{2}=\ln 2 .
\end{aligned}
$$

Negative M gives the same with 0 and 1 interchanged.
m)
$\rho_{12}=\frac{1}{6}(|00\rangle\langle 00|+2|01\rangle\langle 01|+2|10\rangle\langle 10|+|11\rangle\langle 11|+2|01\rangle\langle 10|+2|10\rangle\langle 01|)=\frac{1}{6}\left(\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$,
where we use the matrix representation $|0\rangle=\binom{0}{1}$ and $|1\rangle=\binom{1}{0}$. Two eigenvalues are $p_{1}=p_{4}=1 / 6$. We find the other two eigenvalues

$$
\left|\begin{array}{cc}
\frac{1}{3}-p & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3}-p
\end{array}\right|=p^{2}-\frac{2}{3} p+\frac{1}{12}=0
$$

which gives

$$
p_{2}=\frac{2}{3} \quad p_{3}=0
$$

The entropy is

$$
S=-\sum_{n} p_{n} \ln p_{n}=\frac{1}{3} \ln 6-\frac{2}{3} \ln \frac{2}{3}=\ln 3-\frac{1}{3} \ln 2 .
$$

n) We have

$$
D^{-}=\sigma^{-} \otimes \mathbb{1}+\mathbb{1} \otimes \sigma^{-}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

and

$$
H=-\frac{\omega_{0}}{2}\left(\sigma_{z} \otimes \mathbb{1}+\mathbb{1} \otimes \sigma_{z}\right)=-\omega_{0}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

We parametrize the density matrix

$$
\rho=\left(\begin{array}{cccc}
p & a & b & c \tag{1}\\
a^{*} & q & d & e \\
b^{*} & d^{*} & r & f \\
c^{*} & e^{*} & f^{*} & s
\end{array}\right)
$$

with $p, q, r, s \in \mathbb{R}$ and $p+q+r+s=1$. Using the Lindblad equation we find (after some calculations)

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i \omega_{0}\left(\begin{array}{cccc}
0 & -a & -b & -2 c \\
a^{*} & 0 & 0 & -e \\
b^{*} & 0 & 0 & -f \\
2 c^{*} & e^{*} & f^{*} & 0
\end{array}\right) \\
&-\frac{\gamma}{2}\left(\begin{array}{cccc}
4 p & 3 a+b & a+3 b & 2 c \\
3 a^{*}+b^{*} & 2 q+d+d^{*}-2 p & q+r+2 d-2 p & e+f-2 a-2 b \\
a^{*}+3 b^{*} & q+r+2 d^{*}-2 p & 2 r+d+d^{*}-2 p & e+f-2 a-2 b \\
2 c^{*} & e+f^{*}-2 a^{*}-2 b^{*} & e+f^{*}-2 a^{*}-2 b^{*} & -2\left(q+r+d+d^{*}\right)
\end{array}\right) .
\end{aligned}
$$

A stationary state is a state with $\frac{d \rho}{d t}=0$, which means that all matrix elements of $\frac{d \rho}{d t}$ are 0 . The 11 element gives that $p=0$. The 23 and 32 elements give that $d=d^{*}$ and then the 22 ad 23 elements give that $q=r=-d$. The condition $p+q+r+s=1$ then implies $q=\frac{1}{2}(1-s)$. The 12 and 13 elements together imply that $a=b=0$ and if we know that, the elements 42 and 43 give $e=f=0$. The 14 element gives $c=0$. The only remaining free parameter is s, and the density matrix has the form

$$
\rho=s|00\rangle\langle 00|+(1-s)\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right| .
$$

o) IF the initial state is $|10\rangle$, the initial density matrix has $q=1$ and all other elements are $=0$. From the expression for $\frac{d \rho}{d t}$ we see that only the elements q, r, s and d will ever be nonzero. They satisfy the equations

$$
\begin{aligned}
\dot{q} & =-\gamma(q+d) \\
\dot{r} & =-\gamma(r+d) \\
\dot{d} & =-\frac{\gamma}{2}(q+r+2 d) \\
\dot{s} & =\gamma(q+r+2 d)
\end{aligned}
$$

Summing the first two equations and subtracting twice the third we get

$$
\frac{d}{d t}(q+r-2 d)=0
$$

which implies that $q+r-2 d=1$ since this is the value at $t=0$. In the final stationary state we have $q+r+2 d=0$, so we have $d=-\frac{1}{4}$. Then $q+r=\frac{1}{2}$ and $s=\frac{1}{2}$. The final stationary state is then

$$
\rho=\frac{1}{2}|00\rangle\langle 00|+\frac{1}{2}\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right|
$$

in accordance with what we found in c).
p) With independent environments for each atom (e.g. distiguishable photon modes) we have one Lindblad operator for each process (atom 1 emits and atom 2 emits).

$$
\frac{d \rho}{d t}=-i[H, \rho]-\frac{\gamma_{1}}{2}\left(\sigma_{1}^{+} \sigma_{1}^{-} \rho+\rho \sigma_{1}^{+} \sigma_{1}^{-}-2 \sigma_{1}^{-} \rho \sigma_{1}^{+}\right)-\frac{\gamma_{2}}{2}\left(\sigma_{2}^{+} \sigma_{2}^{-} \rho+\rho \sigma_{2}^{+} \sigma_{2}^{-}-2 \sigma_{2}^{-} \rho \sigma_{2}^{+}\right)
$$

where $\sigma_{1}^{ \pm}=\sigma^{ \pm} \otimes \mathbb{1}$ and $\sigma_{2}^{ \pm}=\mathbb{1} \otimes \sigma^{ \pm}$. With the density matrix as in Eq. (1) we get

$$
\begin{aligned}
& \frac{d \rho}{d t}=-i \omega_{0}\left(\begin{array}{cccc}
0 & -a & -b & -2 c \\
a^{*} & 0 & 0 & -e \\
b^{*} & 0 & 0 & -f \\
2 c^{*} & e^{*} & f^{*} & 0
\end{array}\right) \\
&-\frac{\gamma_{1}}{2}\left(\begin{array}{cccc}
2 p & 2 a & b & c \\
2 a^{*} & 2 q & d & e \\
b^{*} & d^{*} & -2 p & -2 a \\
c^{*} & e^{*} & -2 a^{*} & -2 q
\end{array}\right)-\frac{\gamma_{2}}{2}\left(\begin{array}{cccc}
2 p & a & 2 b & c \\
a^{*} & -2 p & d & -2 b \\
2 b^{*} & d^{*} & 2 r & f \\
c^{*} & -2 b^{*} & f^{*} & -2 r
\end{array}\right) .
\end{aligned}
$$

In a stationary state we have $\frac{d \rho}{d t}=0$ which gives $p=a=b=c=d=e=f=r=q=0$ and $s=1$, so the only stationary state is $|00\rangle\langle 00|$ which means that any initial state will decay to the ground state.

