
FYS 4110/9110 Modern Quantum Mechanics
Midterm Exam, Fall Semester 2020. Solution

Problem 1: Superradiance

a) From the lecture notes we have

A(r) =
∑
ka

√
~

2V ω0ε0

[
âkae

ikr + â†kae
−ikr

]
εka.

Restricted to the {|0〉, |1〉} subspace we can write

p = 〈0|p|1〉|0〉〈1|+ 〈1|p|0〉|1〉〈0| = 〈0|p|1〉σ− + 〈1|p|0〉σ+

When calculating transition rates, there will appear a δ-function ensuring energy conservation.
This means that terms of the form âσ− or â†σ+ never will contribute. We choose the position of
the atom to be r = 0 and in the dipole approximation it means that e−ikr ≈ 1 and we get

Hint = −
e

m

∑
ka

√
~

2V ω0ε0

[
âkaσ

+ + â†kaσ
−
]
〈0|p|1〉 · εka =

∑
ka

gka(âkaσ
+ + â†kaσ

−)

with

gka = −
e

m

√
~

2V ω0ε0
〈0|p|1〉 · εka

The relative phase of |0〉 and |1〉 can always be choosen so that 〈1|p|0〉 = 〈0|p|1〉 is real.

b) The rate of spontaneous emission is

w1 =
∑
ka

2π

~
|〈0, 1ka|Hint|1, 0〉|2δ(E0 + ~ωk − E1)

where E0 and E1 are the energies of |0〉 and |1〉 and |1, 0〉 refers to the atom in state |1〉 and field
in vacuum state. As in the lecture notes, eq (4.101) we get

w1 =
e2ω

3πc3~m2ε0
|〈0|p|1〉|2

where ~ω = E1 − E0. To compare with (4.101) recall (4.80): 〈0|p|1〉 = imω〈0|r|1〉.

c) As indicated in the problem, we write |10〉 = 1√
2
(|ψ+〉+ |ψ−〉) with |ψ±〉 1√

2
(|10〉 ± |01〉). The

state |ψ−〉 is an eigenstate of the Hamiltonian (both the Hamiltonian of the atom, and the inter-
action) and this part of the initial state will not decay. The remaining |ψ+〉 has a nonzero matrix
element 〈00|D−|ψ+〉 and will decay to the ground state |00〉.

d) There is a probability 1
2 to be in the state |ψ−〉 and therefore not decay. Otherwise, one photon is

emitted. On average, 1
2 photon is emitted for each repetition of the experiment.
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e) We have

(D−)J−M |11 · · · 1〉 ∼ | 00 · · · 0︸ ︷︷ ︸
J−M

11 · · · 1︸ ︷︷ ︸
J+M

〉+All permutations with J+M atoms in |1〉 and J-M atoms in |0〉

Therefore 〈JM |JM ′〉 = 0 if M 6= M ′ since the number of excited atoms are different. To check
normalization we note that there are

(
N

J−M
)
= N !

(J−M)!(J+M)! different terms in (D−)J−M |11 · · · 1〉.
But the operator generates each term seveal times. For a given set of J−M atoms to be de-excited,
the order in which they are de-excited does not matter, which means that

|JM〉 = A(D−)J−M |11 · · · 1〉 = A(J −M)!(| 00 · · · 0︸ ︷︷ ︸
J−M

11 · · · 1︸ ︷︷ ︸
J+M

〉+ permutations)

where A is the normalization to be determined. We then have

〈JM |JM〉 = |A|2[(J−M)!]2(〈00 · · · 011 · · · 1|+permutations)(|00 · · · 011 · · · 1〉+permutations).

Each permutation has inner product 1 with itself and 0 with all other permutations, so

〈JM |JM〉 = |A|2[(J −M)!]2
N !

(J −M)!(J +M)!
.

Requiring 〈JM |JM〉 = 1 gives

A =

√
(J +M)!

N !(J −M)!
.

f) The decay rate from the state |JM〉 is

wJM =
∑
ka

2π

~
|〈J,M − 1, 1ka|Hint|JM, 0〉|2δ(EJ,M−1 + ~ωk − EJM ).

The difference from the one atom case is that 〈0|σ−|1〉 is replaced by

〈J,M−1|D−|JM〉 =

√
(J +M)!

N !(J −M)!
〈J,M−1|(D−)J−M+1|11 · · · 1〉 =

√
(J +M)(J −M + 1)

where we used that

(D−)J−M+1|11 · · · 1〉 =

√
N !(J −M + 1)!

(J +M − 1)!
|J,M − 1〉.

This gives
wJM = (J +M)(J −M + 1)w1.
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g) The decy rate is maximal for M = 0 and M = 1.

wJ0 =WJ1 = J(J + 1)w1 =
N

2
(
N

2
+ 1)w1 ≈

N2

4
w1.

One atom emits a photon at the rate w1, so N independent atoms will emit at the rate Nω1. For
N � 1 we see that wJ0 � Nw1 so the emission rate is much larger than for N independent
atoms.

h)

|〈J,M−1|D−|JM〉|2 = 〈JM |D+|J,M−1〉〈J,M−1|D−|JM〉 = 〈JM |D+
∑
M ′

|JM ′〉〈JM ′|D−|JM〉

since 〈JM ′|D−|JM〉 = 0 for all M ′ 6= M − 1. Since the states |JM〉 constitute a complete set,
the sum of projectors is the identity and we get

|〈J,M − 1|D−|JM〉|2 = 〈JM |D+D−|JM〉.

i) If |a1 · · · aN 〉 with ak = 0 or 1 is some state, we have

σ+i σ
−
i |a1 · · · aN 〉 = ai|a1 · · · aN 〉.

This means that if ak = 0 for J −M atoms and ak = 1 for J +M atoms∑
i

σ+i σ
−
i |a1 · · · aN 〉 = (J +M)|a1 · · · aN 〉.

This applies to all permutations and depends only on the number of excited atoms, so
∑

i σ
+
i σ
−
i |JM〉 =

(J +M)|JM〉, which menas that

〈JM |
∑
i

σ+i σ
−
i |JM〉 = J +M.

j) We have

〈JM |D+D−|JM〉 = 〈JM |
∑
ij

σ+i σ
−
j |JM〉 = 〈JM |

∑
i

σ+i σ
−
i |JM〉+ 〈JM |

∑
i 6=j

σ+i σ
−
j |JM〉.

Due to the permutation symmetry of the state, the last sum consists of N(N − 1) identical terms.
From f) and h) we have that

〈JM |D+D−|JM〉 = |〈J,M − 1|D−|JM〉|2 = (J +M)(J −M + 1)

which gives

〈JM |σ+i σ
−
j |JM〉 =

J2 −M2

N(N − 1)
.
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k) We have

σ+i σ
−
j =

1

4
(σix + iσiy)(σ

j
x − iσjy) =

1

4
(σixσ

j
x + σiyσ

j
y − iσixσjy + iσiyσ

j
x).

From the permutation symmetry of |JM〉 we get

〈JM |σixσjy|JM〉 = 〈JM |σiyσjx|JM〉.

There is also symmetry with respect to x and y, so

〈JM |σixσjx|JM〉 = 〈JM |σiyσjy|JM〉

which means that

〈JM |σixσjx|JM〉 = 2〈JM |σ+i σ
−
j |JM〉 = 2

J2 −M2

N(N − 1)
.

We denote the probability that the measurements of σix and σjy gives the same result as P+ and the
probability to get opposite results as P− = 1−P+. Then 〈JM |σixσ

j
x|JM〉 = P+−P− = 2P+−1

which gives that

P+ =
1

2
+

J2 −M2

N(N − 1)
.

For N = 2 and M = 0 we get P+ = 1. For large N and M = 0 we get P+ ≈ 3
4 .

l) We have N = 4, J = 2, M = −2,−1, 0, 1, 2.

M = 2|22〉 = |1111〉
ρ1 = |1〉〈1|
S = 0 (no entanglement)

M = 1|21〉 = 1

2
(|0111〉+ |1011〉+ |1101〉+ |1110〉)

ρ1 =
1

4
(|0〉〈0|+ 3|1〉〈1|)

S = −1

4
ln

1

4
− 3

4
ln

3

4

M = 0|20〉 = 1√
6
(|0011〉+ |0101〉+ |0110〉+ |1001〉+ |1010〉+ |1100〉)

ρ1 =
1

2
(|0〉〈0|+ |1〉〈1|)

S = −21
2
ln

1

2
= ln 2.

Negative M gives the same with 0 and 1 interchanged.
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m)

ρ12 =
1

6
(|00〉〈00|+2|01〉〈01|+2|10〉〈10|+|11〉〈11|+2|01〉〈10|+2|10〉〈01|) = 1

6


1 0 0 0
0 2 2 0
0 2 2 0
0 0 0 1

 ,

where we use the matrix representation |0〉 =
(

0
1

)
and |1〉 =

(
1
0

)
. Two eigenvalues are

p1 = p4 = 1/6. We find the other two eigenvalues∣∣∣∣ 1
3 − p

1
3

1
3

1
3 − p

∣∣∣∣ = p2 − 2

3
p+

1

12
= 0,

which gives

p2 =
2

3
p3 = 0.

The entropy is

S = −
∑
n

pn ln pn =
1

3
ln 6− 2

3
ln

2

3
= ln 3− 1

3
ln 2.

n) We have

D− = σ− ⊗ 1+ 1⊗ σ− =


0 0 0 0
1 0 0 0
1 0 0 0
0 1 1 0


and

H = −ω0

2
(σz ⊗ 1+ 1⊗ σz) = −ω0


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 .

We parametrize the density matrix

ρ =


p a b c
a∗ q d e
b∗ d∗ r f
c∗ e∗ f∗ s

 . (1)

with p, q, r, s ∈ R and p + q + r + s = 1. Using the Lindblad equation we find (after some
calculations)
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dρ

dt
= −iω0


0 −a −b −2c
a∗ 0 0 −e
b∗ 0 0 −f
2c∗ e∗ f∗ 0



− γ

2


4p 3a+ b a+ 3b 2c

3a∗ + b∗ 2q + d+ d∗ − 2p q + r + 2d− 2p e+ f − 2a− 2b
a∗ + 3b∗ q + r + 2d∗ − 2p 2r + d+ d∗ − 2p e+ f − 2a− 2b

2c∗ e+ f∗ − 2a∗ − 2b∗ e+ f∗ − 2a∗ − 2b∗ −2(q + r + d+ d∗)

 .

A stationary state is a state with dρ
dt = 0, which means that all matrix elements of dρdt are 0. The 11

element gives that p = 0. The 23 and 32 elements give that d = d∗ and then the 22 ad 23 elements
give that q = r = −d. The condition p + q + r + s = 1 then implies q = 1

2(1 − s). The 12
and 13 elements together imply that a = b = 0 and if we know that, the elements 42 and 43 give
e = f = 0. The 14 element gives c = 0. The only remaining free parameter is s, and the density
matrix has the form

ρ = s|00〉〈00|+ (1− s)|ψ−〉〈ψ−|.

o) IF the initial state is |10〉, the initial density matrix has q = 1 and all other elements are =0. From
the expression for dρdt we see that only the elements q, r, s and d will ever be nonzero. They satisfy
the equations

q̇ = −γ(q + d)

ṙ = −γ(r + d)

ḋ = −γ
2
(q + r + 2d)

ṡ = γ(q + r + 2d)

Summing the first two equations and subtracting twice the third we get

d

dt
(q + r − 2d) = 0

which implies that q + r − 2d = 1 since this is the value at t = 0. In the final stationary state we
have q+ r+2d = 0, so we have d = −1

4 . Then q+ r = 1
2 and s = 1

2 . The final stationary state is
then

ρ =
1

2
|00〉〈00|+ 1

2
|ψ−〉〈ψ−|

in accordance with what we found in c).

p) With independent environments for each atom (e.g. distiguishable photon modes) we have one
Lindblad operator for each process (atom 1 emits and atom 2 emits).

dρ

dt
= −i[H, ρ]− γ1

2
(σ+1 σ

−
1 ρ+ ρσ+1 σ

−
1 − 2σ−1 ρσ

+
1 )−

γ2
2
(σ+2 σ

−
2 ρ+ ρσ+2 σ

−
2 − 2σ−2 ρσ

+
2 )
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where σ±1 = σ± ⊗ 1 and σ±2 = 1⊗ σ±. With the density matrix as in Eq. (1) we get

dρ

dt
= −iω0


0 −a −b −2c
a∗ 0 0 −e
b∗ 0 0 −f
2c∗ e∗ f∗ 0



− γ1
2


2p 2a b c
2a∗ 2q d e
b∗ d∗ −2p −2a
c∗ e∗ −2a∗ −2q

− γ2
2


2p a 2b c
a∗ −2p d −2b
2b∗ d∗ 2r f
c∗ −2b∗ f∗ −2r

 .

In a stationary state we have dρ
dt = 0 which gives p = a = b = c = d = e = f = r = q = 0 and

s = 1, so the only stationary state is |00〉〈00| which means that any initial state will decay to the
ground state.
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