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Solutions to problem set 12

12.1 Quantum gates for teleportation

a) We have to calculate the action of each gate on the state. The initial state is

[th0) = (col0) + c1[1)) @ |0) ©[0) = ¢o|000) 4 ¢1[100).

We write H* for the Hadamard gate on qubit 7, and C%OT for the CNOT gate with 7 as control bit
and j as target bit. After each gate we then get

l1) = Hb|w0> = \2 [Co|000> + ¢0|010) + ¢1]100) + 01|110>]
|the) = C%OTW’” = \}5 [Co‘OOO) + ¢0]011) + ¢1]100) + 61’111>}
) = Clopliin) = \}5 [c0/000) + co]011) + 4[110) + 1101

1
1) = H"lis) = 5 |0/000) + co[ 100) + col011) + co[111)

+¢1]010) — ¢1/110) + ¢1]001) — c1|101>]

1
[5) = CRorlia) = 5 |c0l000) + co[100) + co[010) + co[110)

Fer|011) — eg[111) 4 ¢1]001) — c1|101>}

[6) = He|s) = 2\1@ [(co + €1)1000) + (co = €1)[001) + (co = €1)[100) + (eg + 1)]101)

(o + ¢1)]010) + (co — €1)]011) + (cg — €1)[110) + (co + cl)\m)]

lv7) = CRorlvs) = 2\1/5 [(Co + ¢1)[000) + (co — ¢1)]001) + (co — €1)[101) + (co + ¢1)[100)

+(Co + Cl)‘010> + (Co — Cl)|011> + (CU — Cl)|111> + (Co + Cl)’110>}
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[g) = H 7)) = 3 [00\000) + ¢1]001) + ¢0[100) + ¢1]101)

+¢0|010) 4 ¢1]011) + ¢o|110) + ¢1]111)
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b) Measuring qubits a and b at the dashed line collapses the wavefunction at that point. But since a
and b only acts as control bits forthe last four gates, their states do not change. Then the state will
be the same as if we measure a and b on the final state |t)g) instead. The only difference is that
now the CNOT gates will not be nonlocal two-qubit gates, but rather local one-qubit gates on qubit
¢ conditioned on the measurement outcomes for a and b. This has to be transmitted from a and b
to ¢ as in the usual teleportation protocol. Then we still get |¢/) = |a) at the end. and only need
local operations after the dashed line.

12.2 Quantum cloning of orthogonal states

a) Assume first that |1)) = |0) and |¢) = |1). Then we can check that a single CNOT gate gives the
desired result (upper line is the original, lower line is the copy)

) I ) ) 1 )
10) 0y 10) 1)
Since |¢) and |¢) are orthogonal, there exist a unitary transformation U such that

) = U10)
[#) = U[1)

The inverse of this transforms [¢) and |¢) to |0) and |1), and we can then use the CNOT as above
and transform the result back, giving the final circuit

6) — 1T )

1
0) | >@ )

b) Here we can use the simple circuit with a single CNOT gate. The input is (qubits are written from
top down)

1
[%o) = —5(100) + [10))
giving the final state
1
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1) = Cvorlio) = = (100) +11)) £ (1) +11)
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12.3 Quantum circuit for controlled R,
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a) We define ¢ = 27/2" and get

1) @ |ih2) = (aol0) + a1[1)) @ (bo|0) + b1[1))

£ (aol0) + a1€™/2|1)) @ (bo|0) + bre®/?|1))

YO agl0) & (bol0) + b1e2|1)) + arei®/2[1) @ (bo|1) + brei®/?0))

R! . . .
2 aol0) ® (bo|0) + b1[1)) + a1e’®?|1) @ (boe /% |1) + bye™/2|0))

XL a0l0) ® (bo[0) + ba[1)) + aa[1) @ (bo|0) + bre™[1))
= ap|0) ® [th2) + a1[1) @ Ri|tba)

=

Q

This is the controlled Ry, operation.

b) Let U|t)) = €®|4)). The situation is described by this circuit

(10 +11)) L5(10) + €[1))
1) )

The evolution of the state is
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¢) Since multiplying by a phase factor does not change a quantum state, U does not really change
the state of the target if the initial state is an eigenstate. However, the relative phase between two
states does make a physical difference. Therefore, when the control is in a superposition, there is a
phase difference between the two states after the control-U operation. Since the state of the target
is the same in both cases, it factors out, leaving a product state with the relative phase between the

two states of the control qubit.



