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Solutions to problem set 10

10.1 Uncle Charlie’s gift

a) If |¢) is any of the states | Aa), |Ab), |Ba), | Bb) then the probabilities for the possible measurement
outcomes in the {|0), |1) } basis are

1

[(00[@)[* = [{01]@)[* = [{10]¢)[* = [(11]$)[* = 7

independent of which of the four states |¢) is. Therefore it is not possible to distinguish between
these states in the {|0), |1) } basis.

b)
V2lu) =[0) + (1), V2Jv) =0) — |1)

In the new basis for Alice, the states take the form:

Aa) = = (Ju0) +[o1)
D) = == (0) + fu1)
Ba) = —= () = o)
BY) = <5 (<o) + fu)

We see that if Alice measures u, then there are two states that corresponds to Bob measuring 0
|Aa) and | Ba). If Bob measures 1 and Alice u, we get | Ab) or | Bb). If Alice measures v and Bob
0, we get |Ab) or |Bb), and if Bob instead masured 1, we have the states |Aa) or |Ba). In this
setup, we can distinguish between which gift is given, but not who recieves it.

¢) In this new configuration of bases, the states take the following form:

1

A0) = == (10u) + [10)
A = == (o) = [10)
Ba) = (100} + 1)
BY) = == (—[00) + 1)

In this current setup, we have the pairs |Aa) or |Ab) and |Ba) or |Bb). Now we can distinguish
between who recieves the gift, but not what gift.
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If both decides on using the {u, v} basis, then the states take the following form:

V20u) — 1) +v20) + 1) 1

0) : = 5 () + 1)
. R e U R U N
b = > = 5 () = o)
00) = 10) @ J0) = 5 (fuw) + [uw) + o) + o))
01) = 10y 1) = 3 () — [uv) + o) — o))
10) = 1)@ 0) = § () + [uv) — fow) — o))
1) = @)= 5 () — fuw) — fous) + o))
1

Aa) = 2 (juw) + o) +Jou) — [ou)

4) = o () — fuv) + Jou) +Jou)

Ba) = 3 (juu) + fuw) — o) + [ov))

BY) = g () — Juv) — ou) — fov))

From this, we get the same argument as from problem a). A measurement in the {|u), |v)} basis

yields no information as the information lies

in the superposition of states.

d) We solve the given equations to get the original basis vectors in terms of the new. For Alice:

0) = a*|w) = Blz) 1) = B"w) + alz)

For Bob:

0) =7"y) —dlz) 1) =0"[y) +12)

Then we get
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e)

| Aa) = % {[a"(v" +6%) + 57 (7" = 8] wy) + [-a™(0 =) = 57(y + 9)] [w2)

+[=B(y" +67) +a(y" = )] |zy) +[B(6 =) — aly + )] |xz)}
|Ab) = % {la*(v" +6%) = B*(v" = 0")] fwy) + [—a™ (6 =) + B* (v + 0)] |[wz)
+[=B(Y" +6%) — a(y" = )] |zy) + [B(6 =) + a(y + )] |zz)}

|Ba) = % {la (v = 0") + B (7" + ") [wy) + [-a™(6 +7) + (v — 9)] [wz)
+[-B(y" = 0") +a(y" + )] |zy) + [B(0 +7) + aly —d)] [z2)}

|Bb) = % {[=a"(y" = ") + B (v" + 6)] lwy) + [ (6 +7) + (v — 9)] lwz)
+[B(Y" = 0") +a(y" +0%)] [zy) + [-B(d +7) + a(y — 9)]|22)}

We observe that the coefficients in front of |wz) and |xy) are complex conjugates of each other
(or the negative of the complex conjugate), and therefore 0 at the same time. We want |Aa) and
| Bb) to give the same results, and only have projsections on two of the basis states. We want to
eliminate |wz) and |xy) from both of them, which requires

—a* (6 =) =p(v+9) =0

« « (D
a*(6+7)+ B (v—6) =
Dividing the two equations we get
0=y _o+9
o+~ ~v—90
which gives § = iv. Since |§|? + |y|> = 1 this implies that || = % and we can choose 7 = %

to be real. Inserting this into (1) we get 8 = ia, and we have that « = v = % and f =6 = &

S

is a solution. We then have

Aa) = — (e Mfuy) — e/11z2))
48) = = (&7 uwz) — e/ ay))
Ba) = — (—e™/1huz) + e o))
1B8) = <= (e ) + €7/ oz) )

which gives the measurement outcomes |wy) or |xz) for the states | Aa) or | Bb) and the outcomes
|wz) or |zy) for the states | Ab) or | Ba) as we wanted.

When performing a measurement, we destroy the entanglement due to the wavefunction “collaps-
ing” on determinate states. The result is a separable product state, which doesn’t contain any
entanglement.
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10.2 Distributed information (Exam 2012)

a) If we rewrite our state as as:

b)

1
|thn) = 7
We see that the density operator p,, = |¢y,) (1| will contain terms of the form |a)(b| ® |cd){ef],

a,b,e,d,e, f € {+,—}. To find the reduced density for A, we need to take the trace over the
second factor in the tensor product:

(Hel-=)+n"=)@+-)+@)" ) ®|-+))

Tr (led)(ef|) = (efled) = decdya
Thus, the only contributions will be:

1

A~

| = Wl

= g (H+2=)(=)

We see that the density operator doesn’t depend on n, and since all information was contained in
n, A has no information of the distributed spin. Let’s now look at what information A, B and C
together can get from measuring their gbit. When all measure in the basis I, the probability of
measuring different states are given by (abc|py,|def) = (abc|iy)(Yn|def). The only terms that
survive are diagonal terms, i.e terms |def) C |vy,). From the calculation of the reduced density
matrix p4, we see that these terms will be independent of n, and thus, A, B,C' won’t get any
information about n from these measurements.

Let’s write our state as
1

Then by taking the trace over C, the only contributing elements are the diagonal terms in C'

(+=)@=) +7"—Hel=-)+@)" --)e+)

ﬁéB = Tropn

= é{|+—><+—|®Tr(!—><—|)+(77")*\+—><—+|®TY|—><—!
0 = ) - [@Te| ) (= + =)=+ [@Tr | ) (| + ] = ) (= = [@Tr [+)(+]}
= é{|+*><+*|+|*+><*+|+|**><**|+77”|*+><+*\+(77”)*|+*><*+|}
The probabilities for measuring different |¢;) given an n, are:
p(kln) = {oxlp7"|ox)

= O+ ) — 166 (el — ) 19w + (Bl — ) (— — o)
(9] =) = 160) + () (x] + =) (= + 9w

pa = S (HH ST = === [+n" (") [N @Tr[ + =)+ — [+ ()" ") {~[ @ Tr| = +){(= + )
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The overlaps are given by:

1 1
O = 0= = (11+) = 5=, (1) = ——
Then we’re ready to calculate the probabilities:
p(10) = %{<00| + —){+ = 100) + (00| = +){= +100) + (00| = —){— —100)
7{00] = +)(+ = [00) + (1°) " (00] + —){~ + [00) }
_1,1_5
T3 74 12
p(2(0) = %{<01I+—><+—!01>+(01|—+><—+|01>+<01|——><——|01>
17 (01 = +)(+ = 01) + (1) (01] + )~ + [o1) }
1,1 1 1 1 1 1
- 3<4+4 4‘4‘4>2
p(1]1) = %{<00l + =) {+ —100) + (00| = +){=+100) + (00| = —){— —100)
+n(00] — +){(+ — 100) +1*(00[ + —){—+ [00) }
13 1 ,
= 3<4+4(77+77)>
. 3_1
p(2)1) = g <01!+ —)(+ = 101) + (01| = +)(= +|01) + (01| = —){(= — |01)
+n(01] = +)(+ = [01) + 77 (01 + —){(= + [01)}
= ;(— n+n)>
1
3

The change n = 1 — n = 2 doesn’t change the probabilities:

oAmif3 _ 2mi(1-3)

e—47ri/3 —
Son* + (n°)’
change anything.

¢) From normalization:

Z (nlk) =1=

n

P

Thus:
_p(kin)

PUrlk) = = o (hin)

e27rz€—27m/3

e 2mi(1-5) _ p—2mi 2mi/3

:’r]*
=0

. Since the probabilities on the real part of the phase, this doesn’t

= p(kln)
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For the case k = 1, we get:

1/0 5 55
pOI1) = p(1]0) B S .
p(1]0) +p(1[1) +p(1[2) ~ S 421~ L 9
5 p(l1)  § 2
12 12
_ p(112) _ p(Aj1) 2
e s
12 12

We see that the message n = 0 is most probable, while n = 1, 2 is equally probable.

10.3 Three-spin entanglement

a)

p =10yl =2 (19 + I + D) (N T+ T+ D

oo\r—‘

pa="Trpcp =5 (D +2 D)
ppo =Teap =5 (LML 1+ 1 T 1+ T PUE 1+ TR |+ 400t )

The von Neumann entropy is

1.1 2 2
= _—Trpslnps=—-ln-—=In=
S rpalnps glng —3lng

We could also use ppc, but it is more complicated since it is not diagonal.

b) Measure 1: |¢) — | Tl1). Spc = 0.
Measure J: [15) — | 1)(| 1) + | 41)). Sac = In2.

¢) The eigenstates of o, are

| =) =

(\T>+!¢>) or| =) =1 =)

%\

| ) =

(\T>—H>) 0| =) = =] <)

3\

If we solve these equations we get

1) = \[!—>>+\<—>) b =—=(=)=1<))

The state can then be expressed as

7

) = (I ) H ) H 2T — [t + [ =214 = [ )

S\
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Measure —: [1)) = —=| =) (| L) + [ T4) + | 1))

Measure <:[¢)) — = <) (| L) = [ 14) = [ 11)).
For BC we have (up to a global phase)

[¥Be) = <=(I 1) +1 41) £ 1),

The density matrix is

pBC = [¥Be)(Vpc| = é(l TH+H D ETHDAN [+ AT £ D

pp = Trcpsc = 311+ D £ D1+ 0( D

In matrix form

11 41
PB=3\41 2

The eigenvalues are found from the characteristic equation

1 1
s —A =*£3 1 2 1
3 3 l=(A=YN=2)_-Z =
% %—)\ (A 3)(/\ 3) 9 0
which gives
\ 1E3V5
=,

The entanglement entropy is

1 1 1 1
1+3Vh 14+5VE 1-5V5, 1-5V6

5= 9 2 2 9




